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The affine nontwisted Kac-Moody algebra B } I) is constructed in terms of an underlying not 
associative algebra obtained by tensoring an associative algebra of vertex operators with a 
given Lie-admissible algebra. The former has its origin in bosonic string theory and the latter is 
found to be essentially an algebra of contractions used in canonical field theory. 

I. INTRODUCTION 

An algebra a is a vector space in which a bilinear closed 
operation, 

0: aXa-a, 
(x,y)~x"y, 

(1.1 ) 

is defined. If the associative law is not assumed for this oper
ation the algebra a is referred to as nonassociative; if the 
associative law is actually violated in a we call the algebra not 
associative. 1 A nonassociative algebra a is completely de
fined by a multiplication table; by this we mean the defini
tion of how the bilinear operation acts on some basis of a. For 
example, if we have 

( 1.2a) 

a multiplication table is given by 

( 1.2b) 

where only a finite number of terms should be different from 
zero. Among the not associative algebras the ones that have 
a richer structure and are most well known are the Lie alge
bras. 

It is possible to construct new algebras out of some given 
algebra a. For example, if a is defined by ( 1.2) we can define 
a - as (1.2a) endowed with the operation 

[x,y]: = xoy - yox. (1.3) 

If a - is a Lie algebra then a is called a Lie-admissible alge
bra.2 Obviously, every associative algebra is Lie admissible. 
If a is an associative algebra of endomorphisms on a vector 
space V then the construction of a - is a problem in the the
ory of representations of Lie algebras; the purpose of the 
construction is to use the much simpler properties of the 
associative algebra a to study a - . An antipodal problem con
sists in constructing a Lie algebra a - from a not associative 
algebra a to use the results from the theory of Lie algebras to 
understand better the underlying a; with this purpose Albert 
introduced in 1948 the concept of Lie-admissible algebras. 3 

In this case, the usefulness of the construction comes from 
the fact that not associative algebras, which are not Lie alge
bras, are in general quite untractable. 

In what follows we present a construction of the affine 
Kac-Moody algebra4 B } I) from a not associative algebra o. 
In Sec. II we present a not associative algebra a, whose origin 
is explained in Sec. V. Section III is a summary of the vertex 

operator formalism for constructing representations of sim
ply laced algebras. 5

-
8 In Sec. IV we define 0 in terms of the 

algebras of Secs. II and III and construct B } I) in terms of it. 
In Sec. V the relation between our construction and some 
representations of B } I) is established; from this relation we 
can obtain a method of constructing representations for a. 
Although in our case a may be simple enough to allow the 
solution (5.5) to be guessed, the method presented can be 
useful in dealing with more complicated examples of not 
associative algebras. 

The fact that a is essentially an algebra of contractions 
used in quantum field theory shows that it can be of some 
relevance in renormalization theory (the most naive renor
malization consists in subtracting contractions from a diver
gent free-field Hamiltonian). Although not associative alge
bras, other than Lie algebras and special Jordan algebras, 
have not been widely used in physics yet, it has been re
marked recently that they may play an important role in the 
study of anomalies in quantum field theory.9-12 In Witten's 
string field theory, for example, the question of associativity 
of the basic string operations is a fundamental one from the 
very beginning,1O and the key to the construction of the 
closed string field theory of Stromingerll is an associativity 
anomaly. 12 The discussions and results of Sec. IV show in a 
much simpler context a mechanism by which an algebra of 
operators mayor may not exhibit associativity anomaly. The 
construction of the representations (5.5) and (5.6) shows 
then a process to eliminate the anomaly; the representations 
relate the two classes of algebras [the not associative like a 
and the "anomaly-free" like C(qt) and C(q;)] that can be 
used in a given theory (in our case a theory possessing B } I) 

symmetry). 

110 THE ALGEBRA OF CONTRACTIONS 

Let us consider the vector space 

a = $ ('.am $ C1 
meZ 

endowed with a bilinear operation defined by 

amoan=(J(m)8m+n.l1, amo1=am, 

(2.1a) 

loam = am' 10 1 = 1 (m,nEZ), (2.1b) 

where (J: Z - C is defined to be unity if m > 0 and zero if m <0. 
The symbol 1 as well as the dot indicating operation in a will 
in general be omitted. It is trivial to check that a is an algebra 
which is not commutative and not associative; this last prop-
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erty is crucial for what follows. We call a the algebra of con
tractions. For any algebra a the commutator of two elements 
x,yEa is defined by 

[x,y]:=xy-yx. (2.2) 

As an expression of nonassociativity in a it is convenient to 
define also the associator of three elements x,y,zea: 

(x,y,z): = (xy)z - x(yz). (2.3) 

In the algebra defined by (2.1) we have, e.g., [al,aO] = 1 and 
(al,aO,a l ) = a l · 

Then a has the obvious grading a = <to EB aT, where 
ao = C1 and aT = EB mEZCam (O,leZ2 ), and is simple al
though EB m>OCam and EB m<OCam are right and left ideals, 
respectively. Thus a gives an example of a Lie-admissible 
algebra which is not associative. The multiplication table of 
0- is given by 

[am,an ] =(O(m) -O(1-m)}I5m+n.1> [am,l] =0. 
(2.4 ) 

Although a does not seem to provide an interesting example 
of a Lie-admissible algebra, its "affinization," when tensored 
with some associative algebra, to be defined in the next para
graphs, will provide us with an algebra isomorphic to B J I ) . 
The "affinization" of a is done by defining the "generating 
function" 

a(z): = L amz- m, a (z)eo{z}, (2.5) 
mEZ 

where a{z} is the vector space offormal Laurent series in the 
indeterminate z with coefficients in 0.13 In terms of a (z) the 
multiplication table (2.1 b) can be written as 

a(z)a(w) = (z - w)-l, Izl> Iwl. (2.6) 

The nonassociativity in a can be expressed by 

(a(u),a(v),a(w») = (u - v) -la(W) + (w - v)-la(u) 

(lui> Ivl > Iwl>. (2.7) 

1110 THE VERTEX OPERATOR REPRESENTATIONS 

Let 1) = (;pI EB ••• EB (;PI be an I-dimensional complex 
vector space and 1)* = Cql e ... e Cql its dual, where 
ql, ... ,ql is the basis dual to pl, ... ,i. Let A be a lattice in 
f): = Rql e ... e Rql, and C(A) its group algebra. We repre
sent a vector in any vector space as a pairing, denoted by a 
dot, between its components and corresponding basis ele
ments,e.g.,a1ql + '" + all = :aoqef)*. Letusconsiderinf) 
an inner product, inherited by f)* in the usual way, and de
note it also by a dot. For convenience we take 

piopj = qioqj = oij (i,j = I, ... ,/). 

We make f) an I-dimensional (Abelian) algebra of deri
vations on C ( A) by defining 

pjlY) =yjly) [j= 1, ... ,1, ly)eC(A)]. (3.1) 

We define also an action of the group A on C( A) by means of 

eia·qly) = la + y) (a,yeA), (3.2a) 

and so 

(3.2b) 
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Notice that C(A) can be generated from itS vacuum by the 
action of A. 

From (3.1) and (3.2) we get immediately 

(3.3 ) 

It is sometimes convenient to use the (ill-defined) operators 
ql, ... ,ql and write 

(3.4) 

The first two equations express commutativity in the group 
A and in the algebra f), respectively, and the third one implies 
(3.3 ). 

Let us now consider a Heisenberg algebra 
I 

Heis= e eCHi",eC1, 
mEZ\.{O} i= I 

[Hi""Hjn] = oijmom + n,O (i,j= 1, ... ,1, m,neZ\{O}) 

commuting with qi, pi (i = 1, ... ,/) and acting on 
S(Heis< ), the symmetric algebra of 

I 

Heis < : = e e CHi",. 
m<O ;= 1 

We write H ~: = i and define 
I 

~: = 1)eHeis = e EB CHi", eC1, 
meZ i= 1 

[Hi""H~] =oijmOm+n,o (i,j= 1, ... ,1, m,neZ), 
(3.5) 

with ~ acting on 

F(A): =S(Heis<) ®C(A). (3.6) 

We write 1 ® 10)eF(A) simply as 10) and consider 

I 

Heis> : = e e CHi", 
m>O 1= I 

killing all vectors in C ( A) . 
Now we define the Fubini-Veneziano-Gervais fields 

from the theory of bosonic stringsl4: 

Qj(z):=qj-ipjlnz+i L J...H{.,z-m 
mEZ\.{O} m 

(zeC\( - 00;0]), (3.7a) 

. . dQj(z) 
P'(z): =IZ = L Hjmz-m (zeC\{O}). 

dz mEZ 

(3.7b) 

Here Qj (z) - qj + ipj In z and P j (z) are in the vector space 
~{z} of formal Laurent series in the indeterminate z with 
coefficients in ~, and pj(z) is just the "generating function" 
for ~. Finally we define the vertex operator associated to a 
point a of A: 

U(a,z): =~2/2 :eia'Q(Z): (aeA, zeC\( - 00;0]), 
(3.8) 

where we have used the normal ordering 

:qjpj: = :pjqj: = qjpj , 

. . {H{.,H~' . , ,.-.HmH n·- .. 
H'nH'm, 

ifn >0, 

ifn <0. 
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From (3.8) and (3.9) we obtain 

U(a,z)U({3,w) = (z - w)a'P :U(a,z)U({3,w): 

(lzl>lwl). (3.10) 

To construct a representation of an affine Lie algebra 9 out of 
vertex operators6 we take a in (3.8) to be in the root system 
~ of the associated finite algebra 9 (~e A), and restrict 
ourselves to some MeA in (3.6) for which U(a,z) can be 
extended analytically to IC\ {a}. From (3.8) it is easy to see 
that this requires 

!a2 + aoyeZ, if aE~ and yEM. (3.lla) 

For F(M) to be a g-module we need also that 

~+MeM. (3.llb) 

Since we have to avoid cuts in thez and w planes we must 
require also that [cf. Eq. (3.10)] 

a o{3EZ (a,{3E~). (3.llc) 

A solution of (3.11) is obtained if ~ is the root system of a 
simply laced algebra g. By choosing a 2 = 2 (aE~), (3.llc) 
is automatically satisfied and we can take M = Aw (g), the 
weight lattice of g. With this solution at hand we can define 
the Del Giudice-Di Vechia-Fubini excitation operators 
from bosonic string theoryl4: 

1 f dz U':,,:=-. -z"'U(a,z) 
2m (0) z 

(aE~, meZ), (3.12) 

where the integration is along a simple loop around z = 0. 
Using (3.10) we get 

U':" U~ - (_l)a'P U~U':" 

= _1_ i dw wn_I_ i dz z"' 
21Ti ~O) w 21Ti ~w) z 
X (z - w)a'P:U(a,z) U({3,w):, (3.13 ) 

where the w integration is around the origin and the z inte
gration around z = w. 

From the Schwarz inequality we get that 
a o{3 = 2,1,0, - 1, - 2 and consequently, that (a + {3)2 
= 8,6,4,2,0. As a result a + {3E$~U{O} :::::} a o{3 = 0,1,2, 

a + {3E~ :::::} a o{3 = - 1, and a + {3 = ° :::::} a o{3 = - 2. 
Using those cases in (3.13) we get 

U':" U~ - (_l)a·Pu~u':" 

{

a, 
= U':,,~~, if a +{3E~, 

aoHm+n + m{jm+n,o, if a +{3= 0. 

if a + {3E$~U{o}, 

(3.14) 

By eliminating the factor ( - l)a·P it is possible to tum 
( 3.14) into the commutation relations for the root vectors of 
an affine algebra. This method was discovered by Frenkel 
and Kac.6 It is possible to define a projective representation 
of the root lattice of g, Ar (g), in some Hilbert space Ve: 

c: aEAr (g)t---.c(a)EEnd( Ve ), 

c(a)c({3) = E(a,{3)c(a + {3), c(O) = I, 
where the two-cocyc1e is given by 

E: Ar(g) XAr(g) -+{ ± I}, 

E(a,{3) = ( - l)S(a'P)E({3,a), 
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(3.15a) 

(3.15b) 

and 

S(a,{3) =a°{3= - (ao{3)2 (mod 2). (3.15c) 

Using the associativity in the group Ar (g) we obtain imme
diately 

E(a,{3)E(a + {3,y) = E(a,{3 + y)E({3,y), (3.15d) 

for a,{3, y in Ar ( g) . It is possible to choose 

E(a,O) = E(O,a) = 1, E(a, - a) = 1 [aEAr(g)]· 
(3.15e) 

For the simply laced case it is obvious that 

E(a,{3)E({3,a) = - 1, if a + {3E~. (3.150 

It is possible to take Ve = C( A) and then obtain the commu
tation relations between the cocyc1e c and the vertex opera
tors; another possibility consists in taking Ve to be an inde
pendent space to be tensored with F(M) and then getting a 
cocyc1e c which commutes with the vertex operators. IS We 
are going to do the latter and define 

Ea(z): = U(a,z)c(a), 

E':,,: = U':"c(a) (aE~, meZ, zEIC\ {a}) (3.16) 

acting on Fe (M) = F(M) ® Ve' From (3.14) and (3.16) we 
get the commutation relations for the operators E':" (aE~; 
meZ). The commutation relations for the operators H~ 
(i = 1, ... ,1, meZ) are known from the beginning [Eq. (3.5)] 
and those for H~ and E~ (i = 1, ... ,1, aE~, m,neZ) are tri
vial to obtain [by using Eq. (3.3)]. The complete algebra is 
given by 

g:=~ED ED ED ICE':", 
meZ aE~ 

with 

[H~ ,H~] = {jijmDm + n,O , 

[H~,E~] = aiE':,,+n , 

[E':",E~] = {~(a,{3)E':,,~~' 
aoHm+n + mDm+n,O' 

(3.17a) 

(3.17b) 

if a +{3E$~U{O}, 

if a +{3E~, 

if a +{3 = 0. 

This should be recognized as a non twisted affine simply 
laced Kac-Moody algebra (without the degree derivation, 
to be precise). 

Now, if we consider the root system ~ to be ~(BI), the 
root system of the non-simply-laced Lie algebra B/ (with 
long roots having square length 2), we still have (3.IIc) 
satisfied, and (3.llb) can be trivially satisfied taking 
M = Ar (BI ): = Spanz~' The condition (3.lla), however, 
will be satisfied only if a is a long root of BI • Despite that we 
can still associate excitation operators to the short roots of BI 
by defining them as the Laurent coefficients of zl/2U(a,z) 
[aE~(BI)' a 2 = 1]. Let us call ~L and <Ps the set oflong 
and short roots of B I , respectively; we have 

<P(BI ) = <PSU<PL . (3.18) 

We define the excitation operators for <P(BI ) as 

U':,,: = ~ i dz z"' U(a,z) (meZ), if aE<PL , 
2m ~O) z 

(3.19a) 
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and 

1 i dz v~ = -. -z' U(p,z) 
2m (0) z 

(seZ + !), if pe<Ps . 

(3.19b) 

Since <P L is the root system of a simply laced Lie algebra we 
can use (3.19a) to get again (3.17b) with the understanding 
that in (3.17b) and (3.150 <P is replaced by <PL, and in 
(3.15a)-(3.15e) A, (g) is replaced by Spanz <PL' The equa
tion analogous to (3.13) involving excitation operators for 
short roots will result in the following relations, to be com
pared with Eq. (3.14): 

v~U:' - ( - 1)p"au:, v~ 

={O, ifp+aEl<P(B})U{O}, 

v~::., ifp+ae<P(B}); 

vpv" - ( - 1 )P""V" VP = {O, 
• !I !I. 0 

s+!I,O' 

where meZ and s,s'eZ + !. 

ifp-u= 1,0, 

ifp-u= - 1; 

(3.20) 

(3.21 ) 

To obtain (3.20) we notice that Ip-al..;; IPI-Ial =.J2 and 
that A,(<P(B}») is an integral lattice; then it follows that 
pea = 1,0, - 1 and that (p + a)2 = 5,3,1. Consequently 

(p + a)El<P(B}) U{O} => (p + a)2 = 5,3 => pea = 1,0 

and 

(p + a)e<P(B}) => (p + a)2 = 1 => pea = - 1. 

Concerning (3.21) it is obvious that no correction of sign 
can turn it into the commutation relations among the short 
root vectors of B pl. However, (3.15a)-(3.15e) can be ex
tended 15 from the lattice Spanz <PL to the whole A,(<P(B}») 
in such a way that all the equations (3.15a)-(3.150 remain 
valid, except for (3.15c), which is modified for a"Be<Ps : 

S(a"B) =.a2p2 - (a_p)2 (mod 2). (3.22) 

Using this fact and the definition 

t/lI': = V~c(p) (pe<Ps' seZ + !), (3.23) 

(3.21) can be made a Clifford algebra C(t/I) written in terms 
of generators t/lI' (pe<Ps, seZ + !). The whole algebra ob
tained from the vertex operators is given by 

[H:",H~] =oijmom+n,O' 

[H:",E~] =aiE:'+n' [H:",t/I;] =/t/lf:,+ .. 

if a + PEl<P(B/) U{O}, 

if a + pe<P( B/), 

ifa+p=O, 
(3.24) 

{ o}.P o}p} _ £p + ",0£ 
'Ys ,¥'s' - U U 5 + S',O' 

{
o ifp+aEl<P(B/)U{O}, 

[t/lI',E~] = €~p,a)t/lI'++na, ifp + ae<P(B/), 

where i,j = 1, ... ,1, m,neZ, s,s'eZ +!, a"Be<PL' p,ue<Ps ' 
Therefore, in this case, instead of obtaining a representation 
of B J 1) we obtain a representation of a superalgebra. IS 
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IV. A NONASSOCIATIVE REALIZATION OF B~1) 

The operators E:' and qt~: = r/I:.. + 112 (ae<P L , 
pe<Ps, meZ) were defined in terms of the operators H:" 
(i = 1, ... ,1, meZ) in the Heisenberg system (3.5) and the 
operators eia.q (ae<P) in the representation (3.2) of the 
group A. We can think of all of them as generators of an 
algebra A of endomorphisms of Fe (M). This algebra can be 
viewed more abstractly as the free associative algebra gener
ated by eia'q , H {", E:', qt~ in which some elements are then 
identified according to (3.2b), (3.10), and (3.24), i.e., the 
free associative algebra modulo the ideal generated by the 
elements eiaoqeifJ.q - ei(a + tJ)·q [H i ,Hj ] -oijo etc 

, m n m+n.O'· 

We take the affinization of A and in the direct product of 
A{z} by a{z} we take the elementsHi(z) ® I,Ea(z) ® l,and 
qtP(z) ® a(z) (i = 1, ... ,I,ae<PL,pe<Ps )' in terms of which we 
define 

h:" =~1 dZ~Hi(z)®I, 
2m YcO) z 

1 i dz e:, = -. -~Ea(z) ® 1, 
2m (0) z 

1 i dz ef:, = -. -~qtP(z) ®a(z), 
2m (0) z 

(4.1 ) 

and write 1 instead of 1 ® 1 whenever it is convenient. Let us 
call b the resulting algebra with generators (4.1); we have 
that b{z}CA{z}®a{z}. Now we want to show that 
B } I) C b -. This will provide us with an example of a Lie 
algebra B } 1) constructed from elements of the underlying 
not associative algebra b. 

From the definition (4.1) and the basic identity (3.1 0) 
we obtain 

[e~,e~] =€(p,u) ~1 dw ~~1 dz ~ 
2m YcO) w 2m YcW) z 

X (z - W)p",,-I :zeip-Q(Z)weio-Q(W): c(p + u) ® 1 

(p,ue<Ps, m,neZ). (4.2) 

For p + O'EI:<PU{O} we have p-u = 4; for p + ue<P 
(¢?p + oe<PL ) wehavep-u = 0, andforp + u = Owehave 
p-u = - 1. In those cases (4.2) reduces to 

(p,ue<Ps, m,neZ). 

ifp + O'EI:<PU{O}, 

ifp + ue<P, 

ifp+u=O 

(4.3) 

It is easy to get from the rest of the equations in (3.24) all the 
other commutation relations necessary to obtain the algebra 

g= EfJ (~ Ch:" EfJ EfJ ee:')EfJCl, 
mEZ i= 1 aeCSlo 

( 4.4a) 
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with 

(4.4b) 

{

O' 
= E(a,p)e:,~~, if a +pe<l>, 

a'hm+" +m{jm+",o, ifa+p=O 

if a + PE<I>U{O}, 

[i,j = 1, ... ,I, a,pe<l>, m,neZ, <I> = <I>(B1 )] • 

Those equations define a Lie algebra [ B : I) because 
<I> = <I>(B1 )] if we can obtain from them the Jacobi identity 
for any three elements ofg. For algebras like (3.17) the Ja
cobi identity is an immediate consequence of the associativ
ity of the underlying algebra of operators. However, the un
derlying algebra that gives (4.4) is not associative: 

( PUT) - 1 f du m f dv "f dw p e e e -- -u -v -w 
m' ", p 21Ti u v w 

x IIIP (z)IIIU (v),II T (w) ® (a(u ),a(v),a(w», 

which is not identically zero. But once the underlying alge
bra is not associative the Jacobi identity may be violated and 
its possible validity depends crucially on the properties of the 
structure constants of g. Essentially, what is required to 
prove the Jacobi identity is that the two-cocycle E in (4.4b) 
satisfy the properties given in (3.15). Since that is the case 
we have that g in (4.4) is indeed a Lie algebra: the affine 
nontwisted Kac-Moody algebra B : I). The proof of the va
lidity of the Jacobi identity is by enumeration of cases and 
therefore not very illuminating; a concise and elegant pre
sentation is given by Mitzman. 16 

V. THE RELATION BETWEEN It AND THE 
REPRESENTATIONS OF B P) 

A method of generalizing the vertex operator formal
ism, to obtain also a representation for the non-simply-laced 
Lie algebra B : I), consists in replacing (3.l9b) by 

U':,,: = -2
1 

. i dz ~ ZI/2U(p,z)U(z), (5.1) 1TlYz 
where U(z) is an auxiliary field, to be regarded as an endo
morphism of some vector space, and whose basic properties 
are to commute with U(a,z) [ae<l>(B1)], to be analytic in 
C'\ {O}, and to satisfy the relation 

U(z)U(w) = (z- w)-lj(z,w) +F(z,w) (izi> iwj), 
(5.2) 

where f is a complex function, symmetric, and equal to 
unity for z = w, and F is an operator function, antisymme
tric, zero at z = w, and analytic in C'\ {O}XC\ {O}. With 
this ansatz the problem of finding a representation for B : 1 ) 

reduces to the problem of finding the operator U(z). Solu
tions for this problem, and its generalization to other non
simply-laced algebras, were given before by several authors, 
with different approaches. 17

-
20 A possible solution consists 

in taking U(z) = zl/2 'I1(z), where 

lII(z) = L IIIm z -m (5.3a) 
mEZ+ 112 
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is the "generating function" for a Clifford algebra C(III) 
with 

(5.3b) 

(5.3c) 

it is easy to obtain the following operator product expansion: 
zl/2W l/2 

lII(z)lII(w) = + :1II(z)lII(w): (izi> iwi). 
z-w 

(5.4) 

Comparing (5.4) with (5.2) we see that U(z) =z- '/2111(z) 
is indeed a solution of (5.2). Since any Clifford algebra can 
be realized as endomorphisms of a vector space, this solution 
provides a representation of B : I). A choice that cannot be 
made in (5.2) is F(z,w) = 0, because in this case U(z) will 
inevitably be an element of a not associative algebra, as was 
shown in Sec. II, and that makes it impossible for U':" to be 
used in the vertex operator construction of a representation 
of a Lie algebra. Of course, it was precisely this choice that 
provided the example of B : I) being constructed from the not 
associative algebra o. By comparing the choice (2.6) with 
(5.4) we want to obtain more information about the not 
associative algebra treated in Sec. II. 

A representation 1T of a nonassociative algebra A by 
means of an algebra B is defined by a linear transformation 
1T: A -B, such that 

1T(a)*1T(a') = 1T(a'a') (a,a'eA), 

where the operation inA is denoted by a dot and *: B XB-B 
is a bilinear function. In case A is a Lie algebra then B is 
End ( V) for some vector space Vand * is fixed to be 

1T(a)*1T(a'): = 1T(a) X1T(a') -1T(a') X1T(a), 

where the composition of endomorphisms is denoted by a X 
for clarity. With this definition in mind it is quite straightfor
ward to define a representation of a by means of C (III). We 
define 

(5.5a) 

to be the linear extension of 

1T(am)=lIIm_,/2 (meZ), 1T(1)=1, (5.5b) 

and require * to be such that 1T{a (z) )*1T{a (w») = (z - w) - I. 

By using (5.4) it is straightforward to see that * should be 
defined as the linear extension of 

hI: = 1, l*lIIm = 111m *1 = 111m , 
,.-, (5.5c) 

111m *111,,: = 111m III" (m,neZ + !), 
where we have used the symbol of contraction from quan
tum field theory: 

,.-, 
111m III" = 111m III" - :lIIm III,,:. (5.5d) 

The formulas (5.5) justify the name given to a as the algebra 
of contractions. 

Another Clifford algebra C(\II), which is used to con
struct representations of B : 1 ), is given by 

\II m \II" + \II" \II m = U m + ",0 (m,neZ). 
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Defining 

q/(z) = L q/mz-m 
mEL 

we obtain 

ifn >0, 

ifn = 0, 

ifn <0, 

q/(z)q/(w) = (z + w)(z - W)-I + :q/(z)q/(w): 

(Izl > Iwl)· 
Using the same method followed to obtain (5.5) we find the 
representation of Q by means of C (q/): 

iT: Q-+C(q/); 

iT(am ) = q/m (mEZ), iT(1) = 1; 

hI: = 1, hq/m = q/m*l = q/m, 

kl. 1 
"'m*"'": = L (-1) "'rn-k-I"'"+k, 

O<kEL 

(5.6a) 

(5.6b) 

(5.6c) 

where the series in the last expression contains only a finite 
number of nonzero terms. 

From those two examples we can see that Q can be relat
ed to all the representations of B } I) obtained from the ansatz 
( 5.1 ). This Q expresses algebraically the essential common 
features of all the auxiliary fields used in (5.1) to extend the 
vertex operator formalism to the non-simply-laced algebras. 

It seems that the construction of Sec. IV can be general
ized to other non-simply-laced algebras, by attaching a not 
associative algebra to each distinct orbit of the Weyl group 
generated by the long roots reflections acting on each short 
root. 19 
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Loop algebras of parallel transformations are defined on seven spheres. These algebras can be 
extended with eight fermionic charges and the Virasoro algebra to a soft superalgebra using the 
geometry of cosets of supergroups, or to a nonassociative infinite-dimensional N = 8, d = 2 
superconformal algebra. 

I. INTRODUCTION 

In recent years infinite-dimensional algebras have 
played an ever increasing role in physics, especially in statis
tical physics and in string theories (a review is given in Ref. 
1 ). The simplest infinite-dimensional algebras are the alge
bras of loop groups defined by maps from the circle into a 
group manifold. Composition of these maps is done by using 
the group multiplication. Since the group mUltiplication cor
responds to an absolute parallelism (see Appendix B), this 
composition can also be interpreted in the following way: 
one composes two loops in group space by means of an abso
lute parallelism. This notion of parallel transport allows an 
extension of the loop composition on a different space, the 
seven-sphereS 7. Indeed, S 7 is the only compact Riemannian 
manifold which shares with Lie groups the property of abso
lute parallelism.2 We will use this property to define two new 
loop algebras. One of these will be a nonassociative algebra. 
The other will be the "soft" algebra of covariant derivatives. 
By soft algebra3 we mean that it has structure functions de
pending on a point of the seven-sphere rather than structure 
constants. If one takes the values of the structure functions at 
one point of the sphere, one reobtains the nonassociative 
algebras. 

These considerations can also be applied to superalge
bras. This will allow us to obtain an infinite-dimensional 
superalgebra for N = 8 in 2 dimensions, generalizing the 
known infinite superalgebras for N = 1, 2, and 4.4 

II. SOFT ALGEBRAS ON S 7 

In this section we show how algebras defined on group 
manifolds can be generalized to the seven-sphere, using its 
parallelizability. We obtain thereby a soft algebra, as has 
been remarked previously in Ref. 5. Then we will get the 
same algebra by using more specifically the coset space 
structure ofthe seven-sphere: SO(8)/SO(7), and we show 
how a loop algebra can be defined. 

The seven-sphere can be parametrized by unit octon
ions. There are two seven-parameter families of parallelisms 

.J Onderzoeker U.K. W., Belgium. 
bJ Bevoegdverklaard Navorser N.F. W.O., Belgium. 

depending on a unit octonion A. We will use here only "left 
parallelisms." 6 The parallelisms and corresponding compo
sition laws (see Appendix A for notations) satisfying the 
criteria of Appendix Bare 

(X,y) II,. (X',r) if Y(XA) = r(X'A), 

X*AY= (XA)(AY) =XY +A [X,A,y]. 
(1) 

We write the algebra for the parallelism defined by 
A = 1. We parametrize all points of the seven-sphere as et'l/, 
where t is a real number and 1J a unit purely imaginary octon
ion (1J = - 1j). The couple starting from X, and parallel to 
(l,el'l/), is given by (X,el'l/X). Henceforth, the end point ob
tained in this way we will call the transport of X by el'l/, 

et'l/X = (cos t)X + (sin t)1JX. (2) 

We define therefore the generator K'I/ of transport in 1J direc
tion acting on the point X as 

K'l/X=1JX. (3) 

We define the composition of parallel transformations 
by performing the two parallel transports successively. So 
this implies 

[K'I/,K..t]X = 1J(A,X) -A,(1JX) 

= ([ 1J,A.)]X - 2[1J,A.,x). (4) 

The associator in Eq. (4) states that the result of the oper
ation is not a uniform parallel transport. It can be viewed as a 
point-dependent parallel transport, by rewriting the com
mutator as 

[ K'I/,K..t ]X = Kp(x) X 

with 

p(X) = [1J,A. ] - 2X[1J,A.,x). 

Define the imaginary units eQ and eO = 1, then 

(5) 

(6) 

(7) 

We denote by KQ the generator of transports in the ( - eQ) 
direction. In this basis, the commutator is 
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[Ka,Kb]X = ea(ebX) - eb(eaX) 

= _ (2~abc _ (2X[ea,eb,x])C)KCX 

= 2S abc(X)K cX. (8) 

As we will see in a moment S is the torsion of the seven
sphere corresponding to the parallel transport.6 The Jacobi 
identity is trivially satisfied as the composition is realized by 
successive transformations. Nevertheless it is instructive to 
see what happens explicitly. In fact, what we have here is a 
soft algebra.3 Equation (5) defines an algebra where the ac
tion of the generators depends on extra variables, which are 
in our case points of the seven-sphere. The structure con
stants depend on these points, too ("structure functions"). 
The action of the generators also transforms these structure 
functions such that the Jacobi identities are preserved. Con
sider what happens if we calculate 

[exp(teC),[Ka,K b ] ]X, (9) 

where t is small. We obtain then 

exp(teC
)( - 2S abd(X)K dX) 

- ( - 2S abd (exp(teC)X»Kd(exp(teC)X), (10) 

which to first order in t is equal to 

The Jacobi identity states that the antisymmetric part in 
[abc] is zero, recovering the known differential equation for 
the torsion.2 This mechanism can also be seen in the algebra 
of covariant derivatives on the seven-sphere. Choosing a se
venbein uaa, where a indices label the coordinates on the 
sphere, and a labels the coordinates in the tangent space, we 
have on world-scalar functions (no a-type indices) 

va = uaaaa . 

We obtain then for the commutator 

[va,Vb] = 2S abc(X)Vc' 

(12) 

(13) 

This equation remains valid on arbitrary tensors, if the 
sevenbein Ua is covariantly constant. Then S abc (X) are the 
components of the torsion tensor. Choosing for the seven
bein ua at the point X the vectors ea X, we have 

sabc(x)Uca = u[aP af3ub la 

= (e[ax)f3 af3 (eb lx)a = (e[b (ea1X) )a. (14) 

Comparing with Eq. (8) justifies the use of the name "tor
sion" for the quantity found there. As calculated in Ref. 6 the 
covariant derivative of the torsion is 

VdSabc(X) = ([ea,ebX,edX] + [ea,eb(edX),x],eC), (15) 

where ( , ) denotes the positive definite scalar product. At 
the points 1 and - 1, 

sabc = _ ~abc, 
(16) 

VdS abc = _ 2¢Jabcd. 

For the Jacobi identity we act with VC on Eq. (13), and the 
second term ofEq. (11) now corresponds to Eq. (15). The 
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Jacobi identity then corresponds to Eq. (A4). 
In Eq. (8), we could interpret the action sabc(X)Kc as 

21 new generators. Then together with the original seven K a 

they combine to the SO (8) group. We will explain how the 
soft algebra can be seen to originate from this coset structure, 
and this we will apply in Sec. IV to the supersymmetric case. 

Let K Ap. a p. represent the generators of a group G in a 
coset space G lB. Now we suppose that the subset Kap. ap" 
where a runs over dim(G IB) values, forms a basis for the 
action of the generators on the coset space. As a conse
quence, they generate regular motions without fixed points. 
This implies that the manifold is parallelizable: parallel vec
tors can then be defined as those having the same compo
nents in the frames defined by K ap.. With respect to the met
ric 

(17) 

where gAB is the Killing metric, this becomes an absolute 
parallelism. Therefore-in the framework of positive defi
nite metrics-we are led to coset spaces isomorphic with 
group manifolds, and to the seven-sphere.2 

For use in Sec. IV we will construct these generators 
explicitly for SO(8)/SO(7). First define the SO(8) genera
tors (/ = 0,1, ... ,7) 

MIJ = x/aJ - xJa/, 

[MIJ,MKL ] = ~/LMJK + ~JKMIL 
-~JLMIK -~IKMJL' 

(18) 

One would be tempted to take here the straightforward 
choice Mlo for the generators K a, but these become zero at 
some points of the sphere. Actually we need nonvanishing 
vector fields, e.g., the seven vector fields associated to the 
generators K a defined previously. To this aim we first define 
the r matrices by identifying the octonionic multiplication 
with 

X~/X (19) 

with a linear transformation 

(20) 

Obviously r 0 is the identity matrix, while the seven r A obey 
the Clifford algebra 

(21) 

thanks to the complete antisymmetry of the associator. 
From them we define r IJ 

r A 0 = - r OA = r A' r AB = r [A r B l' (22) 

We indicate further the spinor indices of the r matrices by 
i,j, ... . These r matrices are antisymmetric in these indices 
which run also over eight values. Due to triality of SO(8), 
the set r'f} with a = 1, ... ,7 forms again a seven-dimensional 
Clifford algebra where now the [IJ] are spinor indices. We 
define 

M ii-1riiM M lriiMji =4 IJ JI- IJ=4 IJ , 
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The Mij satisfy in any point the SO(8) algebra as the MIJ 
equation ( 18). In contrast to the basis MA. 0' the seven gener
ators K a vanish nowhere on S 7. The M ab can be expressed in 
terms of the K a: 

Mab = _ sabc(X)Kc/2. (24) 

Therefore the SO(8) algebra implies 

[Ka,Kb] =4[M aO,MbO] 

= _ 4Mab = 2S abc(X)Kc. (25) 

So this gives the same result as what we obtained before with 
the covariant derivatives, Eq. (13), or with the parallel 
transport of points, Eq. (8). 

Now the definition of loop algebras is straightforward. 
As on group manifolds we define a map from the circle, 
parametrized by a variable z, to parallel transformations of 
the seven-sphere. The multiplication is defined pointwise. 
The resulting infinite-dimensional "Lie" algebra is a direct 
product of the previous one, and a multiplication by a func
tion ofz. So we obtain 

(26) 

We have not been able to define a central extension to this 
soft Lie algebra. 

III. NONASSOCIATIVE ALGEBRAS ON 8 7 

We come now to another way of defining the composi
tion of two parallel transports. It is again a parallel trans
port, namely the one corresponding to the multiplied octon
ions. This yields a nonassociative loop algebra. In the 
vicinity of the unit element we have 

(27) 

The superscript' is added to draw attention to the fact that a 
new composition law for parallel transports has to be used. 
In the basis defined before, we have 

(28) 

This yields the nonassociative Lie algebra. In fact, we obtain 
a violation of the Jacobi identity 

[ [K a,K b ] , ,K C]' + two cyclic permutations 

(29) 

where t/J has been defined in Appendix A, Eq. (A4). This 
violation of associativity is due to the fact that we apply the 
successive transformations at different points. 

At the antipodal points X = ± 1, the commutator ac
cording to the composition of the previous section, Eq. (5), 
coincides with the commutator [Eq. (27)]. 

Now we can define an infinite-dimensional algebra with 
a central extension, 

Indeed, the central extension does not modify Eq. (29). 
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IV. SOFT N=8 SUPERALGEBRAS 

The supergroup OSp(812) contains an SO(8) sub
group. We will extend the construction of the soft algebra, 
outlined in Sec. II to this case. The generators of the super
group OSp (812) act on eight bosonic real coordinates xl and 
a complex Grassman coordinate t. The group is defined as 
the operations which leave invariant the quadratic form 

(31) 

The "super-seven-sphere" is defined by the space X 2 = 1. 
Apart from the SO(8) generators [Eqs. (18)], the super
group contains the supersymmetries 

(32) 

Further there is the Sp (2) subgroup of the Virasoro algebra, 

Lo = ~ [t ~ - t ~ ] , 
- a 

L 1 = -t-, (33) at 
a 

L_l =t--=-· at 
The coset space which we describe in this way is OSp (812) I 
OSp(712). To see this, first remark that by definition the 
supergroup OSp(812) connects all points on the super
sphere. Therefore we should just consider the stability group 
of one point. This is easily done for the point 

t = 0, Xl = t5~, (34) 

which is left invariant by all the generators of a OSp(712) 
supergroup. The algebra ofOSp(812) is 

[Lo.L±d = +=L±I' 
[L1.L_d = 2Lo , 

[ Lo,G l ] = +=!G l , 
[ L ± I>G l ] = 0, 

[L±I>Gil = ±Gl, 
{ G l ,G l } = - 2L ± I t5IJ , 

{ G / ,G J- } = - 2L0t5IJ - MIJ , 

[MIJ,MKL] = t5IL MJK + t5JKMIL 

- t5JLM lK - t5IKM JL , 

[MIJ,G 1- 1 = t5JK G l - t5IK G l 

(35) 

(M commutes with L). As in Sec. II, the MIJ do not form an 
independent set on the seven-sphere, and can be written in 
terms of the K a defined there, Eq. (23). If the supercoset is 
OSp(812)/OSp(712) one can express the 28 bosonic genera
tors of SO(8) in terms of seven generators which induce 
motions without fixed points: Ka. A similar reduction is not 
possible for the other generators. If this is done, we get new 
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commutation relations, as Eq. (25) and 

[Ka,G f] = - rfrG l, 
{G /,G J-} = - 2LJiIJ 

- Hr~ + ~abc(X)r~]Ka. 

So this algebra is a soft N = 8 conformal superalgebra. 

(36) 

Clearly the same soft algebra is obtained from any coset 
space of OSp ( 812) containing SO ( 8 ) /SO ( 7 ). As 

SO(8) = SU(4) = Sp(4) = Spin(7) 
SO(7) SU(3) Sp(2) G2 

(37) 

we can look for supergroups containing the subgroups 
SU(4), Sp(4), or Spin(7) of SO(8). It seems interesting 
that the last coset is contained in the coset of two exceptional 
supergroups: F ( 4) and G (3). Here F ( 4) contains the right 
number of fermionic generators and the Sp (2) group. How
ever, we leave for further study whether a soft algebra for 
these supergroups can be constructed. 

In this way we have constructed a class of finite-dimen
sional superalgebras (for other superalgebras using octon
ions, see Ref. 5). We did not obtain soft infinite-dimensional 
superalgebras, but the superalgebras we constructed corre
spond to the finite-dimensional subalgebras of an interesting 
class of infinite-dimensional superalgebras, which are asso
ciative for N = 1,2, and 4 and nonassociative for N = 8. 

V. NONASSOCIATIVE N=8 SUPERALGEBRAS 

There is another motivation to consider algebras related 
to the seven-sphere. The infinite-dimensional extended su
peralgebras which are useful for string theories seem to be 
those which contain the following operators: the Virasoro 
generators Ln, N fermionic dimension ~ operators G~, and 
generators ofa loop algebraK~.4 Using Jacobi identities one 
proves7 that there are only solutions for N = 1,2, and 4 and 

A 

that the loop algebra is not necessary for N = 1, is U ( 1) for 
A 

N = 2 and S U (2) for N = 4. These algebras are 
(i,j, ... = O, ... ,N - 1; a,b,c = 1, ... ,N - 1) 

[Lm,Ln] = (m - n)Lm+ n + (c/12)(m3 - m)8m + n' 

[Ln,G~] =qn-r)G~+r' 

{G~,G{} = - 28ij(Lr+s + (c/6)(r - !)8r+s) 

- (r - s)!l.aijK~+s' 

[Ln,K~] = - mK~+m' (38) 

[K a G i ] - AaijGj 
n'r-- Ll n+r' 

[K~,K~] = - 2!l.abcK~+m - jcn8ab8n+m, 

!l. aob = -!l. abo = 8ab, 

!l. abc = €"bc for N = 4, and else zero. (39) 

In other words, these algebras are connected to the division 
algebras K(N = 1), C(N = 2), and lHI(N = 4). The !l.ijk are 
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the structure constants of these algebras [see Eq. (7)]. 
When we want to extend this to N = 8 we get to the octonion 
algebra. This division algebra is nonassociative, and there
fore the Jacobi identities are not satisfied. 

The generators L o, L ± 1 G ± 1/2' and Ko define a finite
dimensional superalgebra. The soft superalgebras from the 
previous section have exactly these generators. They do not 
satisfy the Jacobi identities when we consider the values of 
the structure constants at one point of the manifold, but they 
define the nonassociative algebras. 

If we compare the result Eqs. (35) and (36) at the point 
"1" with the finite-dimensional part of Eq. (38), using 
G + 1/2 == G + and G _ 1/2 == G - , only the last commutator of 
Eq. (36) gives a different result because of 

r';?C = !l. aBC. (40) 

At the point "I" we get 

With Eq. (38), the Jacobi identities are only violated for 
three generators with an a-type index, 

[A,B,C] == [[A,B},C} - [A,[B,C}} 

+ ( - 1)ab [B,[A,C}}, 

[G~,G~,K~] =4(r-s)l/JabcdK~+s+m' 

[K~,K~,G~] = 4l/JabcdG'/., + n + r' 

[K~,K~,K~] = 12l/JabcdK'/.,+n+p' 

[G~,G~,Gn =0. 

(42) 

(43) 

So all violations of Jacobi identities are proportional to l/J, are 
therefore completely antisymmetric in four indices and satis
fy 

(44) 

where any X can be G or K. 
Taking the structure constants at the point 1 of the alge

bra ofthe previous section [Eqs. (36)], we get a more com
plicated result for this violation, 

[Ka,Kb,KC]' = 12l/JabcdK d, 

[Ka,Kb,Gc], = 4l/JabcdG d, 

[G~ ,G b_ ,Kc], = K a8bc _ K b8ac, 

[Go±,G;o,Kb],= ±!l.abcKc, 

[G":t ,G b
± ,G~ ]' = ± 2aabcG c±, 

[Ga Gb GO ]' = ... !l.abcGc +, -, ± I ±' 

(45) 

[Ga+ ,G b+ ,Gc_ ]' = Ga+ 8bc + G b+ 8ac _ 2G c+ 8ab, 

where' again indicates that we take the structure constants 
rather than the structure functions, in which case we would 
of course get zero. These results are not completely antisym
metric in four indices, or do not satisfy Eq. (44). It would be 
interesting to check whether in the supercoset F( 4 )/0(3) 

Englert et al. 284 



                                                                                                                                    

the restriction of the structure functions of the correspond
ing soft superalgebra to one point would give those in Eq. 
(38). 

VI. DISCUSSION 

In this paper, algebras usually associated with group 
manifolds were extended to the seven-sphere, having in 
mind the structure ofEq. (38) for N = 8. 

On the one hand we have used the parallelizability prop
erties of the seven-sphere to construct a soft algebra. At one 
point this algebra corresponds to the nonassociative algebra 
of octonion multiplication. We used this structure to build a 
loop algebra. Again this defines a soft algebra, while specify
ing the structure functions to one point, a nonassociative 
infinite-dimensional algebra is obtained. 

On the other hand the algebra of parallel transforma
tions on the seven-sphere can also be generalized to a soft 
superalgebra of transformations on a super-seven-sphere. 
We have illustrated this with a construction of the coset 
OSp(8/2)/OSp(7/2). 

We do not know a generalization of soft superalgebras 
to an infinite-dimensional superalgebra. How~ver, they be
long to a class containing the infinite-dimensional conformal 
algebras in two dimensions, where one has only dimension 2, 
~, and I generators. Such algebras have been constructed 
with N = I, 2, and 4 fermionic dimension ~ operators.4 These 
algebras have always a finite-dimensional subalgebra, which 
for N = 2 and 4 are connected to a construction on the other 
parallelizable spheres S 1 and S 3. Here we have constructed a 
soft finite-dimensional algebra which continues this series, 
and a nonassociative infinite-dimensional algebra where the 
violation of the Jacobi identities [Eqs. (43)] is proportional 
to the completely antisymmetric associator of the octonions. 

We did not look to field representations of these N = 8 
algebras. Recently two-dimensional actions withN = 8 have 
been proposed,8 but we do not yet know whether they are 
related to these algebras. 

APPENDIX A: NOTATION AND USEFUL FORMULA 

We give here some notation concerning the associator 
that gives the nonassociativity of the octonion algebra. More 
detail can be found in Refs. 6 and 9. The associator is defined 
by 

[A,B,C) == (AB)C - A (BC). (AI) 

It is antisymmetric, pure imaginary and 

[A,B,C) = - [A,B,q (A2) 

A[A,B,q = [A,AB,q = [A,BA,q = [A,B,qA. (A3) 

For the basis imaginary units this defines a tensor antisym
metric in four indices: 

[ea,eb,eC
) = 2¢Jabcded, 

t/Jabcd = _ (1I3!)E"bcdefgacfg = ae[ab a cdJ
e, (A4) 
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where a has been defined in Eq. (7). 
For the r matrices defined in Sec. II we have the useful 

property 

r~~r1J = 8 (t5iit5kl 
- t5ilt5 jk

), 

rYKrJL = 8(t5/Jt5KL _ t5ILt5JK ). 
(A5) 

APPENDIX B: RELATION BETWEEN A PARALLELISM 
AND A COMPOSITION LAW 

We define a parallelism on a set of points by an equiv
alence relation-denoted by //-on couples of points such 
that 

(A) (A,B) // (C,D) ~ (B,A) // (D,C), 

(B) (A,B)//(A,C)~B=C, 

(C) for alIA, B, and C there is a 
D such that (A,B) // (C,D), 

(D) for alIA andB (A,A)//(B,B). 

(BI) 

From such a parallelism we can define a composition law 
with an identity and unique inverse elements by choosing a 
base point 0 and defining 

A*B=C if (O,A)//(B,C). (B2) 

The typical illustration of this concept is given by the usual 
parallelism of the plane, directly related to its vectorial struc
ture. Then obviously the composition law defines a commu
tative group. However, in general we cannot reconstruct a 
parallelism from a composition law without extra assump
tions. But if we have a composition law with 

(a) a unit element I, 

(b) for each A there is a unique right and left inverse 
A -I, (B3) 

(c) (A *B)*B -I =A, 

(d) (A *B) -I = B -I*A -I, 

then a parallelism can be defined by 

(A,B)//(C,D) if B*A -I =D*C- 1• (B4) 

This parallelism then also satisfies an extra property for the 
point 0 corresponding to the unit element 1 

(E) if (B,O) //(O,C) and (O,D)//(C,E) 

~ (O,E)//(B,D). (B5) 

There is now an equivalence between a parallelism satisfying 
(A-E) and a composition law satisfying (a-d), where the 
special point 0 is mapped on the unit element. 

Group composition laws are associative and therefore 
conditions (B3) are satisfied. We can define * as the left or 
right multiplication in the group, and this defines then left 
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and right parallelisms on group manifolds, where we have 
chosen the base point 0 as the identity of the group. Conver
sely, from the parallelism one recovers the group composi
tion law by Eq. (B2). 

A group composition law is not really necessary to de
fine a parallelism. As Cartan and Schouten2 showed, we can 
define parallelisms on the seven-sphere, which we discussed 
in the main text. However, we implicitly used there a metric 
preserved by the parallelisms, such that these parallelisms 
are called absolute parallelisms." In this way we are restrict
ed there to the round seven-sphere. 
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Vector coherent state theory is developed and presented in a form that explicitly exhibits its 
general applicability to the ladder representations of all semisimple Lie groups and their Lie 
algebras. It is shown that, in a suitable basis, the vector coherent state inner product can be 
inferred algebraically, by K-matrix theory, and changed to a simpler Bargmann inner product 
thereby facilitating the explicit calculation of the matrix representaions of Lie algebras. 
Applications are made to the even and odd orthogonal Lie algebras. 

I. INTRODUCTION 

Two recent advances have added enormously to the 
power of coherent state theory as a tool in Lie group and Lie 
algebra representation theory. The first is the extension of 
standard coherent state theory to admit vector-valued func
tions. I

-
3 This apparent complication effects major simplifi

cation because it allows one to package much of the com
plexity of a coherent state wave function into a simple and 
well understood intrinsic structure, thereby greatly simplify
ing the remaining aspects of the wave function. It also allows 
one to use tensorial methods and hence the Wigner-Eckart 
theorem to effect further simplifications. The second ad
vance is a simple K-matrix technique for determining inner 
products2 without which coherent state representation the
ory would not be viable as a computational tool. Thus K
matrix theory obviates the need for invoking the cumber
some, and often unknown, integral form of the coherent 
state identity resolution. It solves the long standing problem 
of how to map the so-called Dyson representations4 into 
Holstein-Primakoff representations5 and hence allows one 
to determine explicitly the matrices of Lie algebra ladder 
representations. 

The combination of these two advances is a powerful 
new construction for inducing explicit matrix representa
tions of semisimple Lie groups and their Lie algebras from 
ladder representations of specific subgroups. Many new in
sights are gained and many hitherto unsolved problems can 
be solved in a straightforward and often routine way. In par
ticular, Rowe3 and Rowe, Rosensteel, and Carr6 were able to 
derive analytic expressions for many matrix elements of the 
sp(6,30 algebra [also called sp(3,9t)], in a u(3) basis, and 
to find a simple numerical algorithm to compute those ma
trix elements for which exact analytic expressions, in princi
ple, do not exist. Thus they were able to extend to arbitrary 
ladder representations of sp(6,9t) the results of Castanos, 
Chacon, and Moshinsky 7 and Deenen and Quesne8 for rep
resentations induced from one-dimensional representations 
ofu(3). 

aJ On leave of absence from Physics Department, University of Michigan, 
Ann Arbor, Michigan 48109. 

In other applications, Hecht and Elliott9 were able to 
determine the matrices of the compact sp ( 4) :J u (2) algebra 
and Hecht lO those ofso(8) :Ju( 4). Applications to sp(4,9t) 
were made by Castafios et al. II Vector coherent state (VCS) 
theory was combined with the powerful complementarity 
principle l2 of Moshinsky and Quesne and Kashiwara and 
Vergne to determine the sp (2n,9t) :J u (n) branching rules. 13 

It was used to determine the matrices for irreducible repre
sentations ofsu(3) in a canonical so(3) basisl4 and to give a 
canonical reduction of the u( 4) :Jso( 4) Wigner supermulti
plet structure. IS The fundamental spinor representations of 
the so(2n) Lie algebras of major interest in the theory of 
many-fermion systems were constructed by Rowe and Car
valho. 16 The so(n,2) and so"'(2n) Lie algebras were ana
lyzed by Le Blanc and Rowe. 17 Finally, Hecht, Le Blanc, 
and RowelS showed that the above-mentioned techniques 
can be used to give the matrix elements of the u (n) Lie alge
bras in terms of u(n - 1) Wigner and Racah coefficients. 
The latter were then given, using the VCS framework, by Le 
Blanc and Hecht. 19 Hence, by proceeding recursively, one is 
able to obtain the matrix representations of u(n) in the fa
miliar Gel'fand bases. 

An extension of K-matrix theory to the tensor algebras 
of Lie groups has been proposed by Le Blanc and Rowe and 
used to determine elementary Wigner and Racah coeffi
cients.14.15.19 

Thus the VCS and K-matrix theories have been shown 
to playa central role in the representation theory of Lie alge
bras and their associated Wigner-Racah calculus and, with 
each new application, their power and versatility have be
come more evident. For this reason we herein analyze their 
structure in some depth and extend their domains of applica
bility. Although it has not been stressed previously, it is im
portant to note that VCS theory and the K-matrix tech
niques for calculating matrix elements work with the 
complex extensions of Lie algebras and thus simultaneously 
treat all real forms of a given complex Lie algebra. For exam
ple, the theories of the noncompact sp(2n,9t) [so"'(2n)] and 
compact sp(2n) [so(2n)] Lie algebras are the same. Thus, 
among the semisimple Lie algebras, the only ones which 
have not been studied using the new theory are the odd or-
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thogonal and exceptional Lie algebras. This is because, al
though the YCS theory applies equally well to all semisimple 
Lie groups and their Lie algebras, the K-matrix technique 
for finding inner products for the so(2n + 1) representa
tions presents some additional features. In this paper, we 
present the YCS and K-matrix theories in a general context 
and give their properties and relationships. We show that 
they are applicable to all the orthogonal groups, both even 
and odd, thus completing the demonstration that they pro
vide a simple systematic way of determining the explicit ma
trices for the ladder representations of any classical Lie alge
bra in bases that reduce its u(n) or gl(n) subalgebras [as 
opposed to the Gel'fand and Tsetlin20 bases that reduce the 
canonical chain so(m) ::Jso(m - 1) ::Jso(m - 2)::J··· ; cf. 
also Baird and Biedenham21 ]. We make application to the 
exceptional Lie algebra g2 in a following paper.22 

YCS theory is fundamentally a systematic prescription 
for representing any Lie group G, which admits a ladder 
representation, as a group oflinear transformations of a Hil
bert space of hoI om orphic vector-valued functions of a set of 
complex variables. In coordinate free terms, the Hilbert 
space is a space of holomorphic sections of a fiber bundle 
associated to a principle Hbundle over a base manifold G / H, 
where H is a suitably defined subgroup of G. Thus YCS the
ory is a generalization of standard (scalar) coherent state 
theory for which the vectors are one dimensional. 

The idea of holomorphic vector-valued representations 
of Lie groups originated with Harish-Chandra.23 The dis
crete series representations of the Sp(2n,9t) groups were ex
pressed by Godement24 on a Hilbert space of vector-valued 
functions on the Siegel half-plane,25 taking vector values in 
the carrier space of an irreducible representation of the sub
group U(n). Since U(n) is the symmetry group of the n
dimensional harmonic oscillator, these representations are 
partiCUlarly appropriate to the solution of the many-body 
problem in a harmonic-oscillator basis, as shown by Rosen
steel and Rowe26 who applied them to the microscopic nu
clear collective model. 26,27 

Its vector holomorphic representations give sp (2n,9t) 
an obvious realization as a subalgebra of the universal enve
loping algebra of what Rosensteel and Rowe28 called a u(n)
boson, or u(n)-Weyl, algebra. The latter algebra is a direct 
sum of u (n) and the mth Heisenberg-Weyl algebra hw (m), 
where m = n (n + I) /2. Such realizations are called by 
physicists boson expansions. Rosensteel and Rowe28 and 
subsequently many others 11,29 showed that, in a certain lim
it, the sp(2n,9t) algebra contracts to the much simpler 
(semidirect sum) u(n)-Weyl algebra. The contraction 
yields valuable physical insight into the macroscopic inter
pretation of the microscopic symplectic model of the nu
cleus, which is a collective model having an sp (6,9t) dynam
ical structure. It also gives highly accurate analytical 
approximations to sp( 6,9t) matrix elements6,30 which can be 
used in model calculations? 1 

In a similar way, its vector holomorphic representations 
give u(n + I) a realization as a subalgebra of the 
u (n) E9 hw (n) enveloping algebra. We shall show here, that 
the even orthogonal algebra so(2n) is realized in terms of 
u(n) E9hw(n(n - 1)/2) and thatthe odd so(2n + 1) is real-
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izedin termsofu(n) E9hw(n) EIlhw(n(n -1)/2). 
Bosons ofhw(n(n ± 1 )/2) Lie algebras appear in phys

ics as composites of more elementary particles. The Cooper 
pairs of superconductivity theory32 and the sand d bosons of 
the nuclear interacting boson approximation33 (IBA) are 
just two of many examples. Their algebraic substructure is 
seen from the well-known fact that while the hw(n(n + 1)/ 
2) bosons carry the fundamental {I} representations of 
u(n (n + 1 )12), they also carry the symmetric {2} represen
tation ofu(n). Similarly, while the hw(n(n - 1)/2) bosons 
carry the fundamental {I} representations of u(n(n - 1)/ 
2), they carry the antisymmetric {II} representation of 
u(n). The hw(n(n ± 1)/2) Lie algebras have therefore been 
referred to by Le Blanc and Rowe34 as Heisenberg-Weyl 
algebras of symmetric and antisymmetric bosons, respec
tively. For n = 3, the symmetric bosons have been well stud
ied in the context of the IBA and their matrix elements are 
known.30,35 Matrix elements for both the symmetric and 
antisymmetric bosons have been given for all n by Le Blanc 
and Rowe.34 

Now, it is well known that (scalar) holomorphic func
tional representations of Lie groups are obtainable by coher
ent state methods. The prototype is the Bargmann represen
tation36 of the Heisenberg-Weyl group and its Lie algebra 
hw(n). At the Lie algebra level, the hw(n) raising and low
ering operators, which satisfy the commutation relations 

[ci,c]] = [c;.cj ] = 0, [c;.c]l = oij , 
are simply represented in terms of n complex variables by 

t a c· -+Z·, c· -+-. 
I I I aZ

j 

The extension of scalar coherent state representation theory 
to other Lie groups, which admit ladder representations, was 
made by Perelomov37 and Onofri.38 

Coherent state theory has been enormously important 
in physics and in mathematical physics.39 In particular, it 
has led to an understanding of the coherence properties of 
electromagnetic radiation40 and to predictions of new kinds 
of coherence that could be realized physically in, for exam
ple, a two-photon laser.41 It has provided an understanding 
of minimal wave packets (group orbits of lowest weight 
states) and their importance for the classical limit of quan
tum mechanics. It underlies the Hartree-Fock and time-de
pendent Hartree-Fock variational equations, which are fun
damental to many-body quantum theory, and it has 
suggested extensions to these theories.42 Finally it has been 
used extensively in the realization of Lie algebras in terms of 
Bargmann variables and the construction of approximate 
truncated expansions (boson expansion theory). Its use in 
this latter context has been reviewed by Dobaczewski. 43 

From its successful applications to date, it is clear that 
the versatility of coherent state theory is enhanced substan
tially by its extension to admit vector-valued functions and 
by the simple K-matrix techniques for determining its inner 
products. We have discussed above its value in Lie algebra 
representation theory. Another important recent applica
tion is to the extension of the ordinary random-phase ap
proximation (RPA) to what has been called a partial 
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RPA.44 In contrast to the standard theory, the partial RPA 
admits the possibility of many-body particle-hole vacuum 
(i.e., lowest weight) states having an intrinsic structure and 
opens up new ways of thinking of the elementary excitations 
of composite systems and their phase transitions. 

II. VECTOR COHERENT STATE THEORY 

A. General theory 

Let G be a semisimple Lie group with Lie algebra g and 
let If denote its complex extension. To determine a VCS 
representation of g, one must select a subalgebra he g that 
contains the Cartan subalgebra and is such that If can be 
decomposed 

If = D_ + hC + D+ , (2.1) 

where D ± are, respectively, nilpotent subalgebras of raising 
and lowering operators. 

We require that, like the familiar Cartan decomposition, 
the above decomposition is reductive in the sense that, for 
Cehc

, 

AED+ ~ [C,A]ED+, BED_ ~ [C,B]ED_ , 

C'EbC ~ [C,C']Ebc
• (2.2) 

This ensures that elements of D ± transform as components 
of (possibly reducible) tensors under the subalgebra h. Con
sequently, the reduction (2.1) facilitates the decomposition 
of ladder representations of g into irreducible representa
tions ofh. In particular, it follows that the subspace of states 
of an irreducible ladder representation of g that satisfy 

A It/') = 0, VAeD+, (2.3a) 

carries an irreducible representation of h. We refer to this 
subspace as the highest-weight h space. Similarly, the sub
space of states that satisfy 

BIt/') = 0, VBED_, (2.3b) 

is an irreducible lowest-weight h space. Application of the 
lowering tensors to the highest-weight states, or the raising 
tensors to the lowest-weight states, then generates interme
diate-weight h spaces. This generalizes the familiar Cartan 
construction of lowering and raising from one-dimensional 
highest- and lowest-weight spaces. 

Note that the group H generated by the subalgebra h is 
the stability subgroup of all elements in G that leave the 
highest- (and lowest- ) weight spaces invariant. We therefore 
naturally refer to h as the stability suba/gebra of g. 

Let [u] label an irreducible ladder representation of g 
and let {Iua)} be a basis for the corresponding highest
weight h space. (We could equally well choose the lowest
weight h space and, for infinite-dimensional representations 
with lowest- but without highest-weight h states, it is neces
sary to do so.) Let {A v} be a basis of raising operators for 
n+. An arbitrary vector ZED+ can then be expanded as 

(2.4) 
v 

[The components (zv) of Z can be regarded as coordinates 
for D+ and hence for the factor space G IH in the standard 
way.4S] The VCS representation of an arbitrary state I\{I) in 
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the irrep is then defined by 

\{I(z) = (zl\{l) = L lua)\{Ia (z) , 
a 

where \{I a (z) is the holomorphic function 

\{I a (z) = (uale"I\{I) . 

(2.5a) 

(2.5b) 

The function \{I (z) is therefore holomorphic in the z coordi
nates and takes vector values in the highest-weight h space, 
i.e., the carrier space for an irrep {u} of the stability sub
groupH. 

The carrier space for the VCS representation is thus de
fined as the space of all such holomorphic vector-valued 
functions. It can be defined more satisfactorily, indepen
dently of the abstract space for the ladder representation, as 
the Hilbert space of all holomorphic vector-valued functions 
that are square integrable with respect to the VCS inner 
product (cf. next section and Ref. 3). 

The VCS representation of a group element geG is de
fined by 

[ng)\{I] (z) = (zlgl\{l) = L lua)(uale"gl\{l) , (2.6) 
a 

and the corresponding representation of an infinitesimal 
generator by 

[nX)\{I](z) = Llua) (uale"X I \{I) . (2.7) 
a 

Consider, for example, the VCS action of an element 
heH. First observe that the subalgebra D+ carries a (possibly 
reducible) representationp under the adjoint action, i.e., 

(2.8) 

for AvED+, heH, with summation over repeated indices. It 
follows that 

[nh)\{I] (z) = L lua) (ualh exp[h -Izh ] I \{I) 
a 

a 

where h -I. z is defined by 

(h -1·Z)p =ppv(h -I)zv . (2.10) 

The VCS representation of any element Xelf is given 
explicitly as a linear differential operator as follows. First 
expand 

e"X = (e"Xe - Z)e" = (X + [z,x] + Hz[z,X]] + ... )eZ , 

and note that, since n+ is nilpotent, the series terminates. Let 
{A,,}, {Bv }' and {C;l denote bases for the subalgebras D+, 
n_, and he, respectively. Now, again since n+ is nilpotent, 
Ave" is expressible as a differential operator on eZ

• Thus, for 
example, in the special case that n+ is Abelian, we have 

L lua) (uaIAve"I\{I) = av \{I(z) , 
a 

where av = a lazv' More generally, from 

ave" = e"(e - Z ave") = eZ(Av + ¥p [Av,Ap] + ... ) , 
Ave" = e"(e - zAve") = e"(Av + zp [Av,Ap] + ... ) , 
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we have 

,Llua) (ua IAve>'1 '11) = (av -+Zpc~v ap + ... )'I1(Z). 

(2.11 ) 

where c ~v is the Lie algebra structure constant appearing in 
the equation 

[Ap.Avl =c~vAp' (2.12) 

We also have. since lua) belongs to the highest-weight sub
space. that 

(2.13 ) 
a 

Finally. 

(2.14a) 

where C; is the representation of C; carried by the highest
weight invariant subspace; i.e .• 

(2.14b) 
a 

We sometimes refer to C; as the intrinsic representation of 
C;Ehc. 

Proposition 1: The ves representation of an element C; 
of the stability subalgebra hC is given by 

nC;) = C; +~;. (2.15a) 

where 

~;=c~;Zvap' 

Proof: Observe that ~; is defined such that 

[C; + ~;>z] = 0 . 

Next observe that 

(2.15b) 

(2.16) 

e>'C;I'I1) =eZ(C; + ~;)I'I1) = (C; + ~;)ezl'I1)· 
Use ofEq. (2.14) now gives the desired result. Q.E.D. 
Note that. if the element AvEn+ has root vector v. it is 

convenient to denote by BvED_ the element having root vec
tor - v. It is also convenient to choose basis vectors for n ± 

in the canonical way such that the Killing form (Ka(3) satis
fies 

Kp._ v =kopv ' k=const. K;.±v =0. (2.17) 

for /-L.V labeling positive roots and i labeling a basis for hC. 
With such a choice. it follows that the scalar product 

B . A =Kp·-vB A =k-1B A v p v v 

is the difference of the quadratic Casimir invariants for g and 
h. Hence it is invariant under the adjoint action of the stabil
ity algebra. i.e .• 

[C;>Bv Av] = O. C;Ehc. (2.18) 

The constant k is given from the general expression for the 
Killing form by 

k = c:u c~ VT' no sum on v • (2.19) 

where u and 1" run over all /-L. - /-L. and i indices. 
Proposition 2: With a canonical choice of basis vectors 

for n ± • the complex variables (zv) transform under the sta
bility subalgebra in precisely the same way as the basis ele-
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ments (Bv) ofn_. 
Proof: The equation 

[C;.Av ] = cfv AI' 

together with Eq. (2.18) implies that 

[C;>Bp] =c~;Bv' 

which may be compared to 

[~;,zp] =c~; ZV' 

B. ves representation of so(2n) 

Q.E.D. 

The fundamental realization of the SO (2n) Lie group is 
as a group of orthogonal transformations of 9t2n

• A basis for 
the corresponding fundamental realization of the so (2n) Lie 
algebra is given by the generalized angular momentum oper
ators 

La(3 = - i(Xa ~-xp~). a./3= 1 ..... 2n. 
aX(3 aXa 

(2.20) 

which satisfy the commutation relations 

[Lap.L.y/j] = - i(opyLali - o(36Lay + oaliL(3y - 0ayL(3li)' 
(2.21 ) 

We choose as stability subalgebra the u(n) subalgebra 
of so (2n ). We then determine a basis of raising operators. 

Aij = - Aj; = !(L2;_1.2j + L2;.2j_1 

+ iL2;.2j - iL2;_1.2j_ I)' 1 <.i.j<.n • 

(2.22a) 

a basis of lowering operators. 

B .. = - B" = 1(L2' 12' + L2'2' 1 - iL2'2' IJ JI 2 1~.1 l.:j- I.J 

+ iL2i_1.2j_I)' 1 <'i.j<.n , (2.22b) 

and a basis for u(n), 

Cij = ~ (L 2; _ 1.2j - L2;.2j _ 1 + iLli•2j + iL2; _ 1.2j - 1 ) , 

I <'i.j<.n . (2.22c) 

These operators satisfy the commutation relations 

[Bij. Akl ] = 0ilCkj - O;kClj + 0jkCli - opCk; • 

[Cij' Akl ] = Ojk Ail + op Ak; , 
(2.23) 

[Cij'Ckl ] = Ojk Cil - OilCkj . 

Observe that for this choice of stability subalgebra the 
raising operators A ij span an Abelian algebra. Note also that 
they transform under U(n) as components ofa u(n) {11} 
tensor whereas the lowering operators Bij transform as com
ponents ofa {- 1 - l} tensor. [We omit all zeros in label
ing a u(n) irrep. Thus {1l}-{11O'''0} and 
{- 1 -l}-{O"'O - 1 -l}.] 

The so(2n) operators also have a well-known realiza
tion in terms of fermion creation and annihilation operators 
given by the isomorphism 

Aij-aTa] , Bij-aja;. Cij-~(aTaj -ajaT). 

where the fermion operators satisfy the anticommutation re
lations 

{a;.aj } = {aT.a]} = 0, {a;.a]} = oij . 
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For this reason the so(2n) algebra is often referred to in 
physics as the fermion-pair algebra and its representations 
are of major importance in the quantum theory of many
fermion systems. 

A highest-weight state Ihw) for a unitary irreducible 
representation (UIR) ofso(2n) is defined by 

Aij Ihw) = 0 , i,j = l, ... ,n , 

Cijlhw) =0, kj, 

Culhw) =A-;Ihw), no sum on i. 

(2.24) 

The integers (or half-odd integers for a spinor representa
tion) [A- ] - [A- I ••• A-n] serve to label the representation. 
Now observe that Ihw) is also a highest-weight state for a 
highest-weight UIR {A-} of the u(n) stability subalgebra. 
Let {lA-a) } denote a basis for this highest-weight u (n) sub
representation. Define 

I 
z="2 ~ Y;jAij, Yij = -Yj;' (2.25) 

I] 

The VCS representation of an arbitrary state 1'1') in the 
so (2n) representation space is then defined by Eq. (2.7). We 
easily derive the VCS representation of the so(2n) Lie alge
bra 

a 
r(Aij)=Vij=-a ' nCij)=cij+~ij' 

~ij 

r(Bij) = YaClj - Yj/Cu + Y;k Ylj V kl , 

where Cij is the highest-weight u (n) UIR of C; and 

(2.26) 

~ ij = Yjl Vu , (2.27) 

and where summation over repeated indices is implied. 

C. YCS representation of so(2n+1) 

For so (2n + 1). we must augment the angular momen
tum operators of so (2n) by 

L2n + 1.2; - I' L2n + 1.20 j = l, ...• n . 

Thus we obtain additional raising and lowering operators 
given by 

d; = (1Iv1) (L2n + 1.2; - iL2n + I.U _ I ), 
(2.28) 

f!lJ; = (1Iv1) (L 2n + 1.2; + iL2n + 1.2; _ I ) , 

respectively. These operators satisfy the commutation rela
tions 

[do d j ] = Aij, [f!lJ ;.f!lJj] = f!lJj;, [di.f!lJj] = Cij , 

[Cij,dd = 8jk d;, [Cij,f!lJ d = - 8;kf!lJj • 

[do Akd = [f!lJ ;,Bkd = O. 

[do Bk/] = 8af!lJ k - 8;kf!lJ I' 

[f!lJoAkd =8;k d / -8il d k · 

(2.29) 

One now observes that the complete set of raising operators 
(d;,A ij ) no longer spans an Abelian algebra. One also notes 
that the (d;) and (f!lJ;) operators transform as compo
nents of{l} and {- l} tensors. respectively, under u(n). 

It is of interest to note that, like so(2n). the so(2n + 1) 
Lie algebra has a realization in terms of fermion operators 
given by the isomorphism46 

d; - (lIv1)ai, f!lJ; - (lIv1)a; . 

291 J. Math. Phys., Vol. 29, No.2, February 1988 

If{la-a)} denotes a basis for a highest-weight u(n) sub
representation of an so (2n + 1) ladder representation, then 
the so(2n + 1) VCS wave functions are defined by 

(2.30) 
a 

where 

z=z;.t#; + !yij Aij . (2.31) 

We readily derive the VCS representation of the so(2n + I) 

Lie algebra 
a 

r(Aij) = Vij =--a:' 
I] 

r(cij) = Cij -Zj a; + Yj/Vu , 

r( f!lJ;) = z/Cu - ¥; Zl al - Ya al + ¥k Ya V1k • 

r(Bij) =YaClj -YjlCU +YilYlgV/k 

(2.32) 

- ¥; z/Clj + ¥j zlCU - YaZj al + Yjlz; a/ . 

III. THE INNER PRODUCT AND THE CALCULATION OF 
MATRIX ELEMENTS 

The VCS inner product of two states is given by an inte
gral of the form 

('I'I'I")vcs = f ('I'lz)(zl'l") dp,(z) • 

where dp,(z) is the VCS measure.3 However. while impor
tant for the completeness ofVCS theory. this integral form of 
the inner product is cumbersome and difficult to use in prac
tice. 

The problem of deducing the inner product implicit in a 
ladder representation is not unique to VCS theory. Con
versely, techniques for calculating VCS inner products are 
more generally applicable. A standard approach. which is 
particularly useful for calculating the overlaps of states in a 
non orthonormal basis, is by means of generator functions.47 

This approach has been successfully employed by Castaiios 
et al. II in the construction of orthonormal bases for sp ( 4.m ) 
representations. However. to our knowledge, no systematic 
algorithm is known at present to construct orthonormal 
bases in general by generator function methods. 

We therefore give a generalization of the K-matrix ap
proach of Rowe2 which derives the inner product directly 
from the Lie algebra structure. This approach has proved to 
be remarkably simple and effective in application to those 
cases where the algebra of raising (or lowering) operators is 
Abelian. We show here that it applies more generally. 

A. Generalized K-matrlx theory 

An inner product on a vector space is conveniently de
fined by specification of an orthonormal basis. We therefore 
seek a basis {ltP(a»} for the space of vector-valued func
tions that is orthonormal with respect to the VCS inner 
product and indexed by a suitable parameter set (a). We 
shall refer to such a basis simply as an orthonormal VCS 
basis. 

We start by considering a basis {Ia) } that is orthonor-
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mal with respect to a Bargmann, as opposed to the YCS, 
inner product and then seek a transformation K which will 
map it onto an orthonormal YCS basis; 

K: la)-I¢(a» =Kla). 

If {I i) } denotes an orthonormal basis for the highest-weight 
irrep of the stability subalgebra, then an orthonormal Barg
mann basis can be defined by the vector-valued polynomials 

( I ·) II (Zy) nv I') zm = --- I . 

y N 
(3.1) 

In practice, it will be convenient to select a basis having 
useful reducibility properties with respect to the subalgebra 
chains involved. But for the moment, let {Ia)} simply de
note an arbitrary Bargmann basis indexed,Jor convenience, 
by the same parameter set as the VCS basis. 

It follows that a YCS basis state can be expanded on the 
Bargmann basis 

I¢(a» = IP)Kpa · (3.2a) 

We therefore define the operator K that maps the Bargmann 
basis state la) to the YCS basis state I¢(a» by 

la)-I¢(a» =Kla) = IP)K(3a. (3.2b) 

The operator K must clearly satisfy the equation 

( 3.3a) 

in which here and throughout this paper it is understood that 
all inner products oj holomorphic vector-valued wave Junc
tions, evenJor VCS basis waveJunctions, are Bargmann inner 
products unless explicitly stated otherwise, e.g., by a YCS 
SUbscript. 

It should be emphasized that a fundamental assumption 
of K-matrix theory is that the space of vector-valued wave 
functions that are square integrable with respect to the YCS 
inner product is a vector subspace of the Bargmann space 
(the space of states that are square integrable with respect to 
the Bargmann inner product). Such a subspace is usually 
called a physical subspace by physicists. Thus, in general, K 
is a map from Bargmann space onto its physical subspace. 
Conversely, the pullback P = K -I is a well-defined map 
from the physical subspace into Bargmann space. Note, 
however, that care must be exercised in the use of P since it is 
undefined outside of the physical subspace. 

Proposition 3: The operator 

KtK=Ila)(aIKtKIP)({J1 (3.3b) 
ap 

is uniquely defined independently of the choice of either the 
Bargmann or the YCS basis. 

Proof: First observe that the physical subspace of the 
Bargmann space is defined without reference to a basis. 
Then, since K annihilates any state belonging to the orthogo
nal complement of the physical subspace, the sum on a and 
f3 in Eq. (3.3b) can be extended to a sum over a complete 
orthonormal basis for all the Bargmann space. It follows that 
KtK is independent of this basis. Finally, observe that the 
overlap (¢(a) I¢( P» is invariant under a unitary transfor
mation 

1¢(a»-I¢(a'»Ua'a, 
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demonstrating that KtK is independent of the YCS ba
sis. Q.E.D. 

Once the map K and hence its pullback P have been 
determined, the inner product of any two state vectors I'll) 
and 1 'II') in the carrier space of a ladder representation of a 
Lie group can be determined. If (zl 'II) denotes the YCS wave 
function for the state I'll) then the corresponding Bargmann 
wave function is given by (zlttr) = (ziP I'll) and the inner 
product by 

('III'II')vcs = (ttrlttr') = ('IIlptp I'll') . (3.4) 

Thus K-matrix theory allows one to combine the simplicity 
of the Bargmann product with the YCS construction of wave 
functions. 

Now, if reX) is the YCS representation of an element 
Xeg", its matrix elements rPa (X) are defined by 

reX)I¢(a» = 1¢(P»rPa(X), 

We then have the relationship 

reX)K la) = Kr(X) la) , 

where the operator reX) is defined by 

r(X)la) = 1 P)rPa (X) . 

Hence we infer that 

r(X)K = Kr(X) . 

(3.5) 

(3.6) 

Thus K is an intertwining operator that relates the YCS rep
resentation r to an equivalent representation r. Once K has 
been determined, the desired r pa (X) matrix elements can be 
evaluated from 

rPa(X) = (fJlr(X)la) = (PIK-1r(X)Kla). (3.7) 

Of particular importance is the fact that, if r is unitary 
with respect to the YCS inner product, then r will be unitary 
with respect to the much simpler Bargmann inner product. 
Consequently, r will generally be nonunitary with respect to 
the Bargmann measure. The representation r is therefore 
sometimes referred to as a non unitary Dyson representa
tion4 and the associated unitary representation r is referred 
to as a Holstein-PrimakotJ5 representation. More generally, 
we can say (definition below) that r is compatible with the 
Bargmann inner product but r is not. 

In determining K by algebraic methods, we make use of 
Hermitian adjoint relationships. Let rt (X) and rt (X) de
note the Hermitian ad joints ofr(X) and reX), respectively, 
with respect to the Bargmann inner product, and let r(xt) 
be the Hermitian adjoint of reX) with respect to the YCS 
inner product, i.e., 

(¢(a)lrext)I¢(fJ)vcs = (¢(p)lr(X)I¢(a»~cs· 

It follows from 

(¢(fJ)jr(X)I¢(a»vcs = (Plr(X)la) 

that 

rt(X) = r(xt), 

but that, in general, 

rt(X) #rext) . 

(3.8) 

(3.9) 

Definition: Let k be a subalgebra of gC and let R be a 
representation of k. If, for all Xek, R(X) and R(Xt) are 
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Hermitian ad joints with respect to a given inner product 
then we say that the representation R ofk is compatible with 
the given inner product. Thus, for example, the Bargmann 
(generalized Holstein-Primakoff) representation y of g" is 
compatible with the Bargmann inner product, and the ves 
(generalized Dyson) representation r is compatible with 
the ves inner product. But r is not compatible with the 
Bargmann inner product. This gives a generalization of the 
concepts of Dyson and Holstein-Primakoff representation 
to situations where the underlying representations mayor 
may not be unitary. 

Proposition 4: The ves representation of the stability 
subalgebra hC C g" is compatible with the Bargmann inner 
product. 

Proof: Define Bv = A! (compatible with the require
ment that the quantity BvAv should be invariant under H). 
Now, for CiEhc

, 

[Ci.Av ] = c~ AIL 

implies 

[Ci.Bv ] =c~~BIL' 
Thus C] is identified as the unique element of he that satisfies 
the last equation and 

[Ci,C]] = cj;·ct . 

It follows from these equations and Proposition 2 that 
recr> is the unique operator that satisfies the equations 

[reCi>.zv] = c~~ ZIL' [r(C]),reC])] = cj;·r(ct) . 

These equations are seen to be satisfied by 

(3.10) 
Q.E.D. 

As a consequence of Proposition 4, it is possible to con
struct an orthonormal Bargmann basis {Ii{u}v)} of vector
valued wave functions that reduces the stability subalgebra 
h. We use the notation that the set of wave functions with l 
and {u} fixed carry an irrep {u} ofhc

• Thus v labels a basis 
for the irrep {u} and i is a set of multiplicity indices. Such a 
basis is easily constructed by first constructing orthonormal 
polynomials Z ~W (z) in (zv), which transform as the com
ponents of an irreducible tensor {~"} under h, and subse
quently coupling them to the vectors of the (intrinsic) high
est-weight irrep {u} of h; i.e., 

(zli{u}v) = (zl [u]r{;}p{u}v) 

(3.11) 

Note that the three labels i - ( r{;}p) indicate the three 
kinds of h mUltiplicity that can arise in the decomposition 
g~h. The labelp = 1, ... ,m tu resolves the coupling 

where m tu {u} denotes the multiplicity of a given irrep {u} 
in the outer (Kronecker) product. The label {;} refers to the 
tensorial properties of the polynomial Z rr,} under h while 
the multiplicity label r resolves any ambiguities in its con
struction. 

PropoSition 5: The ves and the Bargmann representa-
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tion ofg" become identical on restriction to hCCg"; i.e., 

y(C) = r(c) = c + 1fi, VCEhc
• (3.12) 

Proof: Since the ves irrep r is compatible with the 
Bargmann inner product when restricted to hC C g", it follows 
that a corresponding ves orthonormal basis exists of the 
form 

1<,6 (i{u}v) ) = K li{u}v) 

= Ij{u}v)Kji({u}) (no sum onll). 

(3.13) 

Now, by definition, 

But 

r(C) I<,6U{u}v» = Ky(C) li{u}v) . 

Ky(C) li{u}v) = Ij{u}v')KjiY~!(C) 

= y( C) I<,6U{u}v)] . Q.E.D. 

It follows from Eq. (3.13) that, by choosing basis states 
in both the ves and Bargmann Hilbert spaces to reduce the 
stability subalgebra hC, we automatically block-diagonalize 
the K matrix. Furthermore, since the Bargmann and ves 
inner products are identical on the highest-weight h sub
space, we require, without loss of generality, the highest
weight K ( {oJ) submatrix to be the identity matrix. Thus we 
are naturally led to seek a recursion relation for the matrices 
starting from the highest-weight matrix. 

From the two equations 

r(X)KKt = Ky(X)Kt, r(xt)KKt = Ky(Xt)Kt , 

(3.14 ) 

we easily derive 

KKtrt(X) = reXt)KKt, VXeg". (3.15a) 

Setting X = Av and xt = Bv then gives 

KKtrt(A v ) = r(Bv)KKt. (3.15b) 

If we choose the solution to Eq. (3.3) for which K is the 
positive Hermitian square root of KtK, then 

K=Kt, KKt=KtK=K2, 

and Eq. (3.15) leads to a recursion relation in K 2. 

Equation (3.15) is particularly useful when the raising 
operators commute and span an invariant subspace under 
the adjoint action of the stability algebra. Oddly enough, the 
corresponding equation 

rt(X)ptp = ptprext) (3.16) 

for the inverse operator ptp is sometimes more useful when 
the raising operator algebra is non-Abelian. 

For u(n + 1), sp(2n,9t), and so(2n) with u(n) as sta
bility algebra, the raising operator algebras are all Abelian. 
Furthermore, in each of these cases, the raising operators are 
all components of a single irreducible tensor under u (n ) . 
However, in contrast so(2n + 1) has a non-Abelian raising 
operator algebra that carries a reducible representation of 
the stability algebra u(n). (The same is true of the excep
tional Lie algebras.) We therefore consider the two situa
tions separately. 
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B. Case (I): Abelian raising operator algebras 

It follows immediately from the VCS expansion that 

reA,,) = a" , (3.17a) 

rt(A,,) =z". (3.17b) 

Furthermore, one easily shows (Appendix A) that reB,,) 
can be expressed in the form 

reB,,) = [n,z,,] , (3.18) 

'" where 0 is the combination of Casimir invariants 
A A 

O=!k [CG' • ~ - 2r(G' G) + !Nz ] (3.19) 

in the CG' and r( G) realizations of the stability algebra hC; k is 
A 

defined by Eq. (2.19) and the operator Nz =z" a" simply 
measures the degree of a polynomial wave function in the 
(z" ). 

We therefore set K =Kt in Eq. (3.15) and obtain the 
simple equation of Rowe,2 

K2zv = [n,zv]K2, (3.20a) 

which can also be expressed in the form 
2'" 2 A 2 

K Nz =K z" av = [O,z,,]K av ' (3.20b) 
A A 

Since both N z and 0 are diagonal in the chosen basis, 
i.e., 

nlifp}v) = oufp}) lifp}v) , (3.19') 

Eq. (3.20) immediately gives a recursion relation for the 
K(fp}) submatrices [see, e.g., Eqs. (3.22), (3.25), and 
(4.8)] upon taking matrix elements of both sides between 
states of successively lower weight starting from the highest, 
for which we have already noted the K ( {o}) matrix to be a 
multiple of the identity. 

An especially simple case arises for matrix elements be
tween states that are multiplicity-free as they are, for exam
ple, for the completely multiplicity-free case ofu(n + 1) in a 
u(n) Gel'fand basis reviewed by Hecht, Le Blanc, and 
Rowe. IS The K( fp}) submatrices are then one dimensional 
and their ratios are given immediately from Eq. (3.20) by 

K2( fp}) (fp}llzlI{ v}) 

= (O(fp}) - O({v})j(fp}llzlI{v})K 2({v}) . 

(3.21 ) 

Thus, when (fp}llzlI{v}) #0, we obtain, choosing the posi
tive square root, the solution 

K(fp})/K({v}) = (O(Il) - O(V»)1/2. (3.22) 

For the u(n) algebras, this difference was shown1s to be 
simply expressible in terms of the well-known hooks4s of the 
theory of the symmetric group. We find, in Sec. IV, a similar 
expression for the orthogonal groups. These results reflect 
the pervasive role of the symmetric group in the theory of the 
tensor representations of Lie algebras, in general. 

Finally, matrix elements of the Lie algebra are obtained 
from the generalized Holstein-Primakoff representation 
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rCA,,) =K-lreAv)K =K-1 a"K, 

reB,,) = rt(Av) = KZ"K -I, 

r(Gi ) = reGi ) = Ci + C~i Zv all- . 

(3.23 ) 

One sees that to evaluate matrix elements, one only 
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needs the ratios of the K( fp}) submatrices and not their 
absolute values. Thus, for a multiplicity-free case, for exam
ple, we immediately obtain from Eqs. (3.20a) and (3.22) the 
analytic expression 

(fp}lIr(B)II{v}) = (O(fp}) - O({V}»)1/2(fp}llzll{v}) . 

(3.24) 

For the general situation, the recursion relation for the 
K(fp}) matrices is found from Eq. (3.20b) to be 

K~(fp}) 

= _1_. L (O(ifp}) - O(kfp'}») 
Nz (j) k/{JL'} 

X (ifp}lIzllkfp'}) (jfp}llzlllfp'})*K~/(fp'}) , 

(3.25) 

where 

Nz(j) = (jfp}IINzlljfp}). 

It should be emphasized, however, that Eq. (3.24) ap
plies not only to multiplicity-free representations, but also to 
the more common situation of matrix elements between par
ticular states of an arbitrary representation that happen to be 
multiplicity-free. Thus, even for representations of physical 
interest with multiplicities, one often needs to solve the gen
eral Eq. (3.25) for only a relatively small number of cases. 

We conclude this section with the observation that the 
simple form (3.23) of r(B,,) together with the isomorphism 

[zrW(B) X I{u}) ]~{JL} - [Z nt} (KzK -I) X I{u}) 1&} 
implies that the abstract state vectors corresponding to the 
Bargmann basis (3.13) are given by 

I [u]r{~}pfp}v) =K -1[znt}(B) X I{u}) ]~{JL} • (3.26) 

C. Case (II): Non-Abelian raising operator algebras 

Proposition 6: The Lie algebra D+ (and likewise D_) 
contains an Abelian subalgebra invariant under the adjoint 
action ofh. 

Proof: The Lie algebra D+ is invariant under the adjoint 
action of h. Decompose it into a direct sum of vector sub
spaces each of which is invariant and irreducible under h. 
Let 01+ be the highest-weight subspace. The commutator of 
two elements of 01+ must vanish or belong to a higher
weight subspace. Therefore since 01+ is the highest-weight 
subspace, it must be an Abelian subalgebra. A parallel argu
ment shows the existence of a lowest-weight Abelian subal
gebra oflowering operators. Q.E.D. 

Proposition 7: The direct sum 

IC = 0'_ + hC + 0 1+ 

is a subalgebra of g". 
Proof Simply observe that [0'_ ,0'+ ] Chc by addition 

of weights. Q.E.D. 
Let us set 

o± = o~ + 02± ' (3.27) 

whereo~ is the h-invariant complementofn'± . The Abelian 
subalgebra Ol± is, by construction, irreducible under h. For 
simplicity, we shall restrict consideration to the situation in 
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which n~ is also irreducible, although many of the following 
results are more general. The more general case is considered 
in Ref. 22. We then have, for example, 

[n2+ ,n2+ ] Cn~ . (3.28) 

Proposition 8: The direct sum 

n2 =n~ + n2+ (3.29) 

is invariant under the adjoint action of 1. 
Proof By construction, 

[hC,n2] Cn2 , 

and by addition of weights, 

[nl+ ,n2_ ] Cn2+, [nl_ ,n2+ ] Cn2_ Q.E.D. 

By Proposition 7, we find that we always have a Lie 
algebra IC with Abelian raising and lowering operator subal
gebras sitting between If and the chosen stability subalgebra, 

1f:::>IC:::>hC• (3.30) 

And, by Proposition 8, we have the decomposition 

~=lc+n2, (3.31) 

with the raising and lowering operators of n2 transforming 
together as the components ofa (possibly reducible) tensor 
under 1. 

Let us denote by {A,.}, {B,J, and {C) basis operators 
for the subalgebras n~ and hC, respectively, and by {.# a} 
and {!!lJ a} basis operators for n~ , respectively. The general 
raising operator ofVCS theory then has the two term expan
sion 

Proposition I gives 

'if I = 'if y) + 'if ~ y) , 

where 

O'(z) P a r.R(y) -" V 
T!> I = Cal Za p, T!> I - C vi Yv ", 

with 

a a ap =- v =-azp ' v Oyv 

Since n 1+ is Abelian, we have 

r(A v ) = Vv , AvEnI+, 

and, with n2+ irreducible under h, 

(3.32) 

(3.33a) 

(3.33b) 

(3.34) 

(3.35) 

r(.#a) =aa -!c~zpVv' .#aen2+. (3.36) 

With a canonical basis, meaning that K". _ v = 8"v 
X const, Kp. _ a = 8fJa X const, we have (cf. Proposition 2) 

[CI,B,,] = C ~I Bv ' [CI,!!lJ p] = C!I !!lJ a . (3.37) 

Comparison with 

['if"Y,,] =C~Yv' ['if"zp] =C!IZa (3.38) 

then shows that (za) and (Yv) transform as components of 
tensors under h in exactly the same ways as (!!lJ a) and (Bv )' 

We can now easily construct an orthonormal Bargmann 
basis of states, which reduces the g:::> h subalgebra chain, by 

li[A ]j{p}v) = [yr{,,}( Y) X [Zris}(z) I {O'}) ]p{,t}]~'{P} , 

(3.39) 
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where i - ( res}p) and j - ( r' {; }p') label the multiplicities 
arising in the h couplings. (N.B. Throughout this paper, we 
assume all couplings to be ordered sequentially from right to 
left. ) 

We next seek a K operator that will map this basis into 
an orthonormal VCS basis 1~(i[A]j{P}v». We find that, 
considerable simplification arises if we require the K opera
tor to give VCS basis states that reduce the subalgebra chain 

g :::> I :::> h 

(0') i [A ] j {P} 

with [A], in particular, labeling an irrep ofl. We know that 
the desired K operator is block diagonal in {P} as a result of 
Proposition 4. However, there is no reason to suppose that it 
should be block diagonal in [A]. Nevertheless, when acting 
on (multiplicity-free) highest-weight {p = A} h-irrep 
states, we have the following result. 

Proposition 6: 

(i'[A ']j'{P'}v'IK li[A ]{A}v) = 8,t.,t8".,t8vv%({A})N . 

(3.40) 

[See discussion following (3.42); K is not Hermitian in gen
eral.] 

Proof It follows from Eq. (3.35) that states of a highest
weight h subirrep {A} of an I-irrep [A] by definition satisfy 

V v 1~(i[A ]{A}v'» = o. (3.41) 

Thus the VCS wave function 1~(i[A]{A}v» is independent 
of the (Yv) variables and its expansion on the Bargmann 
basis is of the form 

1~(i[A ]{A}v» = L Ii' [A ]{A}v) % ({A}) N • ,. (3.42) 
Q.E.D. 

It is most important to note that having chosen the 
Bargmann basis for convenience and having required the 
VCS basis to reduce the g:::>l:::>h subalgebra chain, we have 
given up any freedom we had to choose the whole K operator 
to be Hermitian. However, no constraint has been imposed 
on the combinations of multiplicities of states that transform 
in the same way under these subgroups and so we are free to 
choose them such that the % ({A}) submatrices, defined by 
Eq. (3.42), are Hermitian and it is convenient to do so. 

Choosing a VCS basis to reduce the g:::> I:::> h subalgebra 
chain means that we can proceed in steps. The first step is to 
induce the ladder irreps of I from those of its h highest
weight irrep, which is easily done since 1 is a Lie algebra with 
Abelian raising and lowering operator subalgebras for which 
Sec. III B applies. Let us suppose that this has been done. 
The remaining step is then to induce the required irrep of g 
from its highest-weight I irrep. To do this we find that we do 
not need the whole K operator; we need only its restrictions 
to the highest-weight h subspaces given by the % ( {A} ) sub
matrices. 

We start with the general intertwining relationship from 
Eq. (3.6), 

(3.43) 

and observe that, since the raising operators .# a commute 
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with the A,.. raising operators, they can only raise states of a 
highest-weight h irrep to other highest-weight irreps; i.e., 

r(da)U[A ]{A}V) 

= ~ li[A ']{A '}v') 

X (i[A ']{A '}v'lr(d a) U[A ]{A}V) . 

Thus, taking h-reduced matrix elements of Eq. (3.43), we 
obtain 

(i[A ']{A '}I!r(d)%(U})IIj[A]{A}) 

= (i[A ']{A '}II%({A '}r(d)IIj[A ]{A}) , 

which, with Eq. (3.36), gives, for [A'] > [A], 

(i[A ']{A '}lIr(d)IIj[A]{A}) 

= (i[A ']{A '}II%({A '})-I B%({A})lIj[A]{A}) . 

(3.44a) 

Taking the complex conjugate of this equation and recalling 
that % ({A}) and % ({A '}) are Hermitian, we then obtain 
for [A'] < [A], 

(j[A ']{A '}lIr(,qg) lIi[A]{A}) 

= (j[A ']{A '}II%(U '})z%({A})-llIi[A]{A}). 

(3.44b) 

We know by Proposition 8 that d a and ,qg a are compo
nents of a tensor under I; call it Y. For simplicity, let us 
suppose that this tensor is irreducible and of rank [Y]. Let 
the tensor ranks of its d and ,qg components be denoted 
{d} and {,qg}, respectively, under h. Then, once we have 
determined the % ( {A}) matrices, we obtain from the above 
equations the I-reduced (triple bar) matrix elements of Y, 

(i[A ']1 Ilr(Y)11 U[A» 

_ (i[A ']{A '}II%({A '}) I B%({A})IIj[A ]{A}) 
- ([A ]{A};[Y]{d}II[A ']{A '}) 

for [A'] > [A] and 

(i[A']1 IIr(Y> II U[A» 

(3.45a) 

_ (i[A ']{A '}II%({A '}Z%({A})-lllj[A ]{A}) 

- ([A ]{A};[y]{,qg}II[A ']{A '}) 

(3.45b) 

for [A'] < [A], where ([A]{A};[Y]{d}II[A ']{A '}) and 
([A ]{A}; [y]{,qg}1I [A']{A '}) arel:Jhreduced Wignerco
efficients. In the event of a multiplicity in the 
[A] X [Y] - [A'] coupling, the specific couplings are the 
ones in which states transforming according to 
reF) U[A ]{A}V) are chosen.49 

Thus it remains to determine the % ( {A} ) matrices. We 
recall that, if P is any operator (not necessarily equal to the 
pullback K - I of the chosen K operator) that maps an ortho
normal ves basis into an orthonormal Bargmann basis for 
the physical subspace, then, in particular, it must map the 
orthonormal ves states 

{1t,6(i[A]{A}V» %( {A}) li[A ]{A}V)} 

into orthonormal Bargmann states 

{P%({A})!i[A]{A}V)} . 
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Hence it must satisfy 

(i'[A ']{A '}V'I%({A '})ptp%({A})li[A ]{A}v) 

= or/>;. oJ.!>"" . (3.46) 

Let us choose an operator P that is Hermitian; P = pt. Then 
Eq. (3.46) implies that 

P~(U})%({A})Jk = 0ik , (3.47) 

where P 2 ( {A}) is the projection of P 2 = P t P to the sub
space of {Jt = A} highest-weight states; i.e., 

P~({A}) = (i[A ]{A}vIP 21j[A ]{A}V) . (3.48) 

It is important to note that P #K I since we have cho
sen P= pt whereas K #Kt. Nevertheless P2({A}), which 
is the projectionofp 2, is the inverse of % ({A} )2, the square 
of a projection. Equation (3.47) is therefore a nontrivial re
sult. 

We now use Eq. (3.16) to obtain a recursion relation for 
p 2({A}). Setting X = din Eq. (3.16) and taking matrix 

I elements between [A '] < [A] highest-weight states, gives 

L (i[A ']{A '}llzllk [A ]{A})Pt({A}) 
k 

= LP7t({A '})(I [A ']{A '}Ure,qg)IIj[A ]{A}) 
I 

+ L (i[A ']{A '}IP2Ik [A "]{A ,}) 
k.;'· >;. 

X (k [A"]{A '}I!r(,qg )1Ij[A ]{A}) . (3.49) 

Setting X = A in (3.16) and noting that 

(i[A ']{A '}Urt(A)p2I1k [A "]{A "}) 

= (i[A ']{A '}II yP211k [A "]{A "}) = 0, 

we find, for [A '] < [A "], 

(i[A ']{A '}IIP 2reB) Ilk [A "]{A "}) 

= L P7t ({A '})(I [A ']{A '}lIr(B)Ii k [A "]{A "}) 
I 

+ L (i[A ']{A '}IP211 [A "']{A '}) 
1,;'->;" 

x (I [A "']{A '}Ur(B)lIk [A "]{A "}) = O. (3.50) 

Now, making an expansion of reB) in powers of (Yv) [cf. 
Eq. (2.32)], one easily determines that the only component 
that contributes in this equation is the term independent of 
(V,..) given by 

r(J)(B,..) y~C~_v[Ci+'G'}Z)], (3.51) 

where 'if (z) is defined by Eq. (3.33). It follows immediately 
from the structure (3.39) of the Bargmann wave functions 
that the only component surviving in the second term ofEq, 
(3.50) is the term with 1 = k and A lit = A". ThusEq. (3.50) 
gives an explicit expression for the matrix element 
(i[A ']{A '}IP2Ik [A "]{A '}) that can be substituted into 
Eq. (3.49) to give 

L (i[A ']{A '}lIzllk [A ]{A})PZj({A}) 
k 

= + P7t({A '}) [ (I [A ']{A '}lIr(O)(,qg )IU[A ]{A}) 

(I [A ']{A '} II r(O) (B) Ilk [A "]{A "}) 

- k.;.~>;. (I [A "]{A '}Ur(l)(B) Ilk [A "]{A "}) 

X (k [A "]{A '}lIr(t)(,qg)lij[A ]{A})]. (3.52) 
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One observes that the only components ofrcPlJ) and reB) 
contributing to matrix elements in Eq. (3.52) are the (Yv)
and (V v )-independent components r(O)(PlJ) and r(O)(B), 
respectively, and the components r(I)(PlJ) and r(l)(B), 
which are linear in (y,,) and (V v) independent. 

Now, as shown in Appendix B, r(O)(PlJ) can be ex
pressed 

r(O)(8U a) = [O,za] , (3.53) 

where 
A- A-
0= 1k(1:(Z)'1:(Z) - 2y(C'C) + !Nz ) 

with 

k=Ka._ a , 'liz =Za Ba· 

One easily determines that 

r(l)(8U a ) =yvc~_a Bp , 

(3.54) 

(3.55a) 

which, since 8U, y, and B are irreducible tensors under h, 
must be proportional to the coupled tensor product 
[YXB ] {tJn, where the superscript {8U} denotes the tensor 
rank of 8U under h. It follows that the structure factor c ~ _ a 

is proportional to a Wigner coefficient for the stability subal
gebra h. Hence it is convenient to write 

r(l)( 8U a) = [YXB]{oSi'} , (3.55b) 

L %({A '})7k(k [A ']{A '}lIzlIj[A ]{A}) 
k 

where 

[yXB]{5i'} =yvc~_a Bb 

is proportional to [yxB ] {5i'}. We likewise find that 

r(O)(B) = HzxzX(y(C) - ~1:(Z»)]{B}, (3.56) 

where 

[zXZX(y(C) - ~1:(Z»)]~B} 

= ZaC ~ _ v Zy c~_P(y(Ci) - ~1:?») (3.57) 

is proportional to the tensor coupled product 
[ z XZ X (y( C) - ~1: (Z»)] {B} and the superscript {B} de
notes the tensor rank of B under h. Finally, as shown in 
Appendix B, r(l)(Bv ) is expressed as 

(3.58) 

where 

(3.59) 

withk'=K"._v· 
Substituting these expressions together with Eq. (3.47) 

into Eq. (3.52) gives the required relations for the %( {A} 
matrices: 

[
A.I (i[A']{A'}II[zXzX(y(C)-~1:(Z»)]{B}lIk[A"]{A"}) 

= + (i[A. ']{A. '}II[O,z]lIl[A. ]{A.}) -"2 k.fo> A (k [A "]{A '}Ii[O',y]lIk [A "]{A "}) 

X (k [A "]{A '}II[yXB]{b}/11 [A ]{A})] %({A})~. 

Note that, ift!!.e bas~ for the Lie algebra is chosen such 
that k = k', then a and A' in Eq. (3.60) can be replaced by 
the single operator 

A = 1k (1:(Z). 1:(Z) + 21:(y)'1:(y) - 2y(C'C) + Wz)' 
(3.61 ) 

IV. APPLICATIONS TO THE ORTHOGONAL GROUPS 

A. The matrix representations of so(2n) 

With u(n) Cso(2n) chosen as stability subalgebra, the 
remaining raising operators of so (2n) span an Abelian alge
bra and the methods of Sec. II B apply. 

The lowering operators (Bij) and hence, by Proposition 
2, the (Yr) variables transform under u(n) as the compo
nents of f - 1 - I} tensors. We may therefore construct a 
basis {y~-b}(y)} of Bargmann polynomials in the (Yij) 
that transform as the components of tensors of rank { - b} 
under u(n), where {- b} = {- bn , - bn _ 1 , ... , - bt } is a 
partition of negative integers having the property 

(4.1 ) 

These polynomials may be chosen orthonormal with respect 
to the Bargmann measure and to span the space of polynomi-
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(3.60) 

als in ( Yij ). [Note that no multiplicity index is needed since 
the highest-weight polynomial y~.; b} ( Y) is unambiguously 
identified34 by the partition { - b}.] An orthonormal Barg
mann basis of vector-valued wave functions for an so(2n) 
irrep [A.] is now given by the u(n )-coupled wave functions 

(yl[A]{ -b}p{,u}v) = [y{-b}(Y)X/{A})]~{P}. 
(4.2) 

The ves representation of the so(2n) Lie algebra is 
given by Eq. (2.26). We easily determine that r(Bij) can be 
expressed as 

where 
A"" A 

0= 11(1:) - ¥(y(C») + !(n - 1) Ny, 

with 

/(1:) = k1:·1: = 1: ij 1:ji' 

where 1: ij is given by Eq. (2.27) and 

y(Cij) = r(cij) = Cij + 1: ij . 

(4.3a) 

(4.3b) 

(4.4) 

The operator j (y( C») is proportional to the quadratic 
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Casimir invariant ofu(n) and has eigenvalues given by 

J (r( C»)I [A. J{ - b}p{,u}v) = I( {,u}) i[A. J{ - b}p{,u}v) , 

(4.5a) 

where 
n 

I({,u}) = L l"i(l"i + n + 1- 2i) . (4.5b) 
;=1 

"'-
The operator Ny measures the "bosonic" degree of the Barg-
mann wave function. It is defined 

'" Ny = !yijVij' (4.6a) 

and its eigenvalues are given by 

Nyl[,1 J{ - b}p{,u}v) 
= Ny({ - b}) I [A ]{ - b}p{,u}v) 

=~ (~b)I[A.J{-b}P{,u}v). (4.6b) 

Thus 0 is diagonal in the above Bargmann basis and has 
eigenvalues given by 

01 [A J{ - b}p{,u}v) 

= O( { - b}{,u}) I [A J{ - b}p{,u}v) , (4.7a) 

with 

O({ - b}{,u}) = lI({ - b}) - V({,u}) 

+!(n-1)Ny({-b}). (4.7b) 

The so (2n) :::> u (n) reduction of an arbitrary irrep [A] 
of so(2n) is not, in general, multiplicity-free for n>4. To 
simplify the notation, let us index the multiplicities by 
i-{ - b}p and write 

li{,u}v) - i[,1J{ - b}p{,u}v) . 

Since the K matrix is diagonal in {,u} and independent of v, 
we denote the matrix elements of K as 

Kij ({,u}) = (i{,u}vIK Ij{,u}v) . 

FromEq. (3.25), we then immediately obtain the recur
sion relation for the K( {,u}) submatrices: 

K~({,u}) 

=_1_. L O(i{,u}) -O(k{,u'})(i{lL}lIyllk{p,'}) 
Ny (j) klfp'} 

x(j{p,}lIyll/{p,'})*K~/({p,'}), (4.8a) 

where 

Ny(j) = (j{p,}INyJj{p,}) (4.8b) 

has the value given by Eq. (4.6b). 
The reduced matrix elements appearing in this equation 

can be expressed as 

([A J{ - b '}p'{,u'} II yll [A J{ - b}p{p,}) 

= U({A}{ - b}{,u'}{ - I - I};{,u}p-{- b'} _p') 

X({-b'}lIyll{-b}), (4.9) 

where U({A}{ - b}{p,'}{ - I - I};{,u}p-{- b 'Lp') isa 
u (n) Racah coefficient (with multiplicity indices in Hecht et 

al. notation49
) and ({ - b '}II yll { - b}) is a reduced matrix 

element between simple Bargmann polynomials. Its nonzero 
values are given34 by 

({ - b - a(11)(k) II yll{ - b}) 

= [ (b2k _ 1 + n - 2k + 1) 

fi (b2k - 1 - b2j - 1 + 2j - 2k - I) ]112 
X j = 1 b2k _ 1 - b2j _ 1 + 2j - 2k + I ' 

j# (4.10) 

where a(11)(k) is the partition (0" '0110" '0) with null en
tries everywhere except for unity in its (2k - l)th and 
( 2k)th entries. 

Starting from the {,u = A} highest-weight u(n) subir
rep, which is always multiplicity-free and for which 
K( {A}) = 1, the recursion relation (4.8a) easily gives all the 
K({,u}) matrices. Finally, one evaluates the so(2n) matrix 
elements 

([A J{ - b '}p'{,u'}lIr(B) \I [A J{ - b}p{,u}) 

= ([AJ{ - b '}p'{,u'}IIK({,u'})yK({,u})-1 

II[AJ{ - b}p{,u}) . (4.11) 

It is important to note that, although multiplicities oc
cur in general in the so (n ) :::> u (n) reduction, many and often 
most of the u(n) states are, in fact, multiplicity-free for [A] 
irreps of physical interest. In particular, the highest-weight 
and the Ny = 1 u(n) states are always multiplicity-free. For 
multiplicity-free states, the ratios of the one-dimensional K 
matrices required to evaluate Eq. (4.11) are given immedi
ately by 

[K({u'})/K({,u})]2 = O({u'}) - O({,u}). (4.12) 

Reduced matrix elements of r(A) are given by complex 
conjugation and the u (n) matrix elements of r( C) are al
ready known. 15.19.21 Thus all the matrix elements of so(2n) 
are expressed in terms of the matrix elements (4.10) and 
u(n) Racah coefficients. 

Consider, for example, so ( 6 ). An so ( 6) irrep is labeled 
by a triplet of integer or half-integer numbers [A IA~3]' 
Polynomials of degree b in the (Yij) variables are tensors of 
u(3) rank {- b - b}. The u(3) coupling 

{AIA~3}X{ - b - b}-{,utl"'lJ.l3} 

being multiplicity-free, the If submatrices are all one dimen
sional. The eigenvalues of 0 are given by 

1 3 • 1 
O({,u}) = -- Ll"i(l"i+ 4 - 21 )+-b(b+3). 

2 i=1 2 
(4.13) 

Hence one determines, for b' = b + 1, the ratios 

[ 
K({,u/})]2 [3 .] 

r .. } =.L (I"i -l)ai + b + 5, 
K(lf" ) .=1 

(4.14) 

for {,u/} = {u - a} with a = (110), (101), or (011). Al
though they are not needed for the calculation of matrix 
elements, one also easily derives the absolute value 

K2({u}) = (AI +..12 + 2)!(A I +..13 + 1)!(A2 +A3)! 

(I"I + 1"2 + b + 2)!(1"1 + 1"3 + b + 1) ! (1"2 + 1"3 + b)! 
(4.15 ) 
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Equations (4.11), (4.12), and (4.14) immediately give the u ( 3 ) -reduced matrix elements for so ( 6 ), 

([A. ]{ - b' - b '}fp'}lIr(B) II [A.]{ - b - b}fp}) 

= K(t:?} XU({A.}{ - b - b}fp'}{ - 1 -l};fp}{ - b' - b '})v7i+T (4.16a) 
K( ) 

= [[( ± P~3 + b -1)] II~~dP131'-P~31'+ b + 1) ]112, fp'} = fp _~}, ~ = (1 - <511,1-<52/,1- <53/ ), 
k=1 IIk=I(PI3-Pk3+1) 
k#1 k#1 

in which we have inserted 

({O-b' -b'}lIyll{O-b-b}) =v7i+T, 
where the hooks P are defined by 

p't" =Jl;n + n - j, Jl;n ='Jl; . 

Since 

3 1 6 

2: Aij Bij =- ) LaP 
;<j= I 2 a <7'= I 

1 33 

-- 2: Cij~; + 2: Ckk , 
2 i,j=1 k=1 

the matrix elements (4.16b) must obey the sum rule 

( 4.17) 

2: ([A. ]{ - b' - b '}fp'}lIr(B) II [A. ]{ - b - b}fp})2 
{P'} 

where, from Weyl,SO 

d
. I .. } _ II~<s ( P ~ - P ~n ) 
Imlf" - . 

1121'" (n - 1)1 

Such a sum rule is easily verified using complex function 
residue theory.34 

B. The matrix representations of so(217+1) 

Withu(n)Cso(2n + 1) chosen as the stability subalge
bra, the remaining raising operators of so(2n + 1) now in
clude both the soC 2n) raising operators (Aij ), which we have 
noted transform as the components of a u (n) {11} tensor, 
and, in addition, the set (.!if;), which transform as the com
ponents of a u(n) {l} tensor. Whereas the former span an 
Abelian raising operator algebra, the latter are not commu
tative. The K-matrix theory of Sec. III e therefore applies. 

The intermediate algebra I sitting between so (2n + 1) 
and its stability subalgebra is so(2n) and we can classify a 
so (2n + I) basis by the labels of the subalgebra chain 

so(2n + I) :::> so(2n) :::> u(n) 

(0') { - w} [A. J { - b}p fp} 
(4.18) 

[see also Eqs. (4.19) and (4.21)J. 
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(4.16b) 

One recalls the well-known factS! that the reduction of 
an so{2n + 1) irrep (0') into a sum of so(2n)irreps is 
multiplicity-free and given by the branching rule 

so(2n + l)lso(2n): (0')~2: [O'/wJ , ( 4.19) 
w 

where [O'/w] denotes a partition obtained by factoring out 
the fully symmetric Young tableaux w = {wO" ·O} from the 
tableau [0']. 

From the perspective ofVeS theory, we have found that 
the only so(2n) subirreps that can appear in the so(2n 
+ 1) irrep (0') are those that can be obtained by u(n) cou

pling a u(n) highest-weight state I{O'}) to a polynomial in 
(z), Le., [X{-w}(z)XI{O'})]w, where {-w} 
= {O···O - w} and w is the degree ofthe polynomial. This 
result is seen to be consistent with and to naturally exhibit 
the significance of the branching rule ( 4.19). One also finds, 
and this is a particular strength of ves theory, that the 
{A.}e{ - w} ® {O'} coupled vector-valued wave functions 
that do not occur in the factorization [O'/wJ are automati
cally annihilated by the K-matrix operator on mapping the 
Bargmann space of vector-valued wave functions onto the 
irreducible ves space. 

For the chosen so(2n + I) basis, Eqs. (2.22) and 
(2.28), we easily determine that 

(0) '" (1) '" r (fg;) = [A,z;] , r (Bij) = [A,Yij]' (4.20a) 

with 
A.,. A ,.. A 

A = lI('tf(Z» + Y('tf(Y» - Y(y(C») + lnNz , 

(4.20b) 

in accord with Eq. (3.61). 
Following Eq. (3.39), we define an orthonormal Barg

mann basis of states parametrized by a set of labels reducing 
the so(2n + 1) :::>so(2n) :::>u(n) subalgebra chain: 

I (O'){ - w}[A.]{ - b}pfp}v) 

= [Y{ - b}( Y) X [Z{ - w}(z) X I {O'}) ] {A.}t{A.} • 

(4.21) 

The operator A is diagonal in this basis and has eigenValues 

A({ - w}{ - b}fp}) 

= !I({ - w}) + Y({ - b}) - !l(fp}) + lnw. 

( 4.20') 

Since the so(2n + I) lso(2n) reduction is multiplicity
free, theK ( {A.}) submatrices are one dimensional. Equation 
(3.60) becomes 
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%(~ ?); = {[A({ - (w + I}{O)[{A'} - A({ - W}{O}{A})] 
%( A ) 

_ ~ L [«u){ - (w + 1)}[A ']{O}{A '}II[y(C) xzxz]{ -1- I}1I(u}{ - (w - 1)}[A "]{O}{A "}) 
2 A" [A({ - (W -l)}{ - 1 - I}{A '}) - A({ - (W - 1)}{O}{A "})] 

X (u){ - (W - 1)}[A"]{ - 1- I}{A '}II[YXa]{- I}1I(u){ - W}[A ]{O}{A}) ]} (4.22) 
«u){ - (w + 1)}[A ']{O}{A '}UzlI(u){ - W}[A ]{O}{A}) , 

where we have used the fact that 

[zXzX 'tr(Z)]{ -I-I} = [zXzXzXa]{ -1- I} = O. 

Using standard definitions and notation for the u(n) Racah coefficients,49 the various terms in Eq. (4.22) can be 
compared as follows: 

«u){ - (w + l)}[A ']{O}{A '}UzlI(u){ - W}[A ]{O}{A}) = U({u}{ - W}{A'}{ -l};{A}{ - (w + 1)})~w + 1 , 

(4.23a) 

{(u){ - (w' + 2)}[A ']{O}{A '}II [y(C) xzxz]{ -1- I} II (u){ - W'}[A "]{O}{A "}) 

= U({A"}{ - 2}{A'}{ - 1 -l};{A'} _(p = 1){ - 1 -l}_) 

XU({u}{ - W'}{A'}{ - 2};{A"}{ - (w' + 2)})({A "}lly(C)II{A "})X [(w' + 2)!/w'!] 1/2 , (4.23b) 

«u){ - (w - 1)}[A"]{ - 1 - I}{A '}I![ YXa]{ - I}II (u){ - W}[A ]{O}{A}) 

= U({A}{I}{A'}{ - 1 -l};{A"}{ -l}) X «u){ - (w - 1)}{A "}{O}{A "}lIa lI(u){ - W}[A ]{0}{A}) 

= ( - 1 )~(Wl+~({I)) -~({A"})[dim{A}/dim{A"} ]1I2 XU({A}{I}{A'}{ - 1 -l};{A"}{ -l}) 

X«u){ - W}[A ]{O}{A}llzlI(u){ - (w - 1)}[A "]{O}{A "}), (4.23c) 

wherel8 

1 n 
¢( {h} = - L (n + 1 - 2i)h; . 

2 ;=1 

Most of the U (n) Racah coefficients in (4.23) are of the 
multiplicity-free type calculated by Le Blanc and Heche9 

[see Eqs. (A9), (AIO), (A13), (AI4), and (A27) of Ap
pendix A] or are of the stretched type in the 23 position, or 
can be put into one of these forms using symmetry properties 
discussed in the Appendix of Hecht et al. ls ). Such symme
tries are illustrated for SU (3) in Appendix A of Hecht et 
al.49 Only the Racah coefficient 

U({A"}{ - 2}{A'}{ - 1-l};{A'} _(p = 1) 

{-I-IL_) 

cannot be found in the literature but it can easily be comput
ed from its definition using known Wigner coefficients of the 
elementary type19.52 and the matrix elements of the u(n) 
generators. 18,21 We find for U(3), 

U({A"}{ - 2}{A'}{ - 1 -l};{A'} _(p = 1) 

{- 1-IL_) 

A' A' 1 = - H [3/g(;l')]( Pj,3 - Pj,3 - ) 

A' -A' ]1/2 X (Pj,3 - Pj,3 + 1) 

for {A"} = {A' + 6,,(1,) (j1,j2)}' where 

6,,(1')(1,2) = (110), 6,,(1')(1,3) = (101), 

6,,(1')(2,3) = (011) , 
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( 4.24a) 

(4.24b) 

and where 

g(A') = (A I ),2+ (A~)2+ (Ai)2_A;A~ 

-A;Ai -AiA) +3A; -3A). (4.25) 

Also for U (3), we find 

({A '}lIy(C) II {A '}) = [g(A ')/3]1/2. (4.26) 

We find 

[y(C) XZXZ]{-I-I} = v1[y(C) XZ{-2}(Z)]{-I- J} 

= (_1)n+lU({lo-J},IW) 2~(n + 1) 

X [y(C) XzXz]{ -1- J} , 

(4.27) 

where (l) ({ 10 - l} ,lw) is a conjugation phase defined in the 
Appendix of Hecht et al. 18 We also find 

[zXa]{ - J} = ( - l)n~ (n - 1) [zXa]{ - I} . (4.28) 

When the various expressions in Eqs. (4.23 )-( 4.28) are 
inserted in the recursion formula (4.22) for %({A}), we 
find, for n = 2,3, 

%({A-6,,(I)(i)}f _ IIk=I(Pkn +Pi'n) 
%({A})2 - IIk=I(Pin +Pi'n) , 

(4.29) 

where A(I)(i) is a null n-vector except for unity in its ith 
entry. While Eq. (4.24) has been verified for so(5) (n = 2) 
and so ( 7) (n = 3), we surmise that it holds for all n; work is 
in progress to test its validity using various selection and sum 
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rules. It respects the Gel'fand betweenness condition 

un ;;>An;;> - Un , 

i.e., %({A - aU)(n)}) vanishes for An = - Un' and this is 
an example of the above-mentioned property of the K opera
tor for Bargmann states with null image on the yeS basis. 

Equation (4.24) has also been verified independently 
for so(5) by one ofuss3 using cumbersome but straightfor
ward commutator algebra, a technique not easily applied to 
Lie algebras of higher rank. It also has been verifieds4 again 
for 80(5) by Hecht and Suzuki [one of us (K.T.H.) would 
like to point out that some of the expressions given in this 
paper were based on the assumption that the operator K is 

Hermitian and are therefore, strictly speaking, incorrect; as 
shown in Sec. III e, K is not Hermitian if one requires both 
the yeS and the Bargmann basis to reduce the 
so (5) :::> so ( 4) subalgebras] using vector coherent state ex
pansions, K-matrix theory, and shift operator techniques; 
although this approach yields the correct answer, its use is 
also limited to Lie algebras oflow rank as the construction of 
the shift operators becomes rapidly involved when consider
ing higher rank Lie algebras (Pang and Hechtss ). 

Having determined the % ({A '}) 1% ( {A}) ratios, the 
u(n)-reduced matrix elements for r(~) [and, hence, 
through Hermitian conjugation, for r(d)] are given for 
[A'] < [A] highest-weight u(n) states from Eq. (3.45) by 

«u){ - (w + l)}[A ']{O}{A '}lIr(~)II(u){ - W}[A ]{O}{A}} 

= [%({A '})/%({A})] X U({u}{ - w}{A'}{ -l};{A}{ - (w + l)}) X~w + I . (4.30) 

If the 8O(2n) :::>u(n) reduced Wigner coefficients are available, one can derive from this expression (or its Hermitian 
conjugate for [A'] > [A]) the so(2n) (triple reduced) matrix elements 

([A'] 111..7111 [AJ) , 

cf. Eq. (3.45). Hence other u(n)-reduced matrix elements are given by 

«u){ - W'}[A ']i'fp'}lIr( ~) II (u){ - W}[A ]ifp}} = ([A ]i{u}; [l]{ - l}11 [A ']i'{u'}} ([A '] 111..7111 [A ]) , 

where i- ({ - b}p) and 

([A]ifp};[l]{ -l}II[A ']i'fp'}} 

is a so(2n) :::>u(n) reduced Wigner coefficient. 
If the so (2n) :::> u (n) reduced Wigner coefficients are not available, one can use the following alternative expressions (see 

Le Blanc and Rowe 14 and Hecht et al. IS for their derivation in parallel contexts; see, in particular, Sec. 4.1 of the latter but note 
that this reference uses a different coupling order); these expressions then offer a method for computing the unknown reduced 
Wigner coefficients by equating (4.30) and (4.31). The expression for [A '] < [A] is 

«u){ - (w + l}[A']{ - b '}p'fp'}lIr(~) lI(u){ - W}[A ]{ - b}pfp}} 

= L (- 1 )¢(ip}) - ¢({ - 1}) - ¢(ip'}) ( _ 1 )¢({A}) - ¢({ - I}) - ¢({A '}) 

{- b}p,Pj 

XK{ _ b'}p';{ _ b}p/ [A '];fp'}) XK f-Ib}P{;{ _ b}p ({A};fp}) 

XU({ - l}{A}fp'}{ - b};{A 'Lpj{u}Pi- ) X «u){ - (w + l)}[A ']{O}{A '}lIr(~)1I (u){ - W}[A ]{O}{A}} , 

while, for [A'] > [A], 

«u){ - (w - l)}[A']{ - b '}p'{u'}lIr(~) II (u){ - W}[A ]{ - b}pfp}} 

L (-1)¢(ip})-¢({-I})-¢(ip'})( -l)¢(W)-¢({-I})-¢({7})XQ([A ']{l}) 
{- b,}p,,{ - b}pp{7}p 

XK{ _ b'}p';{ _ b}p/ [A '];{u'}) xK {-: .. .\,}p,;{ _ b}p ([A ];fp} X ({b) II yll{b) 

XU({A'}{-l-l}fp'}{-b);{/Lp,{-b)_pj)XU({-l}{A}{u'}{-b);{/Lp,{u}pi-)' 

where the various K matrices are so(2n) :::>u(n) K matrices and where 

Q( [A ']{/}) = ( _ l)(¢{7})+¢({II}) -¢({A'})( _ l)¢(w)+¢({1}) -¢(U'})[ dim{~}]'/2 
dim{ I} 

X ( _l)n-If,t=T } XU({A}{ - l}{A '}{ll};{l},{l}) 
Kt_'_'H_,_,}([A'];{l ) 

X «u){ - W}[A ]{O}{A}lIr(~) II (u){ - (w - 1 )}[A ']{O}{A '}} . 

( 4.3la) 

(4.3lb) 

(4.31c) 

With the help of (4.30) and (4.31), we compute, for example, the following matrix elements for the completely mUltiplic
ity-free (n = 3) case of so(7): we find, for [A '] < [A], 
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«q){ - (w + 1 )}[A - A(l)(i)]{O - b - b}{u - A(1)}(j)lIr(@)II(q}{ - w}[A]{O - b - b}{u}) 

[ 

(n~=I[p~ -pt3 +b ])(nLI[p~ -pt3 -b-l]) 
=(-I)i-iS(i-j)X 2- k#1 k#j 

2 (n~= 1 [p~ - ptd )(n~= 1 [1'13 - pt3 -1]) 
k #1 k #i 

(n~=I[p~ +pt3 +b-1])(n~=1 [P~3 -1'13 + 1])(n~=1 [p~ +P~d)]1/2 
k #j X (~32a) 
(n~=I[P13 +pt3 -l])(n~=I[p~ -pt3 -1])(n~=I[P13 +pt3]) , 

k#i kh k#i 

while, for [A'] > [A], 

«q){ - (w - 1 )}[A + A(l)(i)]{O - (b + 1) - (b + 1)}{u - A(l)(j) }llr(@)II(q){ - w}[A ]{O - b - b}{u}) 

[ 

(n~=lm=l[p13 -pt3 -b-l])([p73 -P~ -b]) 
= ( _ 1)IU - I)/2S(i _ j) X 2- __ k..;.#_'-:-I-'-#_'_:--_-:--___ -:-__ -:--_-:-__ _ 

2 (n~=I[p73 -pt3 + 1])(n~=I[p73 -ptd) 
k #i k #i 

([.Ik =IPt3 +b ])Clli=1 [P~3 -p7d)(n~=1 [P73 +P~3 + 1]) ]1/2 
k #j 

X (~3Th) 
(n~=I[p~ +ptd)(n~=I[p~ -pt3 -l])(n~=I[p~ +pt3 + 1]) , 

k #i k #i k #i 

where S(i - j) is the sign of (i - j). 

v. SUMMARY AND CONCLUDING REMARKS 

ves theory is based on the decomposition (2.1) of the 
complex extension of Lie algebras into subalgebras of stabil
ity, raising and lowering operators. If the lowest-weight state 
for a ladder representation of a Lie algebra carries a one
dimensional representation of its stability subalgebra, then 
standard (scalar) coherent state theory applies. Thus ves 
theory is an extension of standard coherent state theory to 
representations induced from nontrivial finite-dimensional 
representations of stability subalgebras. 

Coupled with a change from the coherent state measure 
to a simpler Bargmann measure, coherent state theory is 
often regarded as a nonunitary Dyson mapping.43 In paral
lel, ves theory gives nonunitary mappings to generalized 
vector Dyson representations. However, for computational 
purposes, one needs to preserve the inner product. While the 
coherent state and vector coherent state inner products are 
known in integral form,3 in terms of the invariant measure of 
the stability subgroup, they are cumbersome and difficult to 
use in practice. Therefore K-matrix theory was developed as 
a practical alternative for the construction of inner products. 
It may be regarded as a second mapping that restores the 
unitarity of the coherent state mapping on change to the 
Bargmann measure. Thus K-matrix theory generalizes, to 
highly nontrivial situations, the familiar mappings from Dy
son to Holstein-Primakotf representations. 

Since the original formulation of K-matrix theory was 
restricted to situations in which the raising operator subalge
bra is Abelian, it did not apply, for example, to the odd or
thogonal so (2n + 1) Lie algebras with u (n) as stability sub
algebra. We have therefore analyzed the underlying 
structure of K-matrix theory and shown that it is not funda
mentally limited in this way. In particular, we have extended 
its domain of applicability to situations in which the raising 
operator subalgebra is not Abelian and is the sum of two 
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irreducible subspaces [cf. Eq. (3.27)] under the adjoint ac
tion of the stability subalgebra. With this extension, ves 
and K -matrix theory together provide algorithms for the 
construction of the matrix representations of all four series 
of classical Lie algebras with u(n) [equivalently gl(n)] as 
stability subalgebra. The extension also provides the frame
work for the completely general situation in which the rais
ing operator algebra is a sum of more than two irreducible 
subspaces, i.e, 

which is considered in Ref. 22. 
A remarkable property of K -matrix theory is that the 

square of the similarity transformation, which restores the 
unitarity of the Dyson mapping, obeys a linear recursion 
relation. Furthermore, one is able to make full use of the 
tensor structure of the Lie algebra and its representations in 
order to exploit the symmetry properties of the K matrix. In 
particular, the invariance of the K matrix under the stability 
subalgebra (consequence of Proposition 4) results in it being 
block diagonal. As a consequence, the algorithm for calcu
lating matrix representations is remarkably simple even for 
high-dimensional representations. In the absence of multi
plicity, one obtains analytical solutions in terms of the 
Wigner and Racah coefficients of the stability subalgebra. In 
the presence of multiplicities, one has to solve linear recur
sion relations for the submatrices of the block-diagonal K 
matrix, where the dimension of a given block is equal to the 
multiplicity of occurrences of the corresponding irreducible 
representation of the stability subalgebra. 

Another remarkable property of the theory is that it 
gives a natural interpretation of the various kinds of multi
plicity that can occur in the reduction of a Lie algebra ladder 
representation under restriction to its stability subalgebra 
[cf. discussion following Eq. (3.11)]. One finds that the 
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multiplicities of the algebra are naturally expressed in terms 
of the outer product multiplicities of the stability subalgebra. 
Thus one finds that all the properties of an irreducible ladder 
representation of a Lie algebra are related to those of the 
tensor algebra of the stability subalgebra. 

In view of this observaton, it is particularly significant 
therefore that all the classical Lie algebras have ves repre~ 
sentations with u(n) or, equivalently, gl(n) as stability sub~ 
algebra since the u(n) tensor algebra and its Wigner-Racah 
calculus are the most studied and best known. 19.52,56 It is also 
significant, that K~matrix theory has been found to play an 
essential role in this calculus. 14.15,19 Evidently ves and K~ 
matrix theory is playing a pervasive role throughout Lie al
gebra representation theory and it is our belief that one has 
only begun to appreciate its full power and versatility. 

APPENDIX A: THE n OPERATOR FOR ABELIAN 
RAISING OPERATOR ALGEBRAS 

We show that for n± Abelian and b-invariant, r(Bv) 
can be expressed in the form 

r(Bv) = [ii,zv] . 

From its definition (2.7), 

r(Bv) =zltc~_v(C; +! 'if j ). 

Recall that 

'if; = c;; zit Bv 

=K"'-Pc_plt;zlt B" =k IC_"ltiZIt Bv ' 

where K v, _P =.k8vp is given by Eq, (2.19) and 

Capy = KaJ. ~y 

(Al) 

(A2) 

is the fully antisymmetric form of the structure constants. It 
follows that 

'if'C Kij'if ·C. J , 

can be expressed 

'if'C = - k -lC;C~_v zit 0" . 
We therefore find that 

c:.-"zItC; = -!k [r(C'C) - 'if·'if,z,,]. 

For the second term ofr(B,,), we can write 

!c:. - v zit 'if; 

(A3) 

=!c~ "zlt'if i +!c~_" 'ifizit +!c~-v[zlt,'ifd. 
Then, since 

and 

!c~ '1'( zit' 'if;] = - !c~ _ v C ~i zp = Akzv , 

Eq. (AI) follows with 
A A 

n =!k ('if. 'if - 2r(C'C) + !Nz ) , (A4) 

where 

Hz =z" Bv (AS) 

measures the degree of a wave function in (zv)' 
The value of k is easily determined from 
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where 

W j = c j cPo (no sum on v) i -vp VI 

is defined by the identity 

[B", [A",Cd] = Gj W{ (no sum on v). 

Thus for the basis (2.22) for soC 2n), we easily determine, for 
example, 

k=4(n -1). 

APPENDIX B: THE n OPERATORS FOR NON-ABELIAN 
RAISING OPERATOR ALGEBRAS 

We easily determine that the (Yv)- and (V v )-indepen
dent component rIO) ( f!jj a ) of r( f!jj a ) is given by 

r(O)(f!jj a) zpc1_a [Ci + !'if?l] . (Bl) 

Thus, in parallel with the derivation ofEq. (AI), we obtain 

r(O'(f!jj a) = [ii,za] (B2) 

with 
A A n = !k('if(Z),'if(Z) - 2r(C'C) + !Nz)' (B3) 

where 

(B4) 

measures the degree of a polynomial in (za) and now 
k=Ka,_a' 

The component r(l)(B,') ofr(B" )that is linearin (Yv) 
and independent of (V v) is given by 

r(l)(B ) =y ci [C. + 'if(Z)] 
11 JlJl-V' I 

and is likewise expressed as 

r(l){B,,) = [.o:,yv] , 
where 

ii' = !k'('if(Yl.'if(Y) - r(C'C») 

withk'=Kv, ,,' 

(BS) 

(B6) 

(B7) 
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Nonstationary solutions of linear Fokker-Planck equations with arbitrary drift and diffusion 
coefficients are derived. Using Lie algebraic techniques the time-evolution operator is given as 
a product of exponentials of the differential operators appearing in the equations. 

I. INTRODUCTION 

In this paper we will be concerned with the Lie algebraic 
solution of the linear Fokker-Planck equation 

with 

ap(x,t) =!? (x,t)P(x,t), 
at 

(1.1 ) 

a a2 

!?(x,t): = - ax (a(t)x + b(t») + c(t) ax2 ' (1.2) 

Conventionally, one evaluates the time-ordered exponential 

u(t):=exP+(L !?(X,t')dt) (1.3) 

giving a solution of ( 1.1) in the form 

P(x,t) = U(t)P(x,O). (1.4) 

Solutions of ( 1.1 ) in the form ( 1.4 ) can be found in Ref. 1 for 
constant coefficients and in Refs. 2-4 for nonconstant func
tions a(t), b(t), c(t), respectively. 

Two drawbacks of this approach are at hand. 
(i) The treatment depends on whether the coefficients 

in ( 1.2) are constant or not. In the first case the time-ordered 
exponential reduces to an ordinary one, whereas in the sec
ond case one has to evaluate the time ordering explicitly. 

(ii) The exponential is not given in a product represen
tation, e.g., in the form 

U(t) = exp[a(t) ~ x ] exp [p(t) ~ ]exp[r(t) ::2]' 

( 1.5) 

thus not allowing the easy evaluation of the action of U on 
P(x,O) and the study of the influence of the single factors on 
the time evolution of P(x,t). 

A first step to (ii) was undertaken in Ref. 2, where U 
was given as 

U(t) = exP+[ -f ~ (a(t')x + b(t'»)dt'] 

( 1.6) 

by using decomposition formulas for infinite-dimensional 
Lie algebras; (1.5) can be derived from (1.6) by using 
Lemma 1 in Ref. 2 for the two-dimensional Lie algebra 
{(a lax)x, a lax). 

Contrary to the aforementioned approaches, we want to 
give a unified approach to the solution of ( 1.1 ) based on the 
work of Wei and Norman,S.6 which is recapitulated in Sec. 
II. In Sec. III we will see that U(x,t) can be represented in 

the form (1.5) by using only solvable finite-dimensional Lie 
algebras, irrespectively of whether the coefficients in (1.2) 
are explicitly time dependent or not. A short summary is 
given in Sec. IV. 

II. THE ALGEBRAIC METHOD 

In this section we will shortly review the algebraic meth
od developed by Wei and NormanS.6 of solving the equation 

dU(t) = A (t) U(t), U(O) = 1, (2.1) 
dt 

where A and U are linear operators and A is given as a linear 
combination of time-independent operators T; with scalar 
valued functions a j (t) as coefficients 

M 

A(t) = L a;(t)T;. (2.2) 
;=1 

If the Lie algebra L generated by (2.2) is finite dimensional 
with basis {TI,. .. ,TN }, N>M, the solution of (2.1) can be 
represented (at least locally) in the factorized form 

U(t) = exp(gITI)exp(g2T2)'" exp(gNTN)' (2.3) 

The functionsg;, i = 1, ...• N. have to be determined by aset of 
nonlinear differential equations 

g;(O) =0, i=I, ... ,N, (2.4) 

where the t kl are analytic functions of the g; 's. 
Since we want to apply this method to linear Fokker

Planck equations. it is sufficient to restrict ourselves to solv
able Lie algebras (compare Sec. III), i.e., Lie algebras for 
which the derived series L (0) = L, L (I) = [L.L ] , ... ,L (i) 

= [L (i - 1) ,L (i - I)] truncates for some integer n. 
For solvable Lie algebras Eqs. (2.4) are easily solved.6 

Arranging the basis of the Lie algebraL generated by (2.2) 
such that 

L =LN~LN_I ~ ... ~LI~{O}, (2.5) 

where each ideal L; is exactly of dimension i. Eqs. (2.4) read 

(

a.

l

) ell : S21 · - . · . · . 
aN NI 

(2.6) 
o 

i.e., the system is in triangular form and the element Ski de
pends only on gj withj < k. As shown in Ref. 6, the S matrix 
is in this case invertible for all t. so that a global solution of 
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(2.1) is given by (2.3), where the functions gj(t) can be 
obtained by quadratures. 

III. THE LINEAR FOKKER-PLANCK EQUATION 

We will discuss the one-dimensional linear Fokker
Planck equation with time-dependent coefficients 

ap(x,f) = { _ 3...- (a(t)x + bet») + c(t) a 22}P(X,t) 
at ax ax 

(3.1 ) 

and search for a solution in the form 

P(x,t) = U(t)P(x,O), (3.2) 

where U satisfies (2.1) with 

a a a 2 
AU) = -a(t)-x-b(t)-+c(t)-. (3.3) 

ax ax ax2 

The Lie algebra generated by (3.1) is given by 

L: = {3...- x , 3...-, a
2

2}, (3.4) 
ax ax ax 

with commutation relations 

[3...- x, 3...-] = _ 3...- , 
ax ax ax 

[ 
a2 a] - --0 ax2 ' ax - , 

(3.Sa) 

(3.Sb) 

[3...- x , ~] = - 2~. (3.Sc) 
ax ax2 ar 

Since [L,L] = {a /ax,a 2/ax2}, L (2) = [[L,Ll, [L,Ll] 
= 0, i.e., L is solvable. 

Arranging the basis in the form 

{ a
2

} {a2 a} {a
2 

a a} {ole -2 e -2' - e -2' -, -x =L, 
ax ax ax ax ax ax 

(3.6) 
we see that the chain condition (2.5) is fulfilled. 

Searching for the propagator U(t) in the form 

U(t) = exp[ a(t) ~ x ]exp[P(t) :x ]exp[ ret) ::2]' 
(3.7) 

we find for the unknown functions a(t), P(t), r(t) the lin
ear equations 

(

-a(t») (1 a 
- b(t) = 0 e-a(t) 

c(t) a a 
a ) (a(t») a iJ(t), 

e - 2a(t) ret) 

a(O) = P(O) = reO) = o. (3.8) 

The solutions of (3.6) are given as 

aCt) = - £ a(s)ds, (3.9a) 

pet) = - £ b(s)ea(S) ds, (3.9b) 

r(t) = £ c(s)e2U
(S) ds. (3.9c) 

Using the easily derivable expressions2 

exp [ - l(t) ~ x ]P(X) = e -ftt)P(xe -ft.t», (3.lO) 
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eXPV(t) :; ]P(X) 

= (41rI (t»- 1/2f+ 00 exp{ _ (x - y)2 }P(Y)dY, 
- 00 4f(t) 

exp[/(t) ~ )P(X) = PIx + l(t)l, 
we find for P(x,t), 

P(x,t} = exp[ aCt) ~ x ] exp [,8(t) ~ ] 

xexp[r(t) :x: ]P(X,O) 

= exp[ a(t) ~ x ]exp[p(t) ~ ](41T1'(t»)-1/2 

XJdY p(y,o)exp[ _ (Y - X)2] 
4r(t) 

= exp[ a(t) ~ x }41T1'(t»-1/2 

xjdYP(Y,O)exp [ - (Y-(x+ P(t»))2] 
4rU) 

= eU(t) JdY P(y,O) 
~41Tr(t) 

[ 
- (y - (xe«(t) + P(t)))2] 

Xexp , 
4r(t) 

(3.11) 

(3.12) 

(3.13) 

a result obtained already in Ref. 2 by recurring to decompo
sition formulas for infinite-dimensional Lie algebras. 

A subalgebra of L given in (3.4) is 

L 1:={a
2

2
,3...- X}, (3.14) 

ax ax 
generated by Eq. (3.1) with b(t) =0, 

ap(x,t) = (_ a(t)3...- x + c(t)~)P(X,t). (3.15) 
at ax ax2 

The solution of (3.15) is then given by (3.13) withp(t) =0. 
Equation (3.13) can of course be solved independently by 
imitating the above procedure using the solvable algebra L I 

instead of L. Writing the propagator in the form 

U(t) =exp [8(t) ~ x]exp[EU) ~], (3.16) 

we obtain for the functions 8(1), E(t) just the expressions 
(3.9a) and (3.9c), respectively. 

IV. SUMMARY 

In the present paper we recommended the method of 
Wei and Norman as a systematic way of treating evolution 
equations and applied it to linear Fokker-Planck equations 
in one variable. Two advantages are at hand. First, there is 
no principal distinction in treating equations with constant 
or time-dependent drift and diffusion functions, since they 
appear just as coefficients of operators of a finite-dimension
al Lie algebra, therefore avoiding the use of infinite-dimen
sional algebras for time-dependent equations.2 Second, the 
propagator U is represented in factorized form, which allows 
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the treatment of each factor separately and avoids the use of 
time-ordered exponentials. 
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To the family of higher order Korteweg-de Vries (KdV) equations a new family of higher 
order mKdV equations depending on a parameter 7] is constructed. They are connected by an 
7]2-dependent Miura transformation. A Backlund transformation is also established. 
Furthermore, a new gauge transformation is associated to this Backlund transformation. It 
enables one to derive auto-Backlund transformations for the families of higher order 7]2-mKdV 
and KdV equations, respectively. For illustration, four generations of explicit solutions of the 
second order KdV equation are presented. 

I. INTRODUCTION 

In the paper by Chern and Peng,1 a family of higher 
order Korteweg-de Vries (ho-KdV) equations and an asso
ciated family of higher order modified Korteweg-de Vries 
(ho-mKdV) equations had been derived from a SL(2,R) 
formalism. The Miura transformation between these two 
classes of equations was also discussed. In the present study 
we will derive a family of 7]2-dependent ho-mKdV (7]2-ho
mKdV) equations from the ho-KdV equations and an 7]2-
dependent Miura transformation connecting these two fam
ilies. Furthermore, we will present a gauge transformation 
corresponding to the Backlund transformation of the solu
tions ofho-KdV equations and an auto-Backlund transfor
mation ofthe 7]2-ho-mKdV equations. 

We first briefly state the derivation of the ho-KdV equa
tions obtained by Chern and Peng.1 For convenience, we 
state our problem with the following Ablowitz-Kaup-New
ell-Segur (AKNS) system2: 

<1>" = 1'<1>, 

<l>t Q<I>, 

where 

<I> = (::), 

p=(7] u), 
r -7] 

7], a parameter, independent of x and t, 

r= -1, 

U = u(x,t), 

(1.1 ) 

( 1.2) 

(1.3 ) 

(1.4 ) 

( 1.5) 

( 1.6) 

( 1.7) 

( 1.8) 

Here Qwill be determined by the following integrability con
dition: 

Pt Qx +PQ-QP=O, 

or in component form 

-Aa +uC+B=O, 

Ut Bx + 27]B - 2uA = 0, 

- C" - 2A - 27]C = O. 

( 1.9) 

( 1.10) 

(1.11) 

( 1.12) 

Solving (1.10)-(1.12) gives 

A = -!Cx -7]C, 

B = !Cxx - 7]C" - uC, 

u, = - !C""" + 2(7]2 - u)Cx - UxC' 

(1.13 ) 

(1.14 ) 

(1.15) 

Following Ref. 1, and taking C to be an arbitrary polynomial 
in 7]2, 

n 

C = C(n) = 2:. Cj (x,t)7]2(n - j). 

j=O 

( 1.16) 

Here C depends on n; for convenience, we will still denote it 
by C. Substituting 0.16) into (1.15) and equating to zero 
the coefficients of the powers of 7], we get 

Co = const (assumed to be 4), 

Cj + t,x = iC;,xxx + uCj,x + !ux Cj , 04 < n, 

u, =Kn(u), 

where 

def 

(1.17) 

( 1.18) 

( 1.19) 

Kn (U) = - !Cn,xxx - 2uCn,x - U"Cn = - 2CII + t,x' 

( 1.20) 

Equations (1.19) and (1.20) is the ho-KdV equation 
obtained by Chern and Peng l [there are some slight differ
ences due to the choice of r in (1.4)]. The Cn in (1.20) is 
determined by the recursion formulas in ( 1.17) and (1.18). 
In fact, (1.18) can be rewritten in the following form: 

where 

Forj = 1,2,3, the C/s have the following expression: 

( 1.21 ) 

( 1.22) 

(1.23 ) 

C1 = 2u, (1.24) 

C2 = !uxx + ~U2, (1.25) 

C3 !uxxxx + ~uuxx + iu! + iU3. (1.26) 

The Kn in (1.20) can also be expressed in a recursion for-
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mula: 

Ko= -4ux ' 

Kn = FKn _ \J n;;d, 

where 

( 1.27) 

( 1.28) 

F=!D2+U+iUxD 1 ( 1.29) 

For n = 0,1,2, the K n are given in the following: 

Ko= -4ux' 

KI = - Uxxx 6uux, 

( 1.30) 

( 1.31) 

1I.1l1-DEPENDENT HIGHER ORDER mKdV EQUATIONS 

In this section we will derive a family of TJ2 -dependent 
higher order mKdV equations from the ho-KdV equations 
( 1.19). 

Let 

Writing (1.1) and 0.2) in component form, we have 

lPlx = TJlPl + UlP2' 

lP2x = - lP) - TJlP2' 

lPl' = AlP) + BlP2' 

lPz, = ClP} - AlP2' 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Taking derivatives in (2.5) with respecttox and from (2.1) 
and (2.2) we get the following relationship between u and v: 

U = TJ2 - Vx" - v2. (2.6) 

Similarly, from (2.3)-(2.5) we have 

v, = C(v + TJ)2 + 2A(v + TJ) B. (2.7) 

Substituting (1.13) and (1.14) into (2.7) leads to 

v, = <iCx - vC)x = iCxx - vxC - vCx' (2.8) 

From (1.16) and (1.21) we know that C is a polynomial in 
TJ2 with degree n, and its coefficients Cj's are functionals of u. 
On the other hand, by the relation of u and v in (2.6), Cj 's are 
functionals of v. Therefore (2.8) is a partial differential 
equation of v with TJ2 as a parameter; this means that the 
function v defined by (2.5) is a solution ofEq. (2.8). Denote 
the expression of the right-hand side in (2.8) by M n , 

Mn = Mn (v) = (iCx vC)x' (2.9) 

then Eq. (2.8) can be expressed in the following form: 

v,-Mn(v) =0. (2.10) 

Forn=0,1,2, by (1.17), (1.21), and (1.16), theMn are 
given in the following: 

Mo=-4vx' (2.11) 

M) = - Vxxx 6(TJ2 v2)vx, (2.12) 

M2 = - !vxxxxx - ~(TJ2 - v2)vxxx + IOvvxvxx 

(2.13) 

For n = 1, by (2.12), Eq. (2.10) take the following form: 

v, + Vxxx + 6(TJ2 - v2)vx = O. (2.14) 

This equation is generally called the TJ2 -dependent modified 
KdV equation, therefore, we called (2.10), for n > 1, the TJ2-
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dependent higher order modified KdV (TJ2-ho-mKdV) 
equation. Denote 

R= -D-2v, (2.15) 

then by (2.6), (2.9), and (1.15), it is easy to verify that 

u, = Rv" (2.16) 

and 

RM" =K". (2.17) 

Hence, by combining (1.19), (2.16), (2.17), and (2.10), we 
find that the two families of equations ofho-KdV (1.19) and 
TJ2-ho-mKdV (2.10) are connected by the following equa
lity: 

u, -Kn(u) =R [v, -Mn(v)]. (2.18) 

Summarizing the results obtained in this section, we 
have proved the following two theorems, respectively. 

Theorem 1: Whenever v = v(x,t) is a solution of the TJ2-
ho-mKdVequation (2.10), the function u = u(x,t), deter
mined by (2.6), is a solution of the ho-KdV equation (1.19). 

Theorem 2: Wheneveru = u(x,t) is a solution of the ho
KdVequation (1.19), the function v = v(x,t), defined by 
(2.5), is a solution of the TJ2-ho-mKdV equation (2.10). 

We now derive some further properties of Mn which will 
be used in the sequel. Let 

H" = iCx - vc. (2.19) 

Then, by (2.9), we have 

(2.20) 

Substituting (1.16) into (2.19) and using (1.20) and (2.17), 
we have, for n > 0, 

1 "-1(1) H =-C -vC +TJ2 " -c. -vC. TJ 2(n-l-j) 
n 2"'x n /~o2J'X J 

= (! - vD -1)Cn•x + TJ2Hn _ 1 

= ( -! + !vD -1)Kn_ 1 - vCn (0) + TJ2Hn 1 

= ( -! + ~vD -1)RMn _ 1 + TJ2H n _ 1 - vCn (0) 

= ( -! + !vD -1)RDHn I + TJ2H n _ 1 - vC" (0) 

= [(!D vD- lv)D+TJ2]Hn_ 1 -vCn(O) 

= THn _ 1 - vCn (0), 

where 

(2.21) 

(2.22) 

and en (0) is obtained from Cn in (1.21) by taking v to be 
zero. Then en (0) has the following explicit expression: 

en (0) = [(2n - l)!!/r 2n!]TJ2n, for n >0. (2.23) 

Thus, by (1.17), (2.19), and (2.21), we obtain a recursion 
formula for Hn: 

Ho= -4v, 

Hn = THn -I - Cn (O)v, for n >0. 

(2.24) 

(2.25) 

From these recursion formulas and (2.22), we see that Hn is 
odd with respect to v, 

Hn ( - v) = - H" (v), (2.26) 
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since Ho is odd and Tis even, and (2.26) follows by induc
tion. 

From (2.20) and (2.26) weseethatMn is also odd with 
respect to v, 

(2.27) 

Taking the derivative with respect to x in (2.24) and (2.25), 
respectively, and using (2.20), we obtain a recursion for
mula for M n , 

Mo= -4vx' 

Mn = SMn_ 1 - en (O)vx, for n >0, 

where 

S = lD 2 + "12 - v2 - V;:cD -IV. 

(2.28) 

(2.29) 

(2.30) 

1II.1J2.DEPENDENT MIURA TRANSFORMATION AND 
BACKLUND TRANSFORMATION 

It is well known that the KdV and the mKdV equations 
are related by the Miura transformation. As for the ho-KdV 
and the 'TJ2-ho-mKdV equations, we see that, from Theorems 
1 and 2, relation (2.6) plays a similar role as the Miura trans
formation does. We call (2.6) the 'TJ2-dependent Miura 
transformation. We use this transformation to derive a 
Backlund transformation (BT) of the ho-KdV equation 
(1.19). 

We know from (2.27) thatMn (v) is odd with respect to 
v. Thus the 'TJ2-ho-mKdV equation (2.10) possesses with ev
ery solution v another solution - v, but then, by substituting 
- v into (2.6) and by Theorem 2, we obtain another solu

tion u' of the ho-KdV equation (1.19), 

(3.1 ) 

Subtracting (2.6) from (3.1), we get 

(3.2) 

This is the Backlund transformation of the ho-KdV equation 
( 1.19) that we want to establish (for n = 1, it had been de
rived by Jager and Spannenberg2). The above results can be 
stated in the following two theorems. 

Theorem 3: Whenever the function v = v(x,t) is a solu
tion of the 'TJ2-ho-mKdV equation (2.10) and u a function 
determined by (2.6), then the function u' determined by 
(3.2), is also a solution ofthe ho-KdV equation (1.19). 

Theorem 4: Whenever the function u = u (x,t) is a solu
tion oftheho-KdV equation (1.19), and v = v(x,t) isafunc
tion determined by (2.5), then the function u' determined by 
(3.2) is also a solution ofthe ho-KdV equation (1.19). 

The difference between these two theorems is that 
Theorem 3 indicates that (3.2) is a Backlund transformation 
between the 'TJ2-ho-mKdV equation (2.10) and the ho-KdV 
equation (1.19), while Theorem 4 shows that (3.2) is an 
auto-Backlund transformation of the ho-KdV equation 
( 1.19). Therefore, when applying these Backlund transfor
mations to construct new solutions of the ho-KdV equation 
( 1.19), it is evident that Theorem 3 tells us to find a solution 
v of the 'TJ2-ho-mKdV equation (2.10) in advance, while 
Theorem 4 instructs us to take a known solution u of the ho-
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KdVequation (1.19) in advance and to solve the AKNS 
system (1.1)-(1.16) for the wave functions (1.3) corre
sponding to u, since the function v appearing in (3.2) is de
termined by the wave function <I> in (2.5). Obviously, 
Theorem 4 also indicates a method for obtaining a hierarchy 
of new solutions of the ho-KdV equation (1.19) starting 
from a known solution u I of this equation in the following 
manner: 

(3.3) 

Our current interest is in the application of Theorem 4 to 
obtain more solutions of the ho-KdV equation ( 1.19) from a 
known solution u I of this equation, and we will further study 
its ramifications in the next section. 

IV. GAUGE TRANSFORMATION OF THE WAVE 
FUNCTION 

In order to apply the Backlund transformation (3.2) in 
the sense of Theorem 4 to obtain a hierarchy of new solu
tions of the ho-KdV equation (1.19) from a known solution 
of the same equation, we see from (3.3) that it is necessary to 
seek a convenient method for obtaining the new wave func
tion from a known wave function corresponding to a known 
solution of Eq. (1.19) so as to avoid the difficulty of solving 
theAKNSsystem (1.1) and (1.2). To this end, we will seek 
a gauge transformation G of the wave function (1.3) which 
takes the wave function <I> corresponding to the known solu
tion u in (3.2) to a new wave function <1>', <1>' = G<I> corre
sponding to the new solution u' (see the papers by Orfanidis3 

and Wadati and Sog04 for other gauge transformations). 
With this in mind, we proceed to construct such a G through 
the following three steps. 

(i) In view of (1.19), (2.6), (2.10), and (2.18), we 
construct a gauge transformation SI which connects the 
AKNS system (1.1)-(1.9), denoted by LI(u), to a second 
linear system L2 (v) with Eq. (2.10) as its integrability con
dition. 

(ii) Exploiting the oddness of Eq. (2.10), we determine 
a second gauge transformation S2 which maps L 2 (v) to a 
third linear system L3 ( - v) with the equation 

( - v) t - Mn ( - v) = 0 (4.1 ) 

as its integrability condition. Obviously, Eq. (4.1) is the 
same as Eq. (2.10). 

(iii) Finally, Eq. (3.1) leads us to construct a gauge 
transformation S3 which transforms L 3 ( - v) to LI (u') 
with u' in (3.1) as its potential function. 

Then we combine the SI' S2' S3 together to obtain the 
gauge transformation G, 

(4.2) 

which amounts totakingL I (u) toLl (u'). These steps can be 
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depicted by the following diagram: 

u, -Kn{u) =0 

L,{u) 

Gj 
L,{u') • 

S, 

S3 

v, -Mn{v) =0 

L 2 {v) 

j S2 

L 3 { - v) 

(-v), -Mn{ -v) =0 
(4.3) 

Let u be a known solution of the ho-KdV equation 
( 1.19) and ~ in (I. 3) be the corresponding wave function, 
then u and ~ satisfy all the relations (1.1 )-( 1.20), and by 
(2.5) we have the function v which, as we know, is a solution 
of the 7l-ho-KdV equation (2.1O). Moreover u and v satisfy 
(2.6). Now, let S, be a 2X2 matrix defined as 

1 (-1 -TJ-v) J S, = Ii 0 1 ' /3 = exp v dx. (4.4) 

Consider the following transformation: 

S,: ~-\fI =S,~, (4.5) 

where the components of \fI are denoted by 

(4.6) 

Then (4.5) will transform the linear system (1.1)-{1.8) 
into the following new linear system: 

\fI '" = VIV, 

\fI, = JVIII, 

(4.7) 

(4.8) 

with 

~) , 

~) , 

(4.9) 

(4.1O) 

whereHn is defined in (2.19). In the derivation of (4.1O), we 
have made use of (1.13), (1.14), and (2.8). The system 
(4.7)-{ 4.10) is compatible, that is, the matrices Vand W 
satisfy the following equation: 

V, - W", + VW - WV = o. (4.11) 

To check this, substituting (4.9) and (4.1O) into (4.11) 
leads to the requirement that 

C{Mno-V') ~)=o. (4.12) 

But (4.12) holds because of (2.1O). This shows that (2.1O) 
is the integrability condition of the system (4.7)-{4.1O). 
Therefore the system (4.7)-{4.1O) is the linear system 
L2 (v) which we want to construct and the matrix ( 4.4) is the 
gauge which transforms the systemL, (u) in (1.1 )-( 1.9) to 
the system L 2 {v) in (4.7)-(4.10). Referring to Theorem 2, 
we state this result as the following theorem. 

Theorem 5: Let u be a solution ofEq. (1.19) and let v be 
related by u as (2.6). Then (4.5) is a gauge transformation 
which transforms the system (1.1 )-( 1.9) into the system 
(4.7)-( 4.10) and Eq. (2.10) is the integrability condition of 
the system (4.7)-(4.10). 
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The inverse of this theorem is also true, since the gauge 
S, in (4.4) is invertible. 

Theorem 6: Let v be a solution of Eq. (2.1O), let u be 
determined by v in (2.6), and let C be determined by ( 1.16), 
( 1.17), and (1.21). Then the gauge transformation 

S,-I: "'-~=SI-'\fI (4.13) 

transforms the linear system (4.7)-{4.1O) into the linear 
system (1.1 )-( 1.9) and Eq. (1.19) is the integrability condi
tion of the system (1.1 )-( 1.9). 

Next we introduce two linear systems which are related 
to systems (1.1)-(1.9) and (4.7)-{4.1O). 

The first one is the following AKNS system: 

~~ =P'~', 

~;=Q'~', 

where 

(4.14) 

(4.15 ) 

( 4.16) 

( 4.17) 

- !C~x - TJC~ - U'C'). 

!C~ +TJC' 

(4.18 ) 

We take the function u' in (4.17) and (4.18) to be the func
tion defined in (3.1), that is, it satisfies the ho-KdV equation 
( 1.19); therefore the C' in (4.19) must satisfy a similar con
dition as the C in (I. 8) does. Obviously, we have 

C'=C( -v), ( 4.19) 

since u' in (3.1) is obtained from (2.6) by changing v into 
-v. 

The second linear system is 

\fI~ = V'\fI', 

\fI; = W'\fI', 

where 

\fI' = (t/Ji) 
t/Ji ' 

V' = (~v ~), 

W' = (- 2Hn ( - v) 00)' 
- C{ - v) 

( 4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

We take the function v in (4.23) and (4.24) to be the func
tion defined in (2.5), that is, v together with u' satisfy (3.1). 
Obviously, the linear systems (4.14)-{4.18) and (4.20)
(4.24) are obtained from the linear systems (1.1 )-( 1.9) and 
(4.7)-{ 4.10), respectively, by changing all the signs in front 
of v, viz., v is replaced by - v. Therefore, by Theorem 6, 
taking all the v's there as - v, and by the oddness of Mn in 
(2.27) and (2.1O), a gauge transformation S3 which trans
forms the wave function \fI' in (4.22) into the wave function 
~' in (4.16) exists, i.e., 

(4.25) 
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where 

1 (- 1 S--3 - {3 0 
-7J+ v) 

1 ' 
(4.26) 

and is obtained from Sl in (4.4) by changing all v in Sl into 
- v and then taking the inverse. 

Finally we show that there exists a gauge transforma
tion which transforms the system (4.6 )-( 4.10) into the sys
tem (4.20)-(4.24). 

Let S2 be a 2 X 2 matrix, 

S2=(: !) 
with 

a={34(ao -bo f {3-2 dX ) , 

b = bo{32, 

e = {3 2 (ao f {3 2 dx - bo f {3 2 dx 

X f {3 -2 dx + Co - do f {3 -2 dX) , 

d = bo f {3 2 dx + do, 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31 ) 

where {3 is defined in (4.4), and ao, bo, co, and do are con
stants chosen such that 

aodo - brf:o = 1. (4.32) 

We prove that S3 is a gauge which transforms the wave func
tion 'I' in (4.7) and (4.8) into the wave function '1" in (4.20) 
and (4.21), 

(4.33) 

This means that we must check that the following two ma
trix equalities hold: 

V' = S2xS 2-
1 + S2VS 2- I, (4.34) 

W' = SuS 2-
1 + S2WS ;1. (4.35) 

First we check (4.34). By (4.27)-(4.32), we have 

det S2 = ad - be = {34, (4.36) 

S2-1= ;4 (de ~b), (4.37) 

1 (- 1 G=-
{3 0 

- 7J + V) . (a b) . .!. ( - 1 
1 e d {3 0 

S2x = ( 4va - b 2Vb). (4.38) 
a+2ve-d b 

Substituting (4.9), (4.27), (4.37), and (4.38) into the right
hand side of (4.34) and simplifying the expression leads to 
the matrix V' in (4.23), that is, (4.34) holds. 

Next we check (4.35). By (4.4), (2.8), and (2.19), we 
have 

{3t ={3Hn , 

f {3 - 2Hn dx = ~ {3 -2C. 

(4.39) 

(4.40) 

Changing v into - v in (4.40) and using (2.26), (4.40) 
leads to 

(4.41) 

Taking the derivative in (4.27)-( 4.32) with respect to t and 
using (4.39)-(4.41), we get 

( 
bC+4aHn 

S -
2, - dC + 2cHn - aC( - v) 

2bHn ) 

- bC( - v) . 
(4.42) 

Substituting (4.10), (4.27), (4.37), and (4.42) into the 
right-hand side of (4.35) gives the matrix W' in (4.24), that 
is, equality (4.35) holds. 

Thus (4.27)-(4.33) is the gauge transformation which 
we want to seek as mentioned in (U), and (4.20)-(4.24) is 
the linear system L3 ( - v). 

Now, we combine (4.5), (4.33), and (4.25) together so 
that 

(4.43 ) 

Let 

(4.44) 

then G is the gauge that we are looking for, it transforms a 
wave function cP in the AKNS system (1.1 )-( 1.8) corre
sponding to a known solution u of the ho-KdV equation 
( 1.19) to another wave function cP' in the AKNS system 
(4.14)-(4.18) corresponding to a new solution u' of Eq. 
(1.19) defined by (3.1) or (3.2). Substituting (4.26), 
(4.27), and (4.4) into (4.44), we get an explicit expression 
forG, 

=_I_(a+ (7J-v)e (7J + v)a - b + (7J2 - v2 )e - (7J - v)d'\ 
(4.45 ) 

{32 -e -(7J+ v)e+d j' 
where a, b, e, and d are defined in (4.28 )-( 4.31). 

V. BACKLUND TRANSFORMATION FOR THE 1J2-DEPENDENT HIGHER ORDER mKdV EQUATION 
The original object of constructing a gauge transformation for the wave function is to seek a convenient method for 

obtaining the function v defined by (2.5). Now, by using the gauge transformation (4.45) we can derive a formula which 
connects the two adjacent v and v'. Suppose that v is known, obtained from a known wave function cP = (q:>I,q:>2)Tby (2.5), 
then we construct the gauge G in (4.45) and obtain the successive wave function cP'= (tpi,tPi)T by gauge 
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transformation, 

et>' = Get>. (5.1) 

Substituting (4.45) into (5.1) and by (2.5) we have 

I [a + (1] - V)C]tpl + [(1] + v)a - b + (1]2 - V2)C - (1] - v)d ]tp2 
v = - -1]. (5.2) 

- Ctpl + [ - (1] + V)C + d ]tp2 
Dividing simultaneously the numerator and denominator of the fraction (5.2) by tp2 and using (2.5), 

[a + (1] - v)c] ( - v -1]) + (1] + v)a - b + (1]2 - v2)c - (1] - v)d b 
Vi = - - 1] = - v + - . (5.3 ) 

-c(-V-1])-(1]+v)c+d d 

Applying (4.29), (4.31), and (4.4), we finally obtain the 
required formula 

v' = -v+ {In [f(exp 2 f VdX)dX+ko]L' (5.4) 

where 

(5.5) 

is a constant. 
We recall that the functions v's are solutions of Eq. 

(2.10), therefore formula (5.4) is, in fact, an auto-Backlund 
transformation for the 1]2-ho-mKdV equation (2.10). 

VI. APPLICATIONS 

Having formula (5.4), to obtain more new solutions of 
the ho-KdV equation ( 1.19) from a known solution by using 
the Backlund transformation (3.1) can be realized more 
easily. Suppose that U I isa known solution ofEq. (1.19) (we 
call it a seed solution), then, corresponding to this solution 
we have a wave function et>1 solved from the AKNS system 
(1.1 )-( 1.9), and by (2.5), we get a function VI' Then, start
ing from this VI and using the Backlund transformation 
(5.4), we will obtain a hierarchy of v's, 

(6.1 ) 

By using (3.2) recursively, corresponding to these v's, we 
will obtain a hierarchy of solutions of the ho-KdV equation, 

(6.2) 

This process can be depicted by the following diagram: 

(6.3) 

et>1 VI V2 V3 

This diagram is an improvement of that in (3.3). By this 
diagram we see that in the application of the Backlund trans
formation (3.2) to find the hierarchy of solutions of the ho
KdV equation it is only necessary to solve one wave function 
in (1.1) and (1.2) corresponding to the seed solution of the 

'ho-KdV equation (1.19), while the gauge transformation 
( 4.45) only plays the role of a tool for deriving the auto
Backlund transformation (5.4). Perhaps (5.4) is a most 
meaningful result here. 

Example: Solutions of the second order KdV equation. 
For n = 2, by (1.19) and (1.32) we get the second order 

KdV equation as follows: 

U, + !uxxxxx + ~uuxxx + 5uxuxx + J.fu2ux = O. (6.4) 
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Substituting (1.17), (1.24), and (1.25) into ( 1.16) gives 

C = 41]4 + 21]2u + !(uxx + 3u2), 

while (6.5) into (1.13) and (1.14) gives 

A = - 41]5 - 21]3U -1]2Ux - !1](uxx + 3u2) 

- !uxxx - ~uux' 

B = - 41]4u - 21]3Ux _1]2(uxx + 2u2) 

-1](3uux + !uxxx ) - ~U3 - 2uuxx 

(6.5) 

(6.6) 

(6.7) 

Now we apply the method established in the above to 
find the solutions up to the fourth generation for Eq. (6.4). 
Obviously, Eq. (6.4) possesses a constant solution, denoted 
by u I' so we take u I as the seed solution of Eq. (6.4). Substi
tuting U I into (6.5)-(6.7), we get 

A = - k1], (6.8) 

B= -kul , 

C=k, 

where 

Now, (6.8)-(6.10) and (1.8) give 

Q=_k(1] 
-1 

(6.9) 

(6.10) 

(6.11 ) 

( 6.12) 

Furthermore, from (1.1), (1.2), (1.4), (1.6), and (6.12), 
we find that 

det> = et>x dx + et>, dt = j'(I> dx - kj'(l> dt 

= j'(I>d (x - kt) = j'(I> dp, (6.13 ) 

where 

p=x-kt. (6.14) 

The solution of Eq. (6.13) is 

et> = exp(Pp )et>o 

= (/ +pP+ (p2/2!)P2 + (p3/3!)P 3 + .. ·)$0' (6.15) 

where et>o is a constant column vector. Denoting 

a2=1]2- UI , (6.16) 

then (6.15) leads to 
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<I> = (/ +pP+ (a2p2/2!)/ + {a2p3/3!)P+ (a4p4/4!)/ + {a4ps/5!)P+ .. ')<1>0 

= I[ 1 + {ap )2/2! + {ap )4/4! + ... ]<1>0 + (l/a)P [(ap) + {ap)3/3! + {ap)s /5! + ... ]<1>0 

= (/ cosh ap + (l/a)P sinh ap)<I>o 

= (cOShap + {1]/a)sinhap 
- {l/a)sinh ap 

(ul/a)sinh ap ) <I> 
coshap-{1]/a)sinhap o· 

( 6.17) 

Taking <1>0 = (l,0) T in (6.17), then we deduce that 

(
rpl) = (COSh ap + (1]/a) sinh ap). 
rp2 - {l/a)sinh ap 

(6.18 ) 

Hence from (2.5) we get 

VI = a coth ap. ( 6.19) 

Substituting U I and (6.19) into (3.2), we obtain the second 
solution of Eq. (6.4), 

U2 = U I - 2a2 csch2 ap. (6.20) 

Next, (6.19) and (5.4) determine V2 as 

4a sinh2ap 
V2 = - a coth ap + (6.21) 

sinh 2ap - 2ap + 4akl 

Setting (6.21) into (3.2), we construct the third solution of 
Eq. (6.4), 

_ +2( 4asinhap ) U3 -UI 
sinh 2ap - 2ap + 4ak l x 

= U I + 2 [In{sinh 2ap - 2ap + 4ak l ) ]XX. (6.22) 

Repeating the application offormulas (5.4) and (3.2) 
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as done above, we obtain the V3 as 

(6.23 ) 

with 

2 f d (
sinh 2ap - 2ap + 4ak l )2 

U = exp V2 x = . , 
smhap 

(6.24) 

and the fourth solution of Eq. (6.4), 

U4 =U I +2{ln[(f UdX+k2)sinhap ]Lx' (6.25) 

Obviously, here we have also found three generations of so
lutions of the second order 1]2-mKdV equation; they are the 
functions in (6.19), (6.21), and (6.23). By (2.13) and 
(2.1O) for n = 2, we get the second order 1]2-mKdV equa
tion as follows: 

vt +!vxxxxx +~{1]2_V2)vxxx -1Ovvxvxx 

- ~v! + .!f{1]2 - V2)2vx = O. (6.26) 

'S-s. Chern and C-k. Peng, Manuscr. Math. 28, 207 (1979). 
2E. M. Jager and S. Spannenburg, J. Phys. A: Math. Gen. 18, 2177 (1985). 
's. J. Orfanidis, Phys. Rev. D 21,1513 (1980). 
4M. Wadati and K. Sogo, J. Phys. Soc. Jpn. 52, 394 (1983). 
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It is shown how a mathematical theory of generalized functions, in which the multiplications 
of distributions appearing in nonlinear equations of physics make sense, gives new formulas 
and new numerical results. The new methods shown here are quite general but since each 
particular problem requires its own study, this paper is limited to elasticity and 
hydrodynamics. In elasticity Hooke's law gives systems in a nonconservative form; the study of 
shock waves for these systems gives nonclassical multiplications of distributions of the form 
Y'c5 (Y = Heaviside function, c5 = Dirac mass at the origin). Using this new mathematical tool 
new formulas are obtained (more generally new numerical schemes): in a first step 
"ambiguous" results are obtained; then the ambiguity is removed. In hydrodynamics a 
formulation is obtained that has a nonconservative form and is at the basis of efficient new 
numerical schemes. Strictly speaking the reader is not assumed to know anything either on 
distributions or on elasticity and hydrodynamics, since the basic equations are recalled. All 
computations done in this paper are rigorous from the mathematical viewpoint. 

I. INTRODUCTION 

A one-dimensional model (obtained by splitting from 
the three-dimensional system) of the equations of elasticity 
is written in the form of the following system: 

p, + (pu) x = 0, mass conservation, 

(pu), + (pu 2 )x + (p - S)x = 0, 

momentum conservation, 

'l', + ('l'u)x + [(p - S)u]x = 0, 

energy conservation, 

S, + uSx - ~JlUx = 0, Hooke's law, 

p = t/J(P,]), state law, 

(1) 

where p is the density, u is the velocity, p is the pressure, Sis 
the stress deviator, 'l' = pe is the total energy per unit vol
ume, and e is the total energy per unit mass; if! is the internal 
energy per unit mass, we have of course (sum of the internal 
energy and of the kinetic energy) 

~ =pI +pu2/2. 

Here Jl is an elasticity constant depending on the medium 
and u = S - p is the stress. For the applications it is very 
important to study the shock waves solutions of ( 1 ): these 
are the solutions of ( 1) that are discontinuous at the same 
point. The term uSx in the fourth equation gives rise to a 
meaningless product of distributions of the form Y'c5 (Yis 
the Heaviside step function, c5 is the Dirac mass at the ori
gin). The shocks of the system ( 1) cannot be studied within 
distribution theory. Note that heuristic attempts to trans
form (1) into a conservative form have led to results that are 
unacceptable from the physical viewpoint. 

For the purpose of mathematical simplification we shall 
study more particularly the two simpler systems that have a 
nonconservative form, 

p, + (pu)x = 0, (pu)t + (pu 2 )x = Ux' 
(2) 

and a simplified form of (2) (when p is assumed to remain 
very close to a fixed value Po), 

Po(u, +uux ) =ux' U t +uux =k 2ux, (3) 

which corresponds to the coupling of a dynamical law and a 
Hooke law in a homogeneous medium in which the density 
varies very slightly in the neighborhood of the value Po. 

For the study ofthe shock waves solutions of these sys
tems we use a nonlinear theory of generalized functions in
troduced in Refs. 1 and 2, in the surveyl and in papers quoted 
there. 

In the course of this study we were confronted with the 
particular case of ( 1) in which the stress deviator S is ne
glected: this is nothing else than classical hydrodynamics, 
which has a conservative form, 

Pt + (pu)x = 0, (pu)t + (pu2 + p)x = 0, 

~t+(~u+pu)x=O, p=t/J(p,]). 
(4) 

Our study will give, in the setting of the new theory of gener
alized functions, an equivalent system that has a nonconser
vative form. The interest of this system is that it leads very 
easily to efficient numerical schemes. 

The numerical results thus obtained in elasticity are in 
agreement with the results of observations from physical ex
periments. Our new formulas and schemes in elasticity were 
at the basis of the LEA code developed in Ref. 4. They have 
been successfully compared with classical codes that are 
known to be in agreement with the experiments (see Ref. 4, 
Chap. 5). New schemes and convergence results for some of 
them may be found in Refs. 4-8. 

II. THE NEW MATHEMATICAL TOOL 

Although original, it is extremely elementary in the 
sense that the reader is only assumed to know classical differ
ential calculus. If n is an open subset of R" we define "new 
generalized functions" on n. Their set, denoted by [ff (n), is 
obtained from the set CC '" (n) of all C co functions on n by a 
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mathematical construction quite similar to the construction 
of the set R of all real numbers from the set Q of all rational 
numbers (by the classical method of Cauchy sequences). A 
precise (simplified) construction is given in Appendix A for 
the reader's curiosity but strictly speaking we do not need it 
to compute and get new physical results. It suffices to have in 
mind the following. 

(A) One computes in ~ (n) exactly as in CtJ '" (n): ad
dition, multiplication, derivation, integration, point values, 
restrictions to open subsets and to subspaces, change of vari
ables; in the same way as the basic operations in R are mere 
extensions of those in Q, the operations in ~ (0) are mere 
extensions of those in 1fj '" ( 0 ). Of course there are some 
natural differences: if OE~ (R) is such that its restriction to 
( - 00, ° [ U ] 0, + 00] is the zero function and such that 
fRo(x)dx = 1 then clearly the point value 0(0) is not an 
element of R; it is a "generalized number" in a sense made 
precise in our theory. 

(B) Let CtJ 0' ( 0) denote the set of all C '" functions on n 
with compact support. There are different elements 
GI,G2E~ (0) such that for any 'I1ECtJ 0' (0) the integral 

1 (GI(x) - G2 (x»)'I1(x)dx 

gives-in a natural sense--the value 0. In this case we say 
that GI is associated with G2 (notation GI-G2). For the 
reader acquainted with distribution theory the association is 
the faithful generalization of the concept of equality of distri
butions. It is not coherent with the multiplication, i.e., 
GI-G2 does not imply GGI-GG2, if GE~ (0). Of course 
two C '" functions on 0 are associated iff they are equal. 
From the definition it is clear that GI -G2 ~ DG I -DG2 

for any partial derivation D. 
Thus the difference with classical analysis is that the 

symbol = of classical analysis splits into two different sym
bols: the equality in ~ (0) [denoted by =; of course 
GI=G2~GGI=GG2VGE~(n)] and the association 
(which is a much weaker form of equality, incoherent with 
the multiplication). 

Let us illustrate this fact by two basic examples. 
(a) Let HE~ (R) be such that the restrictions of H to 

( - 00,0[ and to ]0, + 00) are, respectively, ° and 1, and 
that H is everywhere bounded in a natural sense; we say that 
H is a Heaviside generalized function. Let n be an integer. 

From the definition it follows that H n - H. But H" =l=H. 
[Indeed let us assume by absurd H" = H. This would imply 
H"-IH' = (lIn)H',thus HH' = !H':multiplicationbyH 
givesH 2H' = !HH' and thus !H' =! !H', i.e.,! = 1!1 

(b) Consider the two possible formulations of Burger's 
equation, 

ut +uux =0, 

Ut + uUx-O, 

and seek for shock wave solutions of the form 

u(x,t) = !:iuH(x - ct) + u,' !:iu = Ur - u,. 

(5) 

(6) 

Then (6) gives exactly the classical weak solutions. Now any 
solution UE~ (R) of (5) should also be a solution of the 
equation uUt + u2ux = 0. Since the velocity of the shocks for 

316 J. Math. Phys., Vol. 29, No.2, February 1988 

this last equation are (obvious computation) different from 
the ones of the shock of (5) we get at once that (5) has no 
shock solutions. 

In classical analysis microscopic phenomena such as the 
behavior of a Heaviside step function at its point of discon
tinuity are ignored. This is the origin of the ambiguity of the 
multiplication of distributions. In our theory this behavior is 
taken into account; as a consequence we have several differ
ent Heaviside generalized functions that all differ by their 
microscopic behavior at 0. They are all associated between 
themselves but not equal (H"=I=H). 

III. SHOCK WAVE SOLUTIONS OF SYSTEMS IN 
NONCONSERVATIVE FORM 

We interpret naturally (2) and (3) in the form 

PI + (pu)x -0, (PU)I + (pu 2 )x -Ux' 

Ut + UUx -k 2ux, 

Po(ut +uux)-ux' UI +uux -k 2ux· 

We look for solutions of the form (steady shocks) 

(2') 

(3') 

p(x,t) = !:ipH(x - ct) + PI' !:ip = Pr - p, =1=0, 

u(x,t) = !:iuK(x - ct) + U,' !:iu = Ur - u, =1=0, (7) 

U(x,t) = !:iuL (x - ct) + u" !:iu = Ur - U, =1=0, 

where H,K,LE~ (R) are three Heaviside generalized func
tions; cER is the velocity of the shock, which is assumed to be 
constant as well as ProP" ur , u" U r , u,. We expose the detail 
of the computations for (3'); since these computations are 
repetitive we shall not give them in detaillater. Setting (7) in 
(3') we get at once 

- c!:iuH' + (!:iu)2HH' + u,!:iuH' - (!:iu/Po)K' , 
(8) 

- c!:iuK' + !:iu!:iuHK' + u,!:iuK' -k 2!:iUH'. 

We know thatHH' -!H' and thatH' -K' (H' andK' are 
two Dirac generalized functions). Thus the first line of (8) 
implies 

- c + !:iu/2 + u, = !:iu/po !:iu, (9) 

which is the classical Rankin~Hugoniot condition. Now 
the second line of (8 )-since it is in nonconservative form
gives something new. Denoting by OE~ (R) any Dirac gen
eralized function (H' -K' -0) it gives 

HK' -AD, AER depending on c, u" k 2, !:iu, !:iu, (10) 

and 

k 2!:iu 
- c + u, = - - A !:iu. 

!:iu 
(11) 

Equations (9)-(11) are the jump conditions for (3'). They 
are ambiguous since they depend on the value of A. This 
ambiguity comes from the product uUx in (3'). This ambi
guity is not acceptable from a physical viewpoint but it is 
inherent to (3'). Thus (3') does not reflect completely the 
physical phenomenon: some additional physical piece of in
formation is needed to get rid of the ambiguity; this will be 
done in Sec. V. Substituting (7) into (2') we obtain (10), 
( 11 ), and the two other equations 
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k 2 au _ J...(J... + J...) au = (A _ J...)au, 
au 2 PI Pr au 2 

PrPI(au)2 + auflp = O. 
(12) 

We assume the solutions u, u of(2') and (3') to be the same. 
This implies that the number A occurring in (2') and (3') is 
the same and 

211 -=-+-. (13) 
Po PI Pr 

We have obtained the value of Po, but we have not yet any 
piece of information on A. Note that (13) had already been 
used in elastoplastic codes, on the basis of numerical tests. 

IV. A NONCONSERVATIVE FORM OF 
HYDRODYNAMICS 

Recall that we have two concepts of equalities: the 
strong one denoted by =, and the weak one denoted by 
- (called association). One ascertains by examples [for in
stance by studying various forms of the systems (2), (3)] 
that in a system, if we write some equations (in general not 
all of them so as to get existence of solution) with the 
(strong) equality and the other ones with the association, 
the set of solutions is considerably reduced (relatively to the 
system written only with association) and sometimes we 
may obtain uniqueness of solutions. Such a uniqueness 
would be welcome to get rid of the ambiguity in Sec. III due 
to the quantity A coming from the "product of distribution 
YI5." Here we exploit this remark in the case of system (4). 
In the second and third equation of (4) a viscosity is neglect
ed; this viscosity is more important in the third equation 
(which further includes thermal effects) than in the second 
one. This gives us the idea to rewrite (4) in the more precise 
form 

Pt + (pu)x = 0, (pu)t + (pu2 + p)x = 0, 

'C t + ('Cu + pU)x -0, P = ¢>(p.!), 
(4') 

in which we use the association symbol only once. Note that 
a formulation like (4') does not make sense within distribu
tion theory, in which one has only at hand one kind of equal
ity. A deep physical reason to use (4') is not clear; probably 
because it has only the value of an approximation. See the 
Note added in prooffor a clearer formulation. 

Setting v = (1/ p) (v is the specific volume) and writing 
the state law under the form I = rp (v,p) one obtains the fol
lowing theorem. 

Theorem 1: The system (4') is equivalent to the system 

Vt + uVx - vUx = 0, Ut + uUx + VPx = 0, 

(+ ~; (V,P»)- (Pt + upx) + (p + ~~ (v,p) )Ux -0. (14) 

Proof: It is an easy computation following exactly com
putations of classical analysis except that one is not allowed 
to multiply the equations with associations. Elimination of 
the energy by means of the state law in (4') gives the system 

Pt + (pu)x = 0, Ut + Pxlp + uUx = 0, 

(pD2'1')' (Pt + uPx) + pUx - p2uxD t 'l' -0, 

in which wesetI = 'I'(p,p). Using v one gets at once (14). 0 
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In the case of aerodynamics, I = pi (r - 1 )p, yeR, and 
then the third equation in ( 14) is 

Pt + upx + rpux -0. (15) 

Most media may be modeled by a Mie-Gruneisen state law 
P = rpI + F( v), r> 0 and F a positive function of v. The 
third equation in (14) becomes 

Pt + upx + [(r + I)p - F(v) - vF'(v) ]ux -0. (15') 

If (14) were written with three association symbols then it 
would have ambiguous jump conditions (it is in nonconser
vative form); since it is equivalent to the conservative system 
( 4') then it is clear it has nonambiguous jump conditions. 
The solutions of (14) of the form (steady shocks) 

v(x,t) = avH(x - et) + VI' av = Vr - VI' 

u(x,t) = auK(x - et) + ul, au = Ur - ul, (16) 

p(X,t) = A.pL(x - et) + PI' A.p = Pr - PI' 

with H, K, and L Heaviside generalized functions, are char
acterized by the following theorem. 

Theorem 2: v,U,p in (16) are solutions of (14) if and 
only if H = K = L [plus obviously the relations obtained by 
substituting (16) with H=K=L in (14); these are the 
classical jump conditions of ( 4 ) ] . 

Proof: The result follows from the first two equations in 
( 14). Indeed the first one gives 

(- e + UI + auK)H' - (auK')H 

- vl(aulav)K' = o. 
This equation gives H as a function of K since the equation 
a(x)y' + b(x)y + c(x) = Ois solved in Y (R) as in theclas
sical case. The second equation in (14) gives a similar result. 
Finally after some computations one obtains H = K = L. 

o 
V. THE JUMP FORMULAS IN ELASTICITY 

For the same reason as above we naturally state the sys
tem (1) with the equality in Y (JIl2

) for mass and momen
tum conservation and with the association for the other 
equations. One may reproduce the proofs of Theorem 1 and 
Theorem 2 in which P is replaced by P - S = - u, since it is 
based only on the equalities [in Y (]R2)] in the first two 
equations. One obtains that v, u, and u are represented by 
exactly the same Heaviside generalized functions. As a con
sequence the following theorem is established. 

Theorem 3: The jump conditions of the systems (2) and 
(3), when considered as models in elasticity, are given by the 
formulas in Sec. III in which A = !. 

Another argument for this result is presented in Ref. 9. 
Remark 1: In Appendix B we show that in other phys

ical circumstances one has values of the quantities likeA that 
may be completely different from !; there we develop an ex
ample in elastoplasticity. The same conclusion is obtained in 
hydrodynamics with viscosity. to 

Remark 2: Equations (9) and (11) give at once 

U r + U I 1 au 
e- = ---, 

2 Po au 
U r + UI e - --'-----=-

2 
- -+ A-- au. k 2 au ( 1) 

au 2 
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With the value A = ! one gets 

(e - (u r + U/ )2/2) = k 2/po , 

which is used by experimentalists to obtain the value of k 2 

from measurements of e, u" U/, and Po. 

VI. NUMERICAL SCHEMES, COMPARISON WITH 
EXPERIMENTS 

The fact that the quantities v, u, p in hydrodynamics or 
v, u, u in elasticity are represented by the same Heaviside 
generalized function (we say that these quantities "vary in 
phase" on a shock) is very interesting as it facilitates the 
construction of efficient numerical schemes. In this way we 
have obtained numerical schemes adapted to Hooke's law 
and more generally to the approximation of nonconservative 
terms appearing in hydrodynamics and elastodynamics. 
These results have been used in the generation of the LEA 

elastoplastic code and in modifications on the HULL code. In 
hydrodynamics the system (14) [with (15) or (15') as third 
equation] is very convenient from the numerical viewpoint. 
In particular, one obtains good pressure predictors that are 
essential to generate performing hydrodynamics codes. See 
Refs. 4, 7, and 8. 

In the case of the system (3) one can even obtain math
ematical proofs of the convergence of the numerical schemes 
to a generalized solution u,ue:1 (R2

); see Refs. 4-6. 
Comparison of the jump conditions obtained in Sec. V 

with the experiments has been (indirectly) done in Ref. 4 
Chap. 5, through comparison with classical codes (which 
are known to agree with the experimental results). The con
clusion is a very good agreement. 

Note added in proof A more natural method to resolve 
the ambiguity consists in stating the basic laws of physics 
with the equality in :1 (thus postulating their validity even 
in the small width of the shock) and in stating the constitu
tive equations with the association (thus accepting their pos
sible nonvalidity inside the width of the shock, but also ex
cluding too singular behaviors). Although different from 
(4'), this formulation leads easily to (14) when the un
knowns are assumed to be piecewise continuous. 
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APPENDIX A: A MATHEMATICAL CONSTRUCTION 

We give here a very simplified definition of the new gen
eralized functions, in which the inclusion of ~'(O) into 
:1 (0) is dropped but which is enough for the application in 
this paper. We define a set'll M [ 0] (here the letters'll and M 
form a unique symbol and are not to be dissociated) as the 
set of the maps 

R: ]0, 1] XO--+C 
E, x R(E,x) 

such that (i) for any € > 0, the map x --+ R ( €,x) is a C 00 func
tion of the variable xeO, and (ii) if 
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a1kl 
D=---:-

ax k , •• ·axkn 
J n 

(D = identityiflk I = 0) andifKis any compact subset of 0, 
then there exists an integer NeN, and two constants e > 0 and 
1/ > 0, 0 < 1/ < 1, such that 

supIDR(€,x) I<e/~, 
xeK 

ifO<€<1/. 
IfRe'll M[O] thenitisobviousthatDRe'll M[O]. Note 

also that 'll M [0] is a vector space and that the pointwise 
product R JR 2 is an element of 'll M [0] provided 
RJe'll M[O] andR 2e'll M[O]. 

We denote by ff[O] the set of all the elements 
Re'll M [0] that have the property that for all D and K (as 
above) there exists an integer NeN such that 
'd q>N 3eq,1/q > 0 such that 

supIDR(€,x) I<eq~, 
xeK 

ifO<€<1/q. 

If REJY"[ 0] then it is obvious that DREJY"[ 0]. ff[ 0] 
is a vector subspace of 'll M [0] but we have much more: if 
R1e'll M [0] andR 2EJY"[0] their pointwise productR 1R 2 is 
in ff[ 0] (i.e., ff[ 0] is an ideal of the algebra 'll M [0] ). 

We define the generalized functions on 0 as the ele
ments of the quotient algebra 

:1 (0) = 'll M [O]lff[O] . 

In the classical construction of R from Q by the method of 
Cauchy sequences the set'll M [0] is replaced by the set of all 
Cauchy sequences of rational numbers and the set ff[ 0] is 
replaced by the set of all null sequences (i.e., the sequences 
that converge to 0) of rational numbers. If fe~ 00 (0) then 
we consider the map Re'll M [0] defined by R (€,x) = f(x) 
and thus we obtain at once an inclusion of ~ 00 (0) into 
:1 (0). Now let pe~ (R) be a ~ 00 function such that 
fp(x)dx = 1. Then the class in :1 (R) of the map 
R(€,x) = (lI€)p(x/€) is an element of G of :1 (R) that is 
associated with the Dirac delta function [i.e., 'd'l'e~ (R), 

f R(€,x)'I'(x)dx--+'I'(O) 

when €--+O]. Two generalized functions GJ,G2e:1 (0) are 
associated (i.e., G1-G2 ) if there are representatives R 1,R2 

of G1,G2, respectively, such that 'd'l'e~ (0) 

L (RI (E,X) - R 2 (€,x»)'I'(x)dx--+0 

when €--+O. (Then the same holds for any representatives of 
G1 and G2 .) 

APPENDIX B: ELASTOPLASTIC SHOCK WAVES 

There are shock waves in which the medium passes from 
the elastic state into the plastic state; before the shock the 
medium is elastic and after the shock it is plastic. These 
shocks may be modeled by the system (1) in which f.l de
pendsonS: f.l(S) = f.loeRiflS I <Soandf.l(S) = OiflS I = So 
(thus IS I cannot reach values >So). 

If, as done intuitively within our theory, we consider 
that the shocks have an infinitely small-but not exactly 
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ela.stic sta.te 

pha.se 
tra.nsition 

pla.stic sta.te 

FIG. 1. "Microscopic aspect" of an elastoplastic shock wave. 

null-width, then the Heaviside functions of the quantities 
like u,u,p have the following aspect. (See Fig. 1.) 

The continuous line corresponds to any Heaviside func
tion H of u,p,p, Iff: they vary throughout the shock. The dot
ted line corresponds to the Heaviside function L of S: it var
ies only in the elastic state. Thus one sees easily, in case the 
phase transition takes place rather early within the shock, 
that Land H are quite different: the Dirac function L ' has its 
support located in a region in which H is nearly equal to o. 
Thus we have HL ' - B~ with B> 0 rather close to 0 (this 
affects the jump conditions, which are observable effects). 
This shows that Land H need absolutely to be considered as 

319 J. Math. Phys., Vol. 29, No.2, February 1988 

quite different mathematical objects, while there is only one 
Heaviside function in distribution theory. 
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Some properties of the space-times admitting two spacelike Killing vectors are studied. In 
particular, using harmonic maps the degree of freedom on the M' manifold is exploited to add 
scalar and electromagnetic fields to Bonnor's nonsingular solution. It is also shown that for 
vacuum space-times the noncommutativity of two spacelike Killing vectors is incompatible 
with the self-similarity requirement and such a self-similar vacuum space-time has no Tauh
NUT equivalent extension. 

I. INTRODUCTION 

Static axially symmetric fields with two commuting 
Killing vectors were considered first by Weyl' who, under 
the assumed symmetry, presented a general solution to the 
Einstein field equations. Einstein and Rosen2 studied later 
the intrinsically similar fields with two commuting spacelike 
Killing vectors which amounted to the cylindrically sym
metrical gravitational waves. The imploding-exploding 
waves interpretation, as an example of scattering of such 
cylindrical waves, was given by Marder. 3 The same metric 
was considered independently both by Weber and Wheeler4 

and by Bonnor.s In particular, Bonnor gave an example of a 
nonsingular solution to the field equations that might be in
terpreted as a cosmological model of interest. The term 
"nonsingular," however, must be taken cautiously since, as 
explained in detail by Bonnor and by Weber and Wheeler, 
the fact that the metric tensor should behave like 1/ r and the 
Riemann tensor like 1/r (as the requirements of asymptotic 
flatness) is not satisfied in such a solution. The well-known 
result that no nonsingular colliding plane wave (CGW) 
space-time exists6 could be anticipated from the above case 
due to the inherent similarily between planar and cylindrical 
geometries. In other words both of these geometries are rep
resented by the same metrics in a particular choice of coordi
nates but the boundary conditions differ and therefore the 
difference is a global one. 

In this paper we make use of the same cylindrically sym
metric metric to generate radiation sources, such as electro
magnetic and massless scalar fields. The method we adopt in 
the solution generating technique was presented briefly ear
lier7 and for the sake of completeness we shall review it here. 
In this new approach of harmonic maps we reduce the gen
eral relativistic problem to the one of classical field theory 
and it is our belief that this method adds considerable ele
gance and simplicity when compared to the other existing 
methods. An effective Lagrangian is introduced via the har
monic maps between the suitably chosen Riemannian mani
folds. For a general review of the physics of harmonic maps 
we refer to the paper of Misner, 8 whereas for the mathemat
ical aspects the paper of Eells and Sampson9 provides the 
proper references to be consulted. To a certain extent we 
shall make use of the cylindrical wave line element with sin
gle polarization due to Einstein and Rosen, 

ds2 = e2(y-'II) (dt 2 _ dp2) _ p 2e- 2'11 d4i - e2'11 dz2, (1) 

where the metric functions '11 and yare only functions of t 
and p. The vacuum field equations, for later reference, are 
given by 

'11 pp + (1/ p) '11 p - '11 tt = 0, (2) 

Ypp - Ytt = '11; - '11;, 

whereas the integrability conditions are 

Yp =p('I1; + '11;), 

y, = 2p'l1p'l1,. 

(3) 

(4) 

(5) 

Solution of this set of equations is usually carried out by 
solving (2) first. This is the cylindrical wave equation that 
admits wave solutions. Following Bonnor, we solve (2) by 
the method of complex translation discovered first by Appell 
in 1887. Having known that '11 = (p2 - t 2) - 112 forms a solu
tion, then Appell's theorem states that the real part of the 
complex function, '11 = [p2 - (t - ie) 2] -112 (e = const), is 
also a solution to (2). Bonnor's final solution is expressed by 

'11 = [u + (u2 + W2)1/2]1/2[U2 + w2] -1/2, 

_ p2 (u2 _ w2) 1 [u ] 
Y = 2(u2 + W2)2 + 4c2 (u2 + W2)1/2 + 1 , 

(6) 

where 

u = p2 _ t 2 + e2, W = 2et. 

The regularity of this solution should be understood in the 
sense that no metric function or scalars from the Riemann 
tensor diverge for p ..... 00 and t ..... ± 00, where the ranges are 
O<p< 00, - 00 <t< + 00. 

II. METHOD FOR GENERATING NEW SOLUTIONS 

It can easily be verified that Eqs. (2) and (3) follow 
from the variational principle of the action 

I['I1,y.A.] = f [YpAp - y,A, -,1('11; - '11;) ]dp dt, (7) 

where A = p is to be imposed as a coordinate condition sub
sequent to the variation. We recall from the theory of har
monic mappings of Riemannian manifolds that this action is 
in the form of an energy functional 

Erf] = fgAB ~~~:g"blgII/2d2X' (8) 
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where the manifolds M and M' are chosen, respectively, by 

M: d~ = dp2 - dt 2 + A 2 dtP 

= gab dxa dxb (a,b: 1,2,3), 

M': dS,2 = (dA IA)dr - tMP 

= g~B dX,A dX,B (A,B: 1,2,3). 

(9) 

(10) 

Note that since A = p is a coordinate condition and t/J is a 
cyclic variable, the effective dimensions of both M and M' 
are two. The map is representedbyfA = {\{I,r}:M-+M', and 
the stationary conditions 

(11) 

are the statements that the maps are harmonic. As a side 
remark we note that in contrast to various maps in math
ematics, harmonic maps explicitly can not be known a priori 
until Eqs. (11) are solved explicitly. Naturally all the infor
mation expected from a standard variational principle can 
also be extracted from the harmonic map action as well. For 
instance, besides the stationary requirement one may check 
the stability of a general relativistic manifold by studying the 
second variation due to Jacobi. In this paper we shall restrict 
ourselves only to the first variations. The theory of harmonic 
maps in general relativity can be summarized in the follow
ing: choose two Riemannian manifolds (9) and (10) in such 
a way that when the energy functional (8) is constructed 
from them, its stationary requirements ( 11 ) coincide exactly 
with the vacuum Einstein equations under consideration. IO 

Now, iff A is a solution of the field equations ( 11), then a 
new solution fK is obtained as a function of fA from the 
isometry (in variance) of the line element of the M ' manifold. 
This amounts to 

dS,2 =g~B(f)dfA dfB =g~L (J)dJK dJL, (12) 

which yields the implicit relations 

, (f) afA afB -, (f-) (13) 
gAB aJK a]L = gKL . 

We note that such an isometry does not necessarily imply 
that the metric tensor g~L has the same dimensions as that of 
g~B' In particular, we shall consider the case where the 
ranges of the indices K,L are larger than A,B and we shall 
interpret this as a problem of embedding. The mathematical 
details of embeddings are not our purpose here. We would 
like rather to make use of these concepts in order to yield 
tangible results that may prove useful in physics, and par
ticularly in general relativity. We face embeddings in partic
ular when we want to generate solutions with radiation 
sources from known solutions of vacuum. The method of 
isometry applies best to the two-dimensional problems and 
the reason for this may be connected with the existence of 
conformal techniques and analyticity in this particular di
mension. 

In order to obtain a new vacuum solution from a known 
solution we have to find Killing vectors of the corresponding 
M' manifold at hand. However, not every Killing vector 
yields a significantly new solution other than the original 
one. It is instructive at this point to mention a particularly 
well-known example. Stationary symmetrical gravitational 
fields (SAS) can be handled as a reduced formalism due to 
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Ernstll or equivalently by the method due to Matzner and 
Misner. 12 In the latter method reduced Einstein equations 
are obtained from the variational principle of the map, fA 
= {X,Y}:M-+M', where 

M: ds2 = dp2 + dr + p2 dt/J2, ( 14) 

(15) 

The Lagrangian density and the corresponding three Killing 
vectors of this M' are given by 

L = p[ (VX)2 + (VY)2]1X2, (16) 

and 

SI=ay , 

S2 = 2Xyax + (y2 - X 2)ay, (17) 

S3=XaX + Yay, 

respectively. The new solution that is generated from the 
isometry can be expressed by 

dfA = asJA (i = 1,2,3), fA = {X,Y} (O..;;t..;;1), 
dt 

(18) 

where a is a constant, and t is a continuous parameter. For 
t = 0 we recover our old solution fA, whereas for t = 1, the 
new solutionJA is obtained. It turns out in this example that 
S 3 leads to a scale factor and therefore the isometry it gener
ates results in the identity of two solutions (old and new). 
Similarly, SI also is not very interesting, but the vector S2 
results in a significant, new solution. Linear combinations of 
Killing vectors may lead to interesting results so that such 
cases should be investigated as well. The three Killing vec
tors in the example above in fact arise from the invariance 
under fractional linear transformations with three param
eters when the harmonic map Lagrangian is expressed in 
Ernst's complex formulation. We have already stated that 
the two methods are equivalent. 

The proposed method of generating new solutions can 
naturally be extended to cover the cases of different dimen
sional isometric transformations. We can imbed anM' mani
fold into a new manifold of higher dimensionality such that 
the new dimensions can be interpreted as the energy-mo
mentum tensor due to some radiation sources. The idea of 
imbedding the configuration space into a larger dimension 
does not emerge here as a novel one, since the same proce
dure had been employed in particle physics long ago. 13 To 
conclude this section we would also like to add that the tran
sitive property of isometric transformations provides us with 
additional means to find possible isometric solutions. Only 
when isometry is applied to a unique solution in a particular 
class of solutions (such as Schwarzschild, Kerr) does it fail 
to yield anything new. 

III. RADIATION SOURCES WITHOUT SOURCES 

In this section we shall exploit the degrees offreedom on 
the M' manifold to generate electromagnetic and massless 
scalar radiations as the source to a modified gravitational 
background. Let r~p be the Christoffel symbol of a pure 
gravitational space-time, so that the geodesic equation is giv-
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en by 

d
2
x'-' P' dx

v 
dxP = o. 

dr + vp dr dr 
(19) 

When an Einstein-Maxwell (EM) solution is generated 
from a vacuum solution the new geodesic equation should 
read 

d
2
x'-' r'll dx

v 
dxP = !LFlLua (20) 

dr + vp dr dr m a , 

where F ~ stands for the "induced" (as transmuted) electro
magnetic (e.m.) field and r' is the new Christoffel symbol. 
The two geodesic equations should coincide, in reality, since 
the space-time has undergone a dual interpretation under 
which the actual physics of the overall process must remain 
invariant. Each of our results can be stated as a theorem. 

Theorem 1: Given that the vacuum Einstein equations 
can be represented by the harmonic map between the metrics 

ds2 = dp2 _ dt 2 + A 2 d¢i, (21) 

dP = (1/A)dA dy - dqP, (22) 

then a system of Einstein-Maxwell (EM) coupled equations 
can be represented by the harmonic map between 

ds2 = dp2 - dt 2 + A 2 d¢i, (23) 

and 

The space-time metric reads 

ds2 = e2Y - Il (dt 2 _ dp2) _ p2e -Il dcp - ell dz'l. (25) 

and the isometry of the line elements (22) and (24) yields 
the constraint condition 

(26) 

(Note that we have introduced the factor 4 by scaling the 
functions I" and A by by!.) 

Proof The Lagrangian density obtained from the map 
between the metrics in (21) and (22) is given by 

LI = (ApYp -A,Y,) -A(\II~ - \II;) (27) 

which yields the vacuum equations (2) and (3). The La
grangian density obtained from the map between (23) and 
(24) is given by 

L2 = (ApYp -A,Y,) 

-A [I"~ -1";+e-Il(A~ -A;)]. (28) 

The Euler-Lagrange (EL) equation, oi2/oy = 0, holds 
true by virtue of the choice A = p. Next is the equation OL2/ 
oA = 0, being equivalent to 

(pe-IlA,), - (pe-IlAp)p =0, (29) 

which stands for the only nontrivial Maxwell equation. To 
verify this, define the e.m. four-potential 

All = (O,O,O,A), (30) 

so that F,z = A, and Fpz = Ap are the nonvanishing compo
nents of the e.m. field tensor. It can be checked that the 
source-free Maxwell equation 

all(~ _gFIlV) =0 (31) 

coincides with (29), where the metric is (25). 
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Finally, the remaining EL equation, oL2/01" = 0, turns 
out to be identical with the EM equation, 

I"pp -1"1t + (lip) =!(A;-A~)e-Il. (32) 

This completes the proof that if L 1 describes a system of 
vacuum equations, then L2 describes an EM system. 

In order to see the significance of the foregoing theorem 
we generate some new EM solutions from the vacuum ones. 
To this end we solve first the constraint condition (26). It 
turns out that this equation, similar to taking the roots of 
unity, possesses a large class of solutions where I" and A are 
expressed as functions of \II. A particular integral of the con
straint equation, 

ell = (a + !,8 2)sech2 \II, 

A = 2(a + !,82)1/2 tanh \II, 
(33) 

where a"B are nonzero constants, was reported a long time 
ago by Misra. 14 In addition to this solution we present two 
more classes of solutions as follows. 

(i) Let A = 2bcf!'12, where bo = const. The integration 
of the constraint equation yields 

1"= ±2(1+b~)-)1/2\11. 

In contrast to Misra's solution (33), this new solution 
has the feature that it has vacuum Einstein as a limit. 

(ii) Letting A = kl" (k = const), we obtain from the 
constraint equation the transcendental relation 

(1 + k 2e-Il)1/2 + 1 

(1 +k 2e- Il )II2_1 

= exp[ ± 2\11 + 2(1 + k 2e-Il)1/2]. (34) 

Being transcendental, this expression cannot be inverted for 
I" analytically in terms of 1J1. In fact, the constraint condition 
(26) possesses a large class of solutions sharing this tran
scendental nature. 

Theorem 2: Given that the harmonic map between the 
manifolds (21) and (22) yields vacuum equations, then Ein
stein-massless scalar field equations can be generated from 
the map between the metrics 

ds2 = dp2 _ dt 2 + A 2 dcP, (35) 

dS/2 = (lIA)dA dy - (d1"2 + k d¢i), (36) 

where k is the coupling constant. 
Proof The Lagrangian density for this map is given by 

L3= (ApYp -A,y,) -A [I"~ -I";+k(¢~ -¢;)]. (37) 

We must show now that L3 describes an Einstein-scalar sys
tem whereas the space-time metric is still (25). The con
straint relation is expressed now by 

dl"2 + kd¢2 = 4 d1J12. 

(Note here also that 4 is a scale factor.) 
EL equations for the scalar field ¢ are given by 

all(~ _ggIlV¢v) =0 

or equivalently 

(p¢,), - (p¢p)p = O. 

(38) 

(39) 

(40) 

Einstein-scalar equations are obtained by the conditions 
OL3/01" = 0 and OL3/0A = 0, and therefore L3 forms a La-
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grangian for an Einstein-scalar system. 
By making use of the constraint condition it is not hard 

to obtain Einstein-scalar solutions. Choosing,u = 2\f1 cos ao, 
k 1/2t/J = 2\f1 sin ao (ao = const), by virtue of the vacuum 
Eqs. (2), (3), Einstein scalar equations are satisfied. The 
constant ao here plays the role of a phase constant which 
removes the scalar field for ao = O. In the case of static 
spherically symmetric scalar fields, the corresponding solu
tion obtained by similar means employed here is the New
man-Janis-Winicour (NJW) solution. IS In a routine man
ner the uniqueness argument ofNJW can be extended to the 
scalar solution obtained here in the cylindrically symmetric 
geometry. 

Theorem 3: The two foregoing theorems (1) and (2) 
can be combined to yield a Lagrangian for the EM-scalar 
field system. The harmonic map will now be between the 
manifolds, 

ds2=dp2_dt 2+A 2dt/J2, (41) 

dS,2= (lIA)dAdy- [d,u2+ e - ll dA 2 +kdt/J2]. (42) 

Proof; The effective Lagrangian density of the map be
tween the given manifolds (41) and (42) will be 

L4=ApYp -A,y, -A [,u; -,u;+e-Il(A; -A;) 

+ k(t/J; - t/J;)] (43) 

and the constraint condition will be given by 

d,u2 + e -Il dA 2 + k dt/J2 = 4 d\f12. (44) 

EL equations for L4 with respect to each function will yield 
all EM-scalar field equations. The proof follows therefore 
from the foregoing theorems. 

The following solution, for example, solves the con
straint condition (44) and therefore constitutes also a solu
tion for the EM-scalar system, 

,u = 2\f1 cos bo, 

A = 4 exp(\f1 cos bo) . cos Co tan bo, 
(45) 

k 1/2t/J = 2\f1 sin bo sin Co 

(bo,co: constants). 

One observes simply that Co = 0 implies that only the e.m. 
field exists and bo = 0 leaves only the scalar field. Vacuum is 
recovered for bo = 0 = Co. 

Finally we would like to note that the e.m. field adopted 
in the foregoing solutions was of the form All = c5~A 
= (O,O,O,A). This may be extended to the case with two 
nonvanishing components, given as All = c5;A + ~B 
= (O,O,B,A). By this latter choice, however, the constraint 
condition to be solved becomes 

d,u2+ e - ll dA 2 + (lIp)eIldB 2=4d\f12, (46) 

whose particular integrals are rather involved compared 
with the former case where B = O. 

IV. TWO REMARKS ON BONNOR'S SOLUTION 

( 1) In this section we derive an equation for the timelike 
geodesics where the space-time element is being projected 
onto the (p,t) plane. In other words we simplify the general 
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geodesic equation 

d 2 x'"' + r~ dx« tJxP = 0 
dr dr dr 

(47) 

for the particular case of t/J = z = 0, and where the cylindri
cal radius is to be parametrized by t. For this purpose we 
choose the following variational principle to yield directly 
the projected geodesic equation: 

I=JdS= fr(1_p2)1/2dt, (48) 

wherep = dp/dt, andZ = y - \f1. As it is already implied by 
this reduced action principle we can study the cases for p < I, 
i.e., the timelike geodesics. The resulting equation for geode
sics is obtained as 

"_(.2 1)(' az az) p- p - p-+-. at ap (49) 

Unfortunately, the relative simplicity of this equation does 
not help in the search for an analytic solution for p as a 
function of time. The difficulty originates from the rather 
complicated form of Z == Y - \f1, in Bonnor's solution. A nu
merical solution, however, can be achieved by assigning val
ues for p in the interval 0 <p < 1 and plotting the resultingp 
for arbitrary values of the running time. In this way we find 
the trajectory of a particle in the nonsingular cosmological 
model given by Bonnor. 

(2) Our second remark concerns the physical meaning 
of the nonzero constant c in Bonnor's solution (6). (Note 
that we have fixed the other constant b that appears in the 
original solutionS by b = 1.) We want to explain that this 
constant c (and b) is not connected with the topology of the 
cosmological model. The degree of harmonic maps for the 
case of $2 into $2, as had been shown by Eells and Sampson, 
turns out to be finite and gives the number of windings that 
the base manifold is being wrapped. The energy of the map 
also emerges as proportional to the same topological integer. 
The integer property of the map arises from the uniqueness 
requirements of the rotational components of the map. All 
such nice topological features, however, can hardly find 
room in general relativity. The reason can be attributed to 
the noncom pact, hyperbolic nature of Riemannian mani
folds. To see the inherent difference between the compact 
and noncompact manifolds, from the physics point of inter
est, we refer to the analysis of Hirayama et al. 16 In this refer
ence it is explained that for Heisenberg'S ferromagnet the 
number of slips of the spin vector equals the degree of the 
harmonic map. The same analysis, on the other hand, when 
applied to the Weyl (or TS) class of gravitational fields, 
yields a diver:gent result. Having learned also from the two
dimensional field theories 17 that the topological class does 
not change in the course of time, we can handle Bonnor's 
cosmological model as a one-dimensional field theory on a 
flat background. An index can be defined for Bonnor's 
\f1 field by an expression proportional to fop\f1p dp 
= 1 sinh -1 ( 00 ), which diverges unless an infinite factor is 

subtracted. 
In the Weyl case, the scalar field propagating on flat 

space is given by \f1 = tanh -1 S = c5 tanh -1 x. Here, S is the 
real version of the Ernst potential, x is one of the prolate 
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spheroidal coordinates (1 <x < 00), and 8 is the Weyl pa
rameter. A topological index could be defined from '1', pro
vided '1'( 00) - '1'( 1) is a finite number. It turns out that 
before one accepts 8 as the topological degree one has to 
divide (or subtract) by an infinite factor, since '1'(1) di
verges. 

Comparing the two cases it seems that Bonnor's solu
tion is the first member of a larger family, yet to be discov
ered and the corresponding parameter of Weyl's 8 will char
acterize the topological class, albeit in some ambiguous way. 

V. THERE IS NO HYPERSURFACE NONORTHOGONAL 
SELF-SIMILAR COSMOLOGICAL VACUUM MODEL 

The general space-time geometry that describes cylin
drical gravitational waves with the cross polarization term is 
given bylS 

dr = e2(r-'II)(dt 2 _ dp2) 

- e2'11 (dz + w dt/J)2 _ p2e - 2'11 dt/J2, (50) 

which is considered as a generalization of the Einstein-Ro
sen metric. From the inherent identity between cylindrical 
and planar geometries this metric can be transformed into 
the metric that describes colliding plane gravitational waves. 
This latter metric due to Szekeresl9 is given by 

ds2 = 2e- M du dv - e- U[e V cosh W dx2 

+ e - v cosh W dy2 - 2 sinh W dx dy] . (51) 

( 1) It is our purpose to show now that this metric ad
mits no self-similar solutions, simply because whenever it 
does, it turns out to be diagonalized. By the self-similar solu
tion, here we imply that all metric functions depend func
tionally on a single harmonic function 0' = e - u, where 0' uv 

= 0, or in the case of the metric ( 50) , 0' satisfies 
O'pp + (lIp)O'p - 0'" = O. Let us note that although the 
choice of harmonic variables is not an imperative one, the 
structure of Einstein equations suggests that such a choice 
facilitates the formalism to a great extent. 20 

The self-similar vacuum Einstein equations are ob
tained from the harmonic map between the manifolds 

M: dr=duZ, 

M': ds'2 = dW2 + cosh2 W dV2. 

(52) 

(53) 

The metric function M, which does not appear in the map, 
turns out to satisfy a quadrature equation that, as a require
ment of complete integrability, must admit a solution. The 
self-similar Lagrangian and equations are given in the fol
lowing: 

324 

L = W'2 + cosh W' V,2, (54) 

V' cosh2 W = ao = const, 

W" = a~ (sinh W)/(cosh3 W) 
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(55) 

(56) 

Solutions for Vand W take the form 

e2 v = bo + ao tanh boO' 
bo - ao tanh boO' ' 

sinh W = [ 1 - (::Yl Il2 

sinh boO' 

(bo = const). 

(57) 

(58) 

However, it can be observed by the coordinate transforma
tion 

x = x cos(a/2)( + Y sin(a/2), 

y = x sin(a/2) + y cos(a/2) 
(59) 

that the metric function W can be set to zero. The choice of a 
that accomplishes this task is 

a = tan- I [(bolao)2 - 1]. (60) 

(2) As the second point we would like to check whether 
the space-time metric with two spacelike Killing vectors ad
mits a Taub-NUT -like solution. To this end we consider the 
Ernst equation in the coordinates21 ,22 

r=u(l_v2)1/2+v(l_u2)1/2, 
(61) 

0' = u(1 - v2) 1/2 _ v(1 _ u2) 1/2. 

The simplest Ernst potential S = r turns out to be the Khan
Penrose (KP)23 solution for the CGW. From the experience 
of SAS space-times one obtains, by taking S = eiar 
(a = const), the Taub-NUT solution. If the same replace
ment is carried out here, for the space-time with two space
like Killing vectors, the resulting solution turns out to be 
diagonalizable. Thus the Taub-NUT type solution does not 
exist for the metric under investigation. For the cylindrically 
symmetrical line element the same proof can be done by 
employing the similar type of coordinates to (61), 

2r = [( I + t)2 _ p2] 1/2 + [( 1 _ t)2 _ p2] 1/2, 
(62) 

20' = [( 1 + t)2 _ p2] 1/2 _ [( 1 _ t)2 _ p2] 1/2. 

As a matter of fact, a more general result can be proved in 
this line: whenever the real and the imaginary parts of the 
Ernst potential are functionally related (i.e., one can be ex
pressed in terms of the other) then the metric reduces to a 
diagonal one. 

Finally, we explore the possible self-similar cosmologi
cal vacuum model in the presence of two commuting Killing 
vectors. In the metric above we take W = 0, and express the 
remaining metric functions as functions of a common har
monic function. Since the proof is rather simple, we shall just 
content ourselves by stating the result that such a self-similar 
cosmology happens to be the Kasne~4 cosmology. Any oth
er form of solution must be transformable into Kasner solu
tion by a coordinate transformation. 

VI. KILLING VECTORS OF THE M' MANIFOLD 

Obviously the metric used by Bonnor [Eq. (6)] can be 
transformed into the plane wave space-time by the following 
identifications: 

21/2u = t - p, M = 2('1' - r), V = 2'1' -lnp, 

21/2V = t + p, e - U = p, z--+x, t/J--+y, 
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so that the resulting space-time metric reads 

ds2 = 2e- M du dv - e- u(ev dx2 + e- v dy2). (64) 

This is the particular case of the Szekeres metric (51) when 
the cross polarization term is suppressed. The vacuum Ein
stein equations for this more general line element are ob
tained from the harmonic maps21.22 between the manifolds 

ds2 = 2 du dv, (65) 

ds' = e- U[2 dU dM + dU 2 - dW 2 - dV 2 cosh2 W]. 
(66) 

From the metric functions, U is chosen as a coordinate con
dition and the determination of M is reduced to quadratures. 
By setting W = 0, first, the metric of M' takes the form 

dS,2 = e- U[2 dU dM + dU 2 - dV2]. (67) 

The problem now is to determine the nontrivial Killing vec
tors of this line element which will aid in generating a new 
solution from the old one. It can be verified that this geome
try admits a nontrivial Killing vector 

(68) 

We shall proceed now to obtain the new solution (fl, M, h 
generated from a known solution ( U, M, V) by the isometry 
ofthis Killing vector. The isometry equation is given by 

(69) 

where a is a new parameter. Upon substituting 5 one obtains 

d=~ ~=a~ ~=a~ (m) 

Imposing now the initial (t = 0) and the image (t = I) con
ditions ofthe isometry, the new solution is expressed by 

u= U, V= V+aU, 

M=M +aV+!a2U. 
(71) 

Choosing as (U, M, V) the nonsingular solution of Bonnor, 
by this isometry we obtain a new solution with an additional 
parameter. The same isometry has been employed elsewhere 
to generate new scalar plane waves.25 

The foregoing method of isometries can equivalently be 
handled in the Ernst formalism. Defining the complex po
tential by 

sinh V cosh W - i sinh W 
1J = ---------

cosh V cosh W + I 
(72) 

the following equality holds true: 

4 d1J d1j = dW2 + cosh2 W'dV 2. 
(1 - 1J1J)2 

(73) 

The left-hand side of this equality coincides exactly with the 
M' manifold of the Ernst Lagrangian. Thus any isometry of 
the rhs corresponds to an isometry of the lhs and vice versa. 
For instance, the isometry 

1J-+1J' = [I + 1J(ifJ - 1)]I[ I + 1J(ifJ + 1)] (74) 

with the real parameter fJ, which is known as the Ehlers 26 

transformation, can directly be adopted in the generation of 
a new cosmological model. However, our line of search will 
follow an alternative route, rather than employing well
known results. Once a pair ( V, W) of solutions is known we 
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shall proceed to generate a new pair (v, W) by employing the 
isometry 

dW 2 + dV2 cosh2 W = dW 2 + dV2 cosh W. (75) 

This can be achieved by making use of the general Killing 
vector, namely, 

/;" (v -v) a ~ = cle +c2e -aw 

+ [c3 - (cle v -c2e- v)tanh W]~, (76) 
av 

where c I , C2' and c 3 are arbitrary constants. As an example, 
we shall obtain the new solution corresponding to the linear 
combination of the two Killing vectors 

5(1) =e-v(~+tanh w~), (77) 
aw av 

5(2) = eV(~ - tanh W ~), 
aw av 

(78) 

in accordance with the relation 

XA = (a05(1) + fJ05(2) )XA , (79) 

where a o and fJo are constants. We obtain equivalently the 
pair 

~=tanh W(aoe- v -fJoev), 
. - v v 

W = aoe + fJoe . 

(80) 

(81) 

After tedious calculations one obtains the new solution 

sinh W = cosh a sinh W 

+ ! sinh a cosh W(fJe v + fJ -Ie - v), (82) 

fJ cosh Wev = sinh a sinh W 

+! cosh W [fJev(cosh a + I) 

xfJ-Ie-v(cosha-1)], (83) 

where the new parameters a, fJ are defined by 

a = 2 (aJ3o) 1/2, fJ = (fJoIao) 1/2. 

It is readily observed that in the limit a = 0 we recover the 
old solution (~W), but otherwise we have a new solution 
(v, W) generated from the isometry. The constant fJ 
emerges as a scale parameter for the functions e v and e v and 
therefore it can be washed out from the solution. 

At this stage we can also check whether a solution with 
W #0 can be generated from a known solution with 
W = 0.27 For this purpose our isometry takes the form 

sinh W = sinh a cosh V, 

cosh Wev = cosh a cosh V + sinh V. 

(84) 

(85) 

After some simple algebra it can be observed that the corre
sponding space-time metric diagonalizes under the hyperbo
lic rotation 

x' = x cosh(a/2) + y sinh(a/2), 

y' = x sinh (a/2) + y cosh(a/2) , 
(86) 

and as a result such a solution does not exist. The method of 
isometries fails to add a cross term to a diagonal metric but it 
maps a given solution into a new one. 
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VII. CONCLUSION 

We have shown that space-times admitting two space
like Killing vectors admit dual interpretations and to this 
end, the method of harmonic maps proves to be a useful 
technique. What seems a more important question however, 
is whether such dual properties of the vacuum fields have 
any physical significance beyond mathematics. Consider, 
for instance, a proton and a neutron in a given vacuum field 
that admits the e.m. field via dual interpretation. The appar
ent paradox between the geodesics equations of proton and 
neutron will be resolved provided their mass difference is 
attributed to an e.m. origin. 

The method of isometries in the M' manifold provides a 
promising feature and a useful alternative to already existing 
methods in general relativity. As a matter of fact, the method 
of harmonic maps applies to any theory whose Lagrangian is 
expressed in pure kinetic form. Self-dual SU(N) field equa
tions and instantons in classical field theory provide such 
examples, to mention a few. Further, in the instanton prob
lem the base manifold is the four-dimensional Euclidean 
manifold with definite metric that can be mapped onto a 
sphere and the degree of harmonic maps results in a topolo
gically significant number. 
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A constant curvature synchronization is a foliation of the space-time by spacelike 
hypersurfaces which are spaces of constant curvature for the induced metric. The classification 
of the space-times admitting such a synchronization is given according to the dimension and 
structure of all the isometry groups that can act with orbits tangent to it. 

J. INTRODUCTION 

Let F be a non-null foliation of the space-time. An F
Killing vector field is a (tangent to F) vector field of the 
space-time that is a Killing field for the metric induced on 
every leaf of F by the space-time metric. The F-Killing vec
tor fields are not necessarily Killing fields for the space-time 
metric, but they form a finite Lie algebra over the ring <P of 
the constant functions on F. They are the generators of the 
(connected) group of symmetries of the space-time called 
intrinsic symmetries by Collins,l who seems to have been the 
first to consider them. They have been studied with some 
detail in the works by Krasinski,2 Collins and Szafron,3 and 
the present authors.4

,5 

A foliation S whose leaves are spacelike hypersurfaces 
is called a synchronization. The dimension of the Lie algebra 
of S-Killing vector fields is ..; 6 and when it is 6, the leaves of S 
are Riemann spaces of constant curvature. The space-times 
admitting synchronizations with leaves of constant curva
ture are called, for short, CCS space-times. The CCS space
times may play an important role in cosmology, not only as 
weaker, intermediate versions of the cosmological princi
ple,5 but also as background spaces for anisotropic and/or 
inhomogeneous cosmologies3

; they are also of interest in the 
study of compact matter distributions. 6 

The object of this paper is to classify the CCS space
times according to the (continuous connected) isometry 
groups attached toS, that is to say, according to the maximal 
subalgebras of the S-Killing fields which are also Killing 
fields of the space-time. 

The classification is given in Sec. II in the form of three 
tables (corresponding to the sign of the scalar curvature of 
the leaves of S). They are the tables of the (conjugate classes 
of) subalgebras of the S-Killing algebra. 

Some cases are common to the three tables: the existence 
of nontrivial isometry groups is compatible with the change 
of sign of the scalar curvature of the leaves of S. This fact, 
already pointed out by Krasinski2 in a less general situation, 
may be of interest in cosmology. 

Section III deals with the problem of constructing ex
plicit models pertaining to a given class. One step in that 
direction is the obtaining of the scalar and vector invariants 
under every S-Killing subalgebra. Finally, it is noted that 
there are two particular cases in which the Killing algebra of 

a CCS space-time containing one given S-Killing subalgebra 
must contain the whole S-Killing algebra. This implies that 
these exceptional S-Killing subalgebras cannot be maximal. 

II. CLASSIFICATION OF CCS SPACE-TIMES 

Throughout this work, the tensor elements defined on 
the space-time V4 are noted with a caret in order to distin
guish them from those which will be defined on submani
folds. Also, we denote, in general, tensors and cotensors as
sociated by the metric with the same letter and, whenever 
confusion is possible, tensors will be distinguished with an 
asterisk "*." 

The space-time V4 is endowed with a Lorentzian struc
ture (V4 , g), g being chosen with signature 2E, E = ± 1. In 
order to avoid difficulties related essentially with derived 
algebras, (V4 , g) is supposed to be of differentiability class 
C"". 

No hypothesis is made on the energy tensor Tassociated 
to g, so that the Einstein equations do not carry restrictions 
on the generality of the metrics considered here; in fact, they 
are not used at all. 

A. Metric form 

In a domain n of the space-time (V4,g), a synchroniza
tion S is a foliation of n by spatial hypersurfaces called in
stants. Let Eg denote the metric induced by g on every instant 
of S; a constant curvature synchronization is a synchroniza
tion S for which every instant l:, considered as a three-di
mensional Riemannian manifold (l:,g), is of constant curva
ture: 

Ric(g) = 2Kg. (1) 

Space-times admitting a constant curvature synchroniza
tion, or CCS space-times, have been studied in Ref. 4. 

A local chart in n is adapted to S ifit is of the form {toY'} 
(i = 1,2,3), where t = const is a local equation for S. It is 
clear that the scalar curvature K in (1) is constant on every 
instant of S, so that we have K=K(t) in any adapted local 
chart. In such a chart, the metric g of a CCS space-time may 
be written4 

g = (Ea2 + a'a)dt®dt + a®dt + Eg, (2) 

the (positive definite) metric g obeying Eq. (1).7 
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According to the equivalence theorem for (simply con
nected) constant curvature space forms, there always exist 
in V4 adapted local charts in which g in (2) takes the same 
(time-dependent) specified form. As far as explicit calcula
tions are implied, we shall use in this paper the so-called 
almost-Cartesian local charts (t, Xi) or their related cylindri
cal and spherical ones, denoted, respectively, by (t,p,rjJ,z) 
and (t,r,(},rjJ). They are defined in such a way that, in the 
spherical local charts, the metric g takes the specified form 

g = R 2{[ 1/(1 - kr) ]dr®dr 

(3) 

where k = 0, ± 1 and the function R(t) is related to K by 
R 2K = k, R being arbitrary when K = 0. 

Let us remember that, under a local foliated isometry 
(an isometry preserving S), the metric form (2) changes to 

g= - [Ea2
_ (a+b)'(a+b)]dt®dt 

+ (a + b) ® dt + Eg, (4) 

where b is the one-form associated by g to the vector field b • 
defining the spatial component of the derived diffeomor
phism.4 

B. S-Kllllng fields and Isometry group 

The Killing vector fields admitted by the three-dimen
sional metrics g on the instants of S are called S-Killing vec
tor fields.4 For CCS space-times, they form a six-dimension
al Lie algebra, say A, over the ring <t> of the constant 
functions on the instants of S. In almost-Cartesian local 
charts, A is generated by the following set of S-Killing fields: 

qi=(1-kr)1/2~, I=-EirsX'~, (5) 
ax' ax' 

Eirs being the Levi-Civita symbol and i,r,s = 1,2,3. The struc
ture of A, which easily follows from (5), is given by 

[jj>jj] = Eij,j" [ji,qj] = Eij,q" [qj>qj] = kEij,j" (6) 

so that it depends on the signature k of the curvature K: A is 
isomorphic to SO(4), E(3), or SO(3,1), when k is equal to 
1,0, or - 1, respectively. 

The algebra A generates the identity component U of the 
corresponding isometry group G of g. The metric g being 
definite, G consists of two connected components, 
G = C2 ' U, where C2 is the cyclic group generated by a parity 
transformation. 

We are interested in the connected isometry groups of 
the CCS space-time metric g which leave invariant every 
instant of S. The corresponding Lie algebra of Killing fields 
is therefore tangent to S and then it is a subalgebra d. of the S
Killing algebra A. The CCS space-times can then be classi
fied according to the maximal subalgebra d. of the S-Killing 
algebraA they admit as a (foliated) Killing algebra. 

c. Subalgebras of the S-Kllling algebra 

Let us consider a subgroup (i of G and denote by u the 
realization of G defining its (effective) action on the instants 
of S. Let {t, Xi} and {t,/} be two local charts related by an 
element.a. of the subgroup (i, y = u(x,gJ =u-'l. (x), and let 
{t,u'} and {t,v'} be, respectively, the transformed local 
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charts by an arbitrary element p of the full group 
G, u = up (x), v = up (Y); we have then bp = pa for some b 
in such a way that when aE(i then bE(i I (the subgroup conju
gate to (i by peG). Considered as isometry transformation 
groups on S, two groups are equivalent iff they are conjugate 
under the full isometry group G = C2 ' U. Their Lie algebras, 
d. and d. I, related by the adjoint action Ad of G on A, belong 
thus to the same conjugate class, say (4.>. 

As stated in the preceding subsection, the classification 
of the CCS space-times amounts to the classification of the 
subalgebras of A (see Ref. 8) and we have seen here that this 
classification must be performed according to the conjugate 
classes of A under G. We list now the results for the three 
algebras given by (6). 

1. Lorentz algebra 

The conjugate classes of the subalgebras of the Lorentz 
algebra A - SO (3,1) were obtained in a pioneering work by 
Finkelstein9 and later by Bacry and Kihlberg. 10 Their results 
are given (with an adapted notation) in Table I. As usual in 
relativistic theories, the Bianchi notation is given for the 
three-dimensional classes. 

2. Euclidean algebra 

The conjugate classes of the subalgebras of the Euclid
ean algebra A-E(3) have been more recently studied by 
Beckers et al. II Their list is given in Table II. 

3. Rotation algebra 

In the case of the four-dimensional rotation algebra 
A - SO ( 4), the conjugate classes can be computed from its 
direct product structure, 80 ( 4 ) - SO ( 3) ® SO ( 3 ). Patera et 
al. 12 have recently given a standard method for computing 
the subalgebras of a direct product starting from the subalge
bras of both factors, but in the present case a direct calcula
tion is possible, owing to the simplicity of the subalgebras of 
80(3). The result is given in Table III. 

TABLE I. Conjugate classes of subalgebras of SOt 3.1) under the isometry 
group G=SO(3.l) oC2• The number between brackets indicates the dimen
sion. 

Notation Structure Lie algebra generators 

(6) SO(3,1) j" q; (i = 1.2.3) 

(4) SG(2) jl - q2. j2 + qt, j3' q3 

(3)~ BV jl - q2' j2 + q\l q3 

(3)" B VIIh(h =A2) jt - q2. j2 + q\l j3 + Aq3 
(A>O) 

(3)0 B VIIo. E(2) jt - q2. j2 + q\l j3 
(3) B IX, SO(3) j; (i= 1,2,3) 
(3)' B VIII, SO(2.1) qt. q2' j3 

(2) 
Abelian j3' q3 

(2)' jt - Q2. j2 + qt 
(2)" non-Abelian jt -Q2' Q3 

(1)~ q3 

(1 )" 
trivial 

j3 +Aq3 (A>O) 

(1)0 j3 
(1) jt -q2 

C. Bona and B. Coli 328 



                                                                                                                                    

TABLE II. Conjugate classes of sub algebras ofE(3) under the isometry 
group G= E( 3) oez. The number between brackets indicates the dimension. 

Notation Structure Lie algebra generators 

(6) E(3) j" q, (i = 1,2,3) 

(4) E(2) sT(1) j3' qi (i = 1,2,3) 

(3)~ B I, Abelian q, (j = 1,2,3) 
(3),t ql' qz, j3 + Aq3 (A>O) 

(3)0 
B VIIo, E(2) 

q" qz, A 
(3) B IX, SO(3) ji (i = 1,2,3) 

(2) j3' q3 
(2)' Abelian 

ql' qz 

(1)~ q3 
( 1),t trivial j3 +Aq3 (A>O) 

( 1)0 j3 

III. EXPLICIT CONSTRUCTION OF SPACE-TIME 
MODELS 

A. Killing fields 

In Ref. 4, we gave the necessary and sufficient condi
tions for an S-Killing field m * to be a Killing field; in adapted 
local charts when the metric g admits the form (2), these 
conditions are 

L(m*)a = 0, (7) 

atm* = [o*,m*], (8) 

where 0* is the vector field associated by g to the one-form 0 
in Eq. (2). 

The scalar equation (7) reveals the fact that, if a subal
gebra4is a Killing algebra, then a is a scalar invariant under 
4. The vector equation (8) being linear in 0*, it follows that 
the vector field 0* is of the form 

0* =g* + p*, (9) 

wherefJ..* is an invariant vector field under 4: 

[fJ..*,m*] =0, Vm*ed., (10) 

and p* is any particular solution of the system 

atm* = [p*,m*], Vm*e4. (11) 

TABLE III. Conjugate classes of subalgebras ofSO( 4) under the isometry 
group G=SO( 4 )oCz. The number between brackets indicates the dimen
sion. 

Notation 

(6) 

(4) 

(3)' 

(3) 

(2) 

(1)A 

( 1)0 

329 

Structure Lie algebra generators 

SO(4) j" q, (i = 1,2,3) 

SO(3) s SO(2) jl + ql, jz + qz, j3' q3 

B IX, SO(3) 
j, +qi (i = 1,2,3) 
ji (i= 1.2,3) 

Abelian j3' q3 

trivial 
j3 +Aq3 (O<A<I) 

j3 
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TABLE IV. Scalar and vector invariants under the subalgebras ofSO(3,1 ). 

SO(3,1 ) Scalar Vector 
subalgebra invariants invariants 

(6) 
(4) d*1 
(3)~ d*l, e-I(jl -qz), e-I(jz +ql) 

d*1 
(3),t e-/(sin(/ /A) (jl - qz) - cos(/ /A) (jz + ql») 

e -/(COS(/ /A)(jl - qz) + sin(/ /A(jz + ql») 

(3)0 d*1 
(3) r d*r 
(3)' Z d*z 
(2) p d*p, j3' q3 
(2), I d*l, jl -qz, j2 +ql 
(2)" x d*x, d*l, e-I(jl -qz) 

(1)~ p. ~ 
(1)A p. A~+h d*p. j3' q3 
( 1)0 p, Z 
(1) x. I d*x, d*l, jl -qz 

In order to obtain explicit CCS space-time models per
taining to a given class (4) in Tables I-III, one may use the 
(nontrivial) scalar and vector invariants {sm ,vn } under 4 to 
construct the metricg as given in (2) with 

(12) 
n 

where a and r are arbitrary functions of their arguments. 
The particular solution p* of ( 11) can be obtained in terms 
ofthe time derivatives of the Killing fields m* in every case. 

B. Scalar and vector Invariants 

The evaluation of the scalar and vector invariants has 
been made alternatively in the almost-Cartesian, cylindrical, 
or spherical local charts defined in Sec. I, according to the 
nature of the subalgebra considered. 

Tables IV, V, and VI give them for the subalgebras of 
SO(3,1), E(3), and SO(4), respectively. The dimension of 
the orbits is d = 3 - n, n being the number of independent 
(nontrivial) scalar invariants. The functions I, g, and h are 
given by 

TABLE V. Scalar and vector invariants under the subalgebras of E( 3 ). 

E(3) 
subalgebra 

(6) 
(4) 
(3)~ 

(3)A 

(3)0 
(3) 
(2) 
(2)' 

(1)~ 

(1 )A 

(1 )0 

Scalar 
invariants 

Z 

r 
p 
Z 

p. ~ 
p. Z+A~ 
p. Z 

Vector 
invariants 

q3 
qi (i=1.2.3) 
q3' sin(z/A)q, + COS(Z/A)qz. 
COS(Z/A)ql - sin(z/A)q2 

q3 
d*r 
d*p. j3' q3 
qi (i = 1.2.3) 
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TABLE VI. Scalar and vector invariants under the subalgebras of SO ( 4 ). 

SO(4) 
subalgebra 

(6) 
(4) 
(3 )' 

(3) 
(2) 

(I)" 
(I )0 

Scalar 
invariants 

r 
p 

p, A~+g 
p, z 

Vector 
invariants 

j3 - q3 
j,-q, (i=i,2,3) 

d*r 

1== In (If+? -z), g== arctan (z/ff=7) , 

h == arctanh (z/ If+?). 

C. Exceptional cases 

(13) 

Let us give a closer look at the class (3) I of conjugate 
subalgebras of SO ( 4) (Table III). The S-Killing generators 
are 

jj +qj (i= 1,2,3), [jj +q;.jj +qj] = Eijk(A +qk)· 
(14) 

Let us consider now a CCS space-time with positive cur
vature in a domain !l and of class (3) I everywhere in !l. This 
implies that the algebra of Killing vectors tangent to S is 
generated by the following set of Killing vectors m: 

mr = Crj (t)( jj + qj) (r = 1,2,3), [mr,ms] = Erstmt • 

(15) 

Comparing Eqs. (14) and (15), we get the following 
algebraic restrictions on the functions Crj (t): 

(16) 

It follows that the matrix of coefficients Cij must be or
thogonal, that is, 

C·C T = CT·C=I, (17) 

where C T stands for the transpose of the matrix C. Taking 
the time derivative of (17), one gets that the matrix w(t), 

defined as 

w = CT. (atC), (18) 

must be antisymmetric. 
It is easy to check that the vector p, constructed as 

p = L /; (t) (jj + qj), /; (t) == - !EjrsWrs' (19) 
j 

is a solution of the system (11) with mr given by (15). The 
most general metric form for such a CCS space-time can be 
obtained from Eqs. (12) and ( 19) and the scalar and vector 
invariants for the case (3) I in Table III: 

g = - [Ea2 + a·a]dt®dt + a ®dt + Eg, 

a = a(t), (20) 

a = L [Yn (t) (jn - qn) + In (t) (jn + qn )]. 
n 

Note that the vector a in (20) is an S-Killing vector 
field. One can then transform the metric (20) by a local 
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foliated isometry with an associated vector field b = - a so 
that, allowing for Eq. (4), the transformed metric is 

g= -Ea2 (t)dt®dt+Eg, (21) 

with g given by Eq. (3). The metric (21) is of class (6) 
(Friedmann-Robertson-Walker space-time). 

It is then clear that any CCS space-time of positive cur
vature admitting a subalgebra d. of class (3) I as a Killing 
algebra must admit the wholeS-Killing algebraA.1t follows 
that the subalgebras contained in classes (3) I or ( 4) in Table 
III cannot be maximal. These are two exceptional cases, as it 
is possible to construct CCS space-time models with a maxi
mal S-Killing subalgebra pertaining to any of the remaining 
classes in Tables I-III. 

D.Comments 

As pointed out at the beginning of this section, the foliat
ed isometry classes of CCS space-times that we have ob
tained in Sec. II correspond, in principle, to connected Lie 
subgroups of G = C2 • U, that is to say, to Lie subgroups of U. 
Nevertheless, some classes correspond, in fact, to total (dis
connected) subgroups of G; this is the case, in particular, for 
one-dimensional subgroups when the one-form associated 
by g to the generating Killing field is integrable: if 
v==exp{tv*} acts isometrically and vl\dv = 0, then C2 ·{v} 
acts also isometrically. 

A finer classification may be obtained by dividing every 
one of our foliated isometry classes according to the iso
metry groups acting transversally to S. One of the basic ele
ments of this problem (the table of the subalgebras of the 
Poincare group) is known 12; nevertheless, such a classifica
tion depends essentially on the concrete time dependence of 
the quantities appearing in ( 12) and, for this reason, we have 
avoided it here. A complete isometry classification of this 
kind has been given in Ref. 5 for the particular case of CCS 
space-times for which the first and the second fundamental 
forms of the instants of S admit the same isometry group 
(Stephani universes). 

Finally, let us remark that the presence of nontrivial 
isometries on a CCS space-time may be compatible with 
changes of sign of the curvature K(t). Despite the fact that 
the S-Killing algebra A changes, the three algebras SO ( 3, 1 ) , 
E( 3 ), and SO ( 4) have common subalgebras (see Tables 1-
III) which may act isometrically on the space-time. This is 
clearly the case for the SO (3) subalgebra, as was already 
pointed out by Krasinski. 2 

This implies that our classification scheme is a local one. 
Its extension to a global classification may require some sup
plementary conditions arising from the Einstein field equa
tions and the physical interpretation of the stress-energy ten
sor, as is the case with the global approach made in Ref. 2. 
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It is demonstrated, via recent global estimates for the heat kernel found by Li and Yau [Acta 
Matematica 156, 153 (1986)], that the covariance ofthe mass m free field decays 
exponentially, at a rate m, with the geodesic distance on any complete, noncompact 
Riemannian manifold with non-negative Ricci curvature. The rate of the exponential decay is 
larger than m on simply connected manifolds with negative sectional curvature. 

I. INTRODUCTION 

We are interested in generalizing to Riemannian mani
folds the standard Euclidean field theory.' While some en
couraging results have been obtained in this direction,2 we 
believe in the necessity of deeper understanding of the Rie
mannian counterparts of well-established facts in the con
ventional (fiat Euclidean) theory in order to provide a firm 
basis for a constructive approach to quantum field theory on 
a curved space-time. 

Here we study the long distance behavior of the covari
ance 

(1) 

corresponding to the mass m free field on a complete non
compact Riemannian manifold M, where tiM is the Laplace
Beltrami operator on M. 

In the fiat case (M = JRV) the covariance (1) has an 
integral kernel C(x,y) satisfying 

1 
lim - --In C(x,y) = m, (2) 

Ix-yl-"" Ix - yl 
i.e., C(x,y) decays exponentially at a rate m. Equation (2) 
identifies the inverse correlation length of the field with the 
mass parameter m appearing in ( 1). 

On a curved Riemannian manifold the situation may be 
different. For instance, if M is the hyperbolic three-dimen
sional spaceH3 with constant curvature - lIR 2, then 

exp( - (m2 + R -2) l/2d(x,y») 
C(x,y) = , (3) 

4rrR sinh(d(x,y)IR ) 

where d(x,y) is the geodesic distance between x andy. This 
covariance kernel, when the analog of the limit (2) is per
formed, yields 

1 
lim ---lnC(x,y) 

d(x,y) - "" d (x,y) 

= (m2 +R -2)1/2 +R -1>m. (4) 

Equation (4) shows that in general there will be no good a 
priori reason for observing an inverse correlation length 
equal to the "mass parameter" m. 

However, we demonstrate that on a complete, noncom
pact, smooth Riemannian manifold M with non-negative 

Ricci curvature, the covariance decays exponentially at a 
rate m, exactly as in the fiat Euclidean case. For instance, 
such a result holds for the "imaginary time" counterpart of 
the Kruskal space-time. 

On the other hand, when M is a simply connected mani
fold with strictly negative sectional curvature we demon
strate that the covariance kernel decays exponentially at a 
rate strictly larger than m. 

Our strategy is based on the heat kernel representation 
for the covariance kerneP 

C(x,y) = So"" e-m''p(t,x,y)dt, (5) 

where, of course, p (t,x,y) is the heat kernel on M. Thus our 
problem concerns decay estimates for the Laplace transform 
of the heat kernel. The long distance behavior of the covari
ance is then related by Theorem 1 to the asymptotic behavior 
ofthe heat kernel for large t and d(x,y). We point out that 
this kind of asymptotic control on the heat kernel is not de
ducible from the usual Molchanov small time asymptotics.4 

When the Ricci curvature is non-negative, the necessary 
information about the heat kernel can be obtained from re
cent global estimates found by Li and Yau,5 which in this 
case acquire a particularly simple form. Instead, when the 
sectional curvature is strictly negative and the manifold is 
simply connected, we use a monotonicity property of the 
heat kernel with respect to the curvature and an exact repre
sentation, found by Elworthy and Truman,6 to derive a sim
ple estimate for the decay rate. In this way we control the 
asymptotic behavior of the heat kernel and then the long 
distance decay of the covariance. 

II. THE ASYMPTOTIC BEHAVIOR OF THE HEAT 
KERNEL DETERMINES THE LONG DISTANCE DECAY 
OF THE COVARIANCE 

Let M be a complete noncom pact smooth Riemannian 
manifold, d(x,y) the geodesic distance between x and y, 
p(t,x,y) the heat kernel on M, and s(€lx,y) = [lId(x,y)] 
Xlnp(€d(x,y),x,y) for €>O. 

Theorem 1: Suppose the following. 
(i) For every €> 0 there exists 
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lim s(Elx,y) = SeE), 
d(x,y) - 00 

uniformly on any compact interval [o,b] c (0,00 ). 

(ii) There exist R * > 0, K * > 0, 0 < 0* < b *, and 8* > 0 
such that d(x,y) >R * implies both 

ed(x,y)s(£lx,y) <.K * 
for any E>b* and OE-s(Elx,y»/(O) +8* for any 
O<E<O*, 0>0, where 

1(0) = inf (OE - S(E». 
£>0 

Then 

lim --In e- 8p(t,x,y)dt= -/(0). 1 100 

d(x,y)_oo d(x,y) 0 
(6) 

Proof: First we note that, by changing variables, 

lim __ I_In roo e - 8p (t,x,y )dt 
d(x,y)_oo d(x,y) Jo 

1 100 

= lim --In exp( - d(x,y) 
d(x,y)-eo d(x,y) 0 

X (OE - s( Elx,y») ) dE, 

so that the proof rests on the fact that the integrand 
exp( -d(x,y) (OE-S(Elx,y»)) develops a very high peak in 
the large d(x,y) limit (Laplace asymptotic method). 

For convenience, we divide the proof into two steps. 
Step (i): 

lim inf _I_In roo exp( - d(x,y) 
d(x,y)-oo d(x,y) Jo 

X(OE - s(Elx,y)))dE> -/(0). (7) 

In fact, for every 8 > 0 there exist both E > 0 such that 
OE - seE) </(0) + 8/3 and a compact interval!J.8 3E such 
that OE - SeE) <.OE - seE) + 8/3 </(0) + 28/3 for any 
EE!J.8· 

By using the uniform convergence ofs(Elx,y) tOS(E) on 
!J.8 , there exists r(8) > 0 such that if d(x,y) > r(8), then 

loo exp( -d(X,y)(OE-S(Elx,y»))dE 

> I!J.8 I exp( - d(x,y)(/(O) + 8»; 

this inequality leads to (7). 
Step (ii): 

1 loo lim sup --In exp( - d(x,y) 
d(x,y)-oo d(x,y) 0 

X(OE-S(Elx,y)))dE< -/(0). (8) 

Let us choose 8 = 8* and let [a,b] be a compact interval 
containing !J.8* with a < a* and b> b *; moreover, we sup
pose that d(x,y) > max(R *,r(8*»). On one hand we have 

Ib exp( - d(X,y)(OE - s(Elx,y)))dE 

> I!J.8* lexp( - d(x,y)(/(O) + 8*); 

on the other hand, 
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i exp( - d(x,y)IOE - s(Elx,y}»dE (O,a)U(b,oo) 
<0 exp( - d(x,y)(f(O) + 8*» 

K* + expl- Obd(x,y»). 
Od(x,y) 

Then, for any 1]E(O,1) there exists r> 0 such that 

ieo exp( -d(X,y)(OE-S(Elx,y»))dE 

< (1 + 1]) Ib exp( - d(X,y)(OE - s(Elx,y)))dE, (9) 

provided that O<a <a*, b> [/(0) + 8*]10, and 
d(x,y) > r. Furthermore, sinces(Elx,y) is uniformly conver
gent tOS(E) on [a,b], then for each fixed 8> 0 there exists a 
suitable r> 0 such that 

fexP( - d(X,y)(OE - s(Elx,y)))dE 

<lbexP( - d(X,y)(OE - SeE) - 8»dE 

<ibexP( - d(x,y)(f(O) - 8»dE 

= (b - a)exp( - d(x,y)(/(O) - 8» 

ford(x,y) > r. By exploiting the last inequality and Eq. (9), 
Eq. (8) follows immediately. 

The reader acquainted with modem statistical mechan
ics will easily recognize that Theorem 1 is essentially the 
statement of the thermodynamical equiValence between the 
canonical ensemble and the microcanonical ensemble. 7 

In the flat case (M = R"), where 

p(t,x,y) = (41Tt) - ,,/2 exp( - d(X,y)2/4t), (10) 

all the hypotheses of Theorem 1 can be easily verified and 
result in 

SeE) = - 1I4E, 1(0) = 0 1/2. (11) 

On a general nonflat Riemannian manifold the task is 
not as easy, except for the few exceptional cases where the 
heat kernel is explicitly known. Nevertheless, all that is real
ly needed are some good upper and lower estimates for the 
heat kernel exhibiting the same structure as in the flat case. 

III. LI AND YAU BOUNDS AND ASYMPTOTIC DECAY OF 
THE COVARIANCE 

Throughout this section we restrict ourselves to a com
plete, noncom pact, smooth Riemannian manifold M with 
non-negative Ricci curvature. We denote by v the dimension 
of M. For such a manifold the Li and Yau bounds5 acquire 
the following forms. 

(i) Upper bound (Ref. 5, p. 175). For each 1] > 0 there 
exists C( 1]) > 0 such that 

p(t,x,y) <C(1]) Vx (t 1/2)-1 exp( - d(X,y)2/(4 + 1])t), 
(12) 

for any t,x,y; here Vx (r) is the Riemannian volume of the 
geodesic ball centered at xeM with radius r. 

(ii) Lower bound (Ref. 5, p. 182). For each 1] > 0 there 
exists C( 1]) > 0 such that 
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p(t,xJl»C(1]) -I VX (t 1/2) -Iexp( - d(X,y)2/( 4 -1])t), 
(13) 

for any t,xJl. 
In Eqs. (12) and (13) C(1]) -+ C() as 1]-+0. In the follow

ing we will denote by V. (r) the volume of the Euclidean ball 
of radius r in KV. 

Lemma 1: IfO<RI <Rz then 

Vx (R2)/Vx (R 1)<V. (Rz)IV. (R 1 )· 

Proof See Ref. 5, p. 177. 
Lemma 2: For each 0> 0 and for each fixed xeM the 

result is 

lim _I_In V,,(a I/2d(xJl) 1/2) = O. 
d(x,y)-oo d(xJl) 

Proof Trivial by using Lemma 1. 
Lemma 3: Hypothesis (i) of Theorem 1 is satisfied by 

the heat kernel on M; moreover, SeE) = - 1/4£, as in the 
fiat case M = KV. 

Proof By choosing a compact interval [a,b] C (0, C() ) 

from the estimates (12) and (13) it follows that 

_In ce1]) _ In VAb 1/2d(xJl) 1/2) + (~ __ 1_) ~ 
d(xJl) d(xJl) 4 4 -1] a 

1 In C() In Vx(al12d(xJl) 1/2) <S(E!XJl) +_< 1] ______ _ 
4E d(XJI) d(x,y) 

+(~ __ 1_)~ 
4 4+1] a 

for any EE [o,b], 1]>0, xJlEM. 
Now, for any fixed ~ we can choose a suitable 1] > 0 such 

that the inequalities 

(~ __ 1_)~<.£.., 
4 4+1] a 2 

_(~ __ 1_)~> _.£.. 
4 4-1] a 2 

hold. Then we obtain, for EE[ a,b ], 

In ce1]) 

d(xJI) 

In V,,(b 1/2d(XJI) 1/2) 

d(XJI) 

1 
<S(E!XJI) +-

4E 

~ 

2 

< In ce1]) _ In V,,(a I/2d(x,y)1/2) +.£.., 

d(x,y) d(xJI) 2 
and the uniform convergence of s( ElxJI) to 1/ 4E on the com
pact interval [a,b] follows by Lemma 2. 

Lemma 4: Hypothesis (ii) of Theorem 1 is satisfied by 
the heat kernel on M. 

Proof' Step (i): For any fixed K * > 0 there exists an 
R * > Osuch thatd(xJI) > R' * impliesp(t,x,y) <K * for every 
t> O. In fact, for any fixed 1] > 0 there exists C( 1]) > 0 such 
that 

p(t,x,y) <C(1]) Vx (t 1/2) -I exp ( - d(X,y)2/( 4 + 1])t). 

Then, for r;,R 2 the result is 

p(t,xJl) <C(1]) Vx (R)-I 

and step (i) follows from the choice of a large enough R 2; on 
the other hand, when O<t<R 2, we can use Lemma 1 to 
obtain 
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Vx (t 112) -I<y* (t 1/2) -I Vx (R) I V. (R)<const t - v12. 

In tum, this inequality and the relation 

sup t -v12 exp( - d(X,y)2/(4 + 1])t) = const d(x,y) - v 
1>0 

imply step (i) by the choice of d(xJI) large enough. 
Step (ii): Foreach~* > o there exist 0* >O,R * > Osuch 

thatd(x,y) >R * implies OE - s(Elx,y) > 0 1/2 + ~* for any 
EE(O,O*). In fact, for any fixed 1]>0 there exists C(1]) >0 
such that 

OE - S(E!X,y) - 0 1/2 

>OE+ I _01/2 
(4 + 1])E 

In Vx(EI/2d(XJl) 1/2) In C(1]) 

d(XJI) d(xJI) 

On the other hand, for EE(O,o*) Lemma 1 implies 

V,,(EI/2d(x,y) 1/2» (Elo*)V12V,,(O*I/2d(x,y) 1/2). 

Thus, by using the obvious inequality Inx>l-x- I for 
XE( 0,1), we obtain 

- s(Elx,y) - B 1/2 

>BE+ 1 _01/2+ V (1-~) 
(4+1])E U(x,y) E 

+ In Vx(a*1/2d(x,y) 1/2) _ In ce1]) 

d(x,y) d(x,y) 

= BE + 1 _ B 1/2 
2(4+1])£ 

( 
1 va* ) 1 v + - -+---

2(4 + 1]) 2d(x,y) E U(x,y) 

+ In V,,(o* I 12d(x,y) 1/2) _ In ce1]) . 

d(x,y) d(xJl) 

Now, by choosing a suitable 0* and R * the result is 

OE-1/2(4 + 1])E - 0 1/2>~*, for any £E(O,O*), 

1/2(4 + 1]) - a*IU(x,y) >0, for any d(x,y) >R *. 

Then, by using Lemma 1 we obtain 

v + In Vx(a*1/2d(x,y) 112) _In C(1]) > _~* 
U(x,y) d(x,y) d(x,y) 

for large enough d(x,y) and step (ii) follows. 
Since all the hypotheses of Theorem 1 are satisfied, we 

obtain the following. 
Theorem 2: Let M be a complete, noncompact, smooth 

Riemannian manifold with non-negative Ricci curvature. 
Then, for each fixed xeM, 

lim _I_In (00 e-m''p(t,x,y)dt= -m. (14) 
d(x,yJ-oo d(x,y) Jo 

IV. LOWER BOUND ON THE DECAY RATE OF THE 
COVARIANCE ON NEGATIVELY CURVED MANIFOLDS 

For v-dimensional Riemannian manifolds whose curva
tures are everywhere negative, Theorem 2 fails in general. 
Indeed, let us consider the case when M is a v-dimensional 
simply connected manifold whose sectional curvature is 
bounded from above by - R - 2

• Then in this case the result 
isS 
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P(t,x,y)<PR (t,x,y), 

where P R (t,x,y) is the heat kernel on the constant curvature 
simply connected space form Hv whose curvature is identi
cally -R -2. 

When the curvature is everywhere negative, the heat 
kernel admits the following representation6

: 

p(t,x,y) = (41Tt) - V/22y (x) -1/2 exp( - d(X,y)2/( 4t)) 

XE(exp 50' W(ys )dS). 
where Sy (x) is the Ruse invariant, W(x) 
= 2y (x) 1/2f:&M2y (x) -1/2, and E stands for the expectation 
with respect to the Brownian bridge Ys between x and y 
(Oo;;;;so;;;;t). 

When we consider the v-dimensional space H v with 
constant curvature R - 2 the result is 

and 

2 y (x) = (R d(X,y)-1 sinh(R -I d(X,y)))v-1 

W(x) = - (v-1)2/4R2+ [(v-l)(v-3)/4] 

X (d(x,y) -2 _ R -2sinh(R -I d(x,y) )-2) 

> _ (v - 1)2/4R 2. 

This explicit expression for W(x) allows us to derive the 
following estimates: 

W(x» - (v - 1)2/(4R 2) 

W(x» - (1 +N)/(4R 2) 

where 

(v>2), 

(v=2), 

N = sup[x-2 - (sinh x) -2] > O. 

Then, by using the estimate for v> 2, we obtain 

p(t,x,y)o;;;;PR (t,x,y) 

0;;;; (41Tt) - v/2 exp( - d(X,y)2/4t)(R d(X,y)-1 

xsinh(R -I d(X,y)))(I-v)/2 

Xexp( - t(v - 1 )2/4R 2). (15) 

This implies 

SeE) 0;;;; _ J.. _ (v - 1)2 + 1 - v . 
4E 4R2 2R' 
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consequently, in Eq. (6) we obtain the result 

f(O) = inf(OE-s(E»)>((J+ (V_l)2/4R2)lf2 
£>0 

+ (v-l)/2R>Ol/2. 

By using the bound ( 15) it is possible to estimate the value of 
SeE) appearing in Theorem 1. Thus we have proved the fol
lowing statement concerning the bound on the decay rate: 
Let M be a v-dimensional (v> 2) simply connected, non
compact, smooth Riemannian manifold with sectional cur
vature bounded from above by the negative constant - R 2. 

Then 

lim sup _I_In rco e - m''p(t,x,y )dt 
d(x,y)-co d(x,y) Jo 

( 

2 (V_1)2)112 v-I 
0;;;;- m + ---<-m 

4R2 2R ' 

i.e., the covariance on M decays exponentially at a rate strict
ly larger than m. 

A similar result holds for v = 2 through the use of the 
corresponding estimate for W(x). 
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A construction relating scale-invariant, nonlinear partial differential equations and the orbits 
of the group of translations on infinite-dimensional homogeneous manifolds is proposed. It 
presupposes that the homogeneous manifold M has translations and scale transformations 
among its automorphisms. This assumption is made to ensure that the set of orbits of the group 
of translations is invariant under scale transformations. What is important is that the proposed 
construction provides a way of inducing scale covariance of derived nonlinear equations for 
which the set of orbits can be identified with a set of solutions of these equations. Application 
to the derivation of the potential Korteweg-de Vries (KdV) and the sine-Gordon equation 
yields as an important intermediate result the construction of their respective Lax pairs out of 
the commuting vectors tangent to the orbits. In yet another application, an infinite
dimensional, scale-invariant Riccati equation is derived. The latter is known to be related to 
the potential Kadomtsev-Petviashvilli (KP) equation. The orbit leading to the Riccati 
equation is then computed in different charts. The transition functions between charts are 
shown to generate the nonlinear term in the potential KP equation. Also, the relation to the 
Zakharov-Shabat dressing method is briefly discussed. 

I. INTRODUCTION 

The inverse scattering method as applied to solving non
linear differential equations can be included among the im
portant techniques of mathematical physics. One of its es
sential features is that the equation under study is rewritten 
as the compatibility condition for a system of partial linear 
differential equations that usually depends upon an addi
tional spectral parameter. 1 The role of this additional param
eter is particularly clear in the Zakharov-Shabat dressing 
method,2 a generalization of the original formulation of the 
inverse scattering method.3 One starts from an overdeter
mined system of differential equations written in matrix 
form as 

i ~ '" = U\II, ax 
i !.- '" = J'\II, ay 

( l.la) 

(1.1b) 

where '" is assumed to be an invertible n X n matrix. The 
compatibility condition for (1.1a) and (LIb) takes the form 
of the zero-curvature condition 

~ V -!.- U +i[U,V] = O. ax By 
( l.1c) 

This equation is nonlinear, but as long as U and V are not 
subject to any additional conditions, ( 1.1 c) has as an imme
diate solution, 

U={! "')"'-1, V={~ "')"'-1, (1.2) 

where'" can be any invertible function of x and y. In fact, 
even the stronger results holds; by Frobenius' theorem 
(1.1a) and (LIb) are equivalent to (1.Ic). However, solv-

a) Present address: Department of Mathematics, University of Virginia, 
Charlottesville, Virginia 22903. 

ing (1.1c) becomes considerably more difficult, once U and 
V satisfy some additional conditions. If, for example, U and 
V have to satisfy the following conservation law: 

a a 
- U + - V = 0, ( 1.3) ax ay 

then finding an appropriate'" in (1.2) requires more effort 
than before. What makes the Zakharov-Shabat method so 
attractive is the way in which the constraints, like (1.3), are 
incorporated. This is done, in their method, by introducing 
an extra complex variable A and making U and V depend 
upon A in a special way . For instance, in order to incorporate 
(1.3), it suffices to seek a solution U(A), V(A) to (l.1c) in 
the form4 

U(A)=AI(A+l), V=BI(1-A). (1.4) 

It then follows that A and B satisfy (1.2) as well as (1.3). 
Now, given a solution to (1.1a) and (l.1b) with U and V 
given by (1.4), it is known that new solutions can be pro
duced by finding transformations of '" that preserve that A 
dependence of U and V. For ( 1.4 ), these transformations are 
found by solving the Riemann-Hilbert problem.4 This meth
od is called dressing and is particularly useful in generating 
solitonlike solutions. 1 

An overwhelming majority of nonlinear differential 
equations to which the inverse scattering method has been 
successfully applied comes from low-dimensional models, 
usually involving one space and one time variable. An im
portant question is as follows: To what extent can the inverse 
scattering method be extended to higher dimensions? One 
problem that automatically arises in this context is how to 
account for space-time symmetries of those higher-dimen
sional differential equations. For instance, if one has in mind 
relativistic equations, then the Poincare group should leave 
the solution set of an appropriate generalization of (1.Ia)
( I.lc) invariant. The only known nontrivial examples of rel-
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ativistic equations that admit a Lax representation are the 
self-dual Yang-Mills equationsS.6 as well as certain super
symmetric Yang-Mills equations.' -

9 

The purpose of this paper is to develop a systematic 
treatment of Lax representations admitting certain covari
ance groups. In particular, the nonlinear partial differential 
equations presented below are invariant under a semidirect 
product of translations and scale transformations. 

In Sec. II A, a method is proposed that, in principle, can 
be used to derive nonlinear differential equations, covariant 
under a semidirect product Q = T~ W of the translation 
group T and a group W. In anticipation of Sec. III, this is 
followed by a discussion of the relevant properties of the loop 
algebra LSL(2,C). 

In Sec. III, two examples are presented. One is the po
tential KdV equation that is derived from an action of an 
Abelian group Ton LSL( 2,C)1 P, Pbeing a certain parabolic 
subgroup LSL(2,C). The second example is the sin~or
don equation. Choosing a distribution (in the sense of Fro
benius) on the tangent bundle of (LSL(2,C) x LSL(2,C», 
the sin~ordon equation is derived from the action of the 
translation group, restricted to this distribution. 

In Sec. IV, the potential KP equation is studied in rela
tion to the action of the translation group on the infinite
dimensional Grassmannian manifold introduced by SatolO 

and studied by Segal and Wilson 11 and Dorfmeister et al. 12 

This work was motivated by a preliminary report by 
Wilson. 13 

II. INFINITE-DIMENSIONAL MANIFOLDS AND 
NONLINEAR EQUATIONS 

A. The covariant orbits as a source of covariant 
equations 

Let Gbe an infinite-dimensional Lie group modeled on a 
complex Banach space. As an example, one can take any 
loop group LG associated to a finite-dimensional, semisim
pIe group G. 14 The choice of the modeling space will be im
portant insofar as it controls the class of solutions one can 
generate through the method described in this paper. In this 
presentation, however, we will not address this problem. 

The Lie algebra g of G is assumed to admit the following . 
Banach space decomposition: 

g = h ED v (direct sum of vector spaces), (2.1 ) 

where both h and v are closed, Banach-Lie subalgebras. Let 
V, H denote closed Banach-Lie subgroups of G with Lie 
algebras v and h, whose only intersection vnH is the unit 
element/. 

We will study actions of the additive group Ck (also 
called translations), where k is some integer on the homo
geneous space ofleft cosets M = G IV. In fact, general Ban
ach-Lie group theorylS gives the global existence of the 
manifold M, as well as that of the vector fields arising from 
the left G action on M. Let [g] denote the equivalence class 
containing g. Here G acts on M as follows: 

X' [g] = [xg], wherex,geG. 

The following assumptions are made. 
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(i) The subalgebra v has an Abelian Banach-Lie subal
gebra rwith dim r>k. 

(ii) There is a group homomorphism D from 
S I ... Aut G, i.e., 

D(p )eAut G, for peS I 

and 

D(P1 )D(P2) = D(PIP2); (2.2) 

moreover, both H and Vare invariant under D(p). 
(iii) The map D(p) induces a linear map D(P). of the 

tangent space T. G onto itself that is diagonalizable and the 
following holds: 

and 

g=EDgp 
jeZ 

(2.3) 

D(p).Zj =pjZj' for ZjEgj' (2.4) 

(iv) The subalgebra r is invariant under D(p). 
By virtue of (ii) we can define an action ofD(p) onMby 

setting 

D(P)' [g] == [D(p)g] == [g(p)]. (2.5) 

Next, we consider a nonlinear representation of the 
group of translations Ck by means of the following proce
dure. 

By splitting (2.3), we write 

r= ED rl' rlCg; 
ieZ 

and assume that dim rl" 1. 
Denote by Pl,P2,,,,,Pk a basis of Ck. Then we choose a 

sequence 

i ... aU), for i = 1, ... ,k, 

such that 

dim r a(i) = 1. 

Each choice of the sequence (a(1), ... ,a(k») defines an im
bedding a of Ck into r. Note that the choice of a sequence 
i ... aU) amounts to picking a k-dimensional subalgebra 
( = subspace, since r is Abelian) of r, invariant under D(p). 
On the group level we obtain an imbedding of Ck into r, 
where r is connected Lie subgroup of G with Lie algebra r, 

Indeed, let Pa(l} '''',Pa(k) be a basis for 
k 

ra = ED ra(i}' 
;=1 

then t = ttPl + ... + tkPk is mapped by a into 

k 

.L=exp L t;Pa(i)Er. 
;=1 

(2.6) 

Since r acts on M, we obtain in this wayan action of Ck ort 
M, namely 1: [g] = [tg]. Denote by Ck

• [g] the orbit of Ck 

through [g] and by 0 k(M) the set of all orbits, i.e., 

Ok(M) =M ICk. (2.7) 

Then 0 k(M) is invariant under the scale transformations 
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D(p) as it can easily be seen from the following computa
tion: 

D(p)'1: [g] = [D(p )1P(p)g] 

= [expctl t;D(p).Pa(i) )g(P)] 

= [expctl t;Pa(i)pa(i) fr(P) ] 

=11.p). [g(p)], 

where11.p) = tJ!l(l)PI + ... + tkP(k)Pk· 

From the above, it follows that D(p) maps the orbit go
ing through the point [g] into the orbit passing through the 
point [g(p)]. 

Now, assume that g = gHgy, gHEll, gyEV. Then for 
small t's, 

1.g =gHCL)gyUJ, 

where gH UJEll, gyCL)eV. Hence we can set 

1: [g] =gHUJ 

(2.8) 

(2.9) 

with the understanding that (2.9) holds true for a properly 
chosen neighborhood of zero in Ck (this set depends ongH ). 

Consider the set of commuting vector fields (infinitesi
mal transformations) on M defined by 

X; ([g]) = ! exp(EPa(i) ). [g) IE = 0' i = 1, ... ,k. 

(2.10) 

This set defines an integrable distribution 16 on M. As long as 
r has trivial intersection with the stabilizer of [g], locally 
the orbit Ck. [g] furnishes an integral manifold for this dis
tribution. Every vector tangent to the orbit Ck

• [g] at a point 
1: [g] is a linear combination of the vectors 

(2.11 ) 

where a; = a fat;. 
With the help of (2.9) we can identify the commuting 

vector fields X;, when restricted to the orbits Ck
• [g], with 

elements of the Lie algebra h by defining 

(gH (L»)-\X; U: [g]) =L; (1: [g]). (2.12) 

At this point, however, we would like to emphasize a local 
(chart dependent) character of the above statement. In gen
eral, the coefficients of the L; will have singularities reflect
ing the topology of M [see also (2.8)]. 

If G can be represented as a subgroup of the group of 
linear operators acting on some vector space, then 

L;(1: [g]) =gH(L)-1 a;(gH(L», 

which is understood as the multiplication of linear opera
tors. 

The commutativity of the vector fields (2.10) translates 
now into the zero-curvature condition 

a;Lj (L' [g]) - ajL; U: [g]) 

+ [L;U: [g]),Lj (1: [g])] =0. (2.13 ) 

The commutativity of the vector fields for L; (1: [g] ) 
generates, in general, nonlinear differential equations. The 
type of nonlinearity, however, depends on the particular 
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chart used to evaluate (2.11), as it is illustrated in Sec. IV. 
We now discuss properties of these nonlinear equations 

due to scale covariance. 
Since h is invariant under D(p), and it is also graded 

relative to D (p ), one can write 

h= EB hn , 
neW 

where WCZ. This implies that L; (L [g]) is graded, i.e., 
dimhn 

L;(1:[g]) = L L ,87.m(1:[g])h:;', 
neW m = 1 

where for fixed n, {h :;'} denotes a basis of hn • 

From (2.10), it follows that 

(2.14 ) 

d 
D(p ).X; ([g) = dE D(p ) exp (EPa(i) ). [D(p)g] IE = 0 

= :E exp(Epa(i)Pa(i»' [g(p)] IE=O 

=pa(i)X;( [g(p)]). (2.15a) 

Hence 

D(p ).L; U: [g]) = LJ1.(p)· [g(p) ])pa(i). (2.15b) 

Upon combining (2.14) and (2.15b), we arrive at the fol
lowing transformation rule for the coefficients,8 2m (1: [g] ) : 

,8 2m (L[g] ) = pa(i)p - n,8 2m (lip)' [g(p)]) 

or, equivalently, 

(2.16) 

Since (2.13) is equivalent to an infinite system of nonlinear 
equations for the coefficients ,8 2m' by writing (2.13) at the 
point [g(p)], we see that (2.16) describes an action of the 
scale transformations on the space of solutions to (2.13). 
The above considerations are summed up in the following. 

Proposition 1: The zero-curvature equation (2.13) is in
variant under the group of scale transformation D (p). The 
explicit action of D(p) on the components of LC1: [g) is 
given by (2.16). 

In order to successfully implement the above method, 
one has to be able to actually compute X; (1: [g]), or, at 
least, establish what form X; (L' [g] ) may take. The same, of 
course, may be said about L; (,L [g] ). Two concrete methods 
will be employed to derive the differential equations. In Sec. 
IV, the commuting vector fields will be computed explicitly. 
In Sec. III, however, another method will be used. 

Rewrite (2.8) as 

ggi I(L) = (,L)-lgn(,L), (2.17) 

and notice that (2.17) can be considered as a map from the 
orbit Ck

• [g] into a submanifold of G, which is defined by the 
image of 

rp: rp(1: [g]) =ggi 1(,L). 

Indeed, (2.17) does not depend on gy [see (2.8)], 
hence rp is well defined as a map from Minto G. Next, by 
identifying the tangent bundle TG with G xg through the 
left translations on the group, we see that the vector fields 

M; U: [g]) = (rp -I (1: [g]»). a;rp(1: [g]), (2.18) 

defined for i = 1, ... ,k, form the image under rp. of the vector 
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fields Xj <1: [g] ). It is important to notice that 
M j (1: [g]) belong to v. 

Hence if we use L j (1: [g]) instead of X j (1: [g] ), then 
we can compare the vectors tangent to the orbit Ck

• [g] with 
those tangent to the image of ffJ. From (2.18), it follows that 

M j (1: [g]) = L j (1: [g]) - gii IUJPO(i)gHUJ. 
(2.19) 

The latter can be used to prove that ffJ is locally an immer
sion. To this end, it suffices to show that ffJ. CO is a one-to
one map. To prove it, let us consider 

j=k 

I cj M j (1: [g]) = 0, 
j=1 

where not all of the cj's are zero. However, in this case, by 
(2.19) we obtain 

:t: c;L j <1: [g]) = gH <1J Ct: CjPj 'Ii I CO 

or 

gH CO :t: cjLj (1: [g] )gii I CO = Ct: Cjpj) . 

The left-hand side of the above being in h and the right-hand 
side being in v implies that both are actually zero. This con
tradicts the injectivity of o. 

As before, the M j (1: [g] ) 's satisfy the zero-curvature 
condition 

aj~ (1: [g]) - ajMj (1: [g]) + [M; (1: [g])] = O. 
(2.20) 

Recall that v is also invariant under D(p), thereby it can 
be written as 

v = Ell VI> 
leU 

where UEZ. Therefore each M j (1: [g] ) can be decomposed 
as follows: 

dim VI 

M j (1:[g]) = ~m~1 a:.m (1:[g])vi, 

where for fixed I, {vi} denotes a basis of VI' 

Applying D (p) to ffJ (1: [g] ), we see that 

D(p)ffJ(L' [g]) = ffJ (.tip)' [g(p)]). 

Hence 

D(p ).M; (1: [g]) = po(i)Mj(.tip)· [g(p)]), 

and the transformation rule for a:.m reads 

a:.m (1: [g]) = pOU) - la:.m (.tip) . [g]), 

which in tum leads to 

a:.m (1: [g(p) ]) = / - aU) a:.m (.tip -I) . [g]), 

(2.21 ) 

(2.22) 

(2.23) 

where lEU, i = 1, ... ,k. The zero-curvature condition (2.20), 
when written in terms of a:.m , is equivalent to a system of 
nonlinear equations, which is invariant under the transfor
mation (2.23). However, for the concrete cases presented in 
Sec. III, this system turns out to befinite. The appearance of 
only finitely many equations makes the use of (2.17) as a 
tool for generating equations more practical than that of 
(2.13 ). 
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We would like to close this section with several remarks 
about the implementation of the scaling invariance. In fact, 
we have used a rather restricted class of the scaling transfor
mations, namely those with IP I = 1. If one wants to include 
p's of absolute values different from unity, one is likely to 
find that D(P). cannot be defined on the whole tangent 
space g = Te G [see (iii) ]. Indeed, consider an element neg 
such that 

00 

n = I nkzk, for Zkegk' 
k= - 00 

Then, formally at least, 
00 

D(p).n = I nkpkzk' 
k= -00 

However, in general, in a given Banach norm ong, the series 
on the right will not converge. This difficulty is indicative of 
the problems one is likely to encounter when dealing with 
general scaling transformations. We will return to this prob
lem at the end of Sec. III B. 

B. Loop algebras and loop groups 

This section contains a review of results concerning loop 
algebras and loop groups. 14.17 They will be instrumental in 
Sec. III. First, we give a very concrete example of a loop 
algebra. Consider the Lie algebra sl(2,C) whose entries are 
trigonometric polynomials, i.e., 

L (sl(2,C») = L ® sl(2,C), 

where L stands for the algebra of trigonometric polynomials, 
that is, the finite Fourier series. It is convenient to introduce 
the standard basis of sl (2, C) : 

e = (~ ~), f = (~ ~), h = (~ ~ J . 
Consequently, a basis for L (sl(2,C») is defined by setting 

e(k) = (~ ~ k), f(k) = C k ~), 

h(k) = (~k _~k)' 
(2.24 ) 

where A,ES I. 

In terms of the basis {e(k),f(k),h(k); kEZ} the com
mutation relations for L (sl(2,C») are as follows: 

[h(j),e(k)] = 2e(j + k), 

[h(j),f(k)] = - 2f(j + k), (2.25) 

[e(j),f(k)] = h(j + k), [h(j),h(k)] = 0, 

where j,kEZ, and all remaining commutators vanish. 
In Sec. III, we will use the following subalgebra 18 of 

L (sl(2,C». Define 

. . (0 A, 2
i+

1
) 

P2i+ I = e(2J + 1) + f(2J + 1) = U. 2j+ I 0 ' 

(
A,1J 

X 2) = h(2j) = 0 

foralljEZ. 
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Denote by g the vector space spanned by the elements of 
the set {P2i+ I ~;jeZ}. Theng is also a Lie algebra with the 
following commutation relations: 

[P2i+ pP2k + I] = 0, [P2i+ l,xk] = 2X2i+ I +k' 
(2.27a) 

{
2( - ly+klj+k' if j + kE2Z + 1, 

[ X.,xk] = 
J 0, otherwise. 

(2.27b) 

From the above commutation relations, it follows thatg 
is a Z-graded Lie algebra, i.e., 

g= Ell gj' where [gj,gk] Cgj + k· 
jEZ 

Also (2.27a) and (2.27b) imply that g has three Abelian 
subalgebras 

to) = {P2i+ p jeZ}, 

to = {X2j + I' jeZ}, 

t 2) = {X2j ' jEZ}. 

Denote to) == r. This algebra will be employed in Sec. III. 
So far, everything has been purely algebraic, i.e., when

ever the summation appeared, it was understood to mean a 
finite sum. One can complete the loop algebra L (s1(2,C»), 
relative to some convenient topology. Since we want to re
main within the Banach setting, we can start from a Banach 
algebra of functions on S I and then consider all matrices 
from sl(2,C) whose entries belong to this algebra. However, 
if we want to make use of the method presented in Sec. II A, 
we have to make sure that all the assumptions of this method 
are satisfied. In particular, the existence of the Banach space 
decomposition (2.1) has to be checked once h and v have 
been chosen. Below we present a general setting which, for 
all the examples we know of, ensures that (2.1 )-(2.5) hold 
true. 

We shall follow Appendix A of Goodman and Wal
lach. 19 

Let Aw be the space of functions 

I(}.) = L a(n)}. n, 
neZ 

}'ES I, such that 

1I/IIw = L la(n)lw(n) < 00, (2.28) 
neZ 

where w is a weight, that is, w: 1..-+ (0,00 ) and 
w(k + m)<;w(k)w(m). 

With the norm 11'11, pointwise multiplication of func
tions and *-operations given by complex conjugation, Aw is a 
commutative Banach *-algebra. Here, Aw is decomposing, 
i.e., fori as above, 

I+(}.) = L a(n)}. n, I-(}.) = L a(n)}. n 
n;;oO n<O 

belongtoA w and/=l+ +1-. 
Later on we will use the following projection operators: 

(PI+)(}.) = L a(n)}.n, (PI-)(}.) = L a(n)}.n 
n>O n<O 

and 
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(Pof)(}.) =a(O). 

Now, let M2 (Aw) denote the algebra of 2 X 2 matrices with 
entries inAw' By defining a norm 

{ 

2 } 1/2 

IITII = jj'2;IIITjj ll 2 
, (2.29) 

M 2 (A w ) is made into a Banach algebra. Next, we define 
SL2(Aw) = {gEM2(A w ): detg= n. This is a closed sub
group of the group of invertible elements of the Banach alge
braM2 (A w )' It can be shown (see Lemma A.2 in Goodman 
and Wallach), that SL2(Aw) is a complex lie subgroup of the 
group invertible elements of M 2 (A w ) with Lie algebra 
sI2(Aw) = {xEM2 (A w ): tr(x) = O}. The Fourier-series ana
log ofthe unipotent group oflower-triangular matrices with 
diagonal entries 1 and the group of upper-triangular matri
ces are defined by 

H(Aw) = {gEM2(A w): P +g = 0, P~ = I, 

and detg = n, 
V(Aw) = {gEM2(A w): P _g = 0, detg = n. 

(2.30) 

(2.31) 

Set Q_ = Po + P _, Q+ = Po + P _. Then, by defini
tion, 

H(Aw)CQ_M2(A w)' V(Aw)CQ+M2(Aw)' 

Both Q+M2(A w) and Q_M2(Aw) are Banach algebras, and 
by repeating the previous procedure, as applied to SL2(Aw)' 
one can show thatH(Aw) and V(A 2) are Banach Lie groups 
with the Banach Lie algebras, 

h(Aw) = {xEP_M2(Aw): trx=O}, 

v(Aw) = {xEQ+M2(Aw): tr x = O}. 

To prove that they are both Lie subgroups of SL2(Aw)' it 
suffices to show that both are immersed as manifolds in 
SL2 (Aw ). This can be easily checked at the origin. Indeed, at 
the origin, both h(Aw) and v(Aw) have topological comple
ments (in fact, they are complements of each other). This 
guarantees that H(Aw) and V(Aw) are locally immersed at 
the origin in SL2 (Aw ).20 Then, by translating the origin to 
any other point of either H(Aw) or V(Aw)' this holds true at 
every point. HenceH(A w) and V(Aw) are (injectively) im
mersed as Banach manifolds in SL2(Aw)' This proves that 
they are Lie subgroups of SL2 (Aw ). 

III. EXPLICIT EXAMPLES 

In this section, two concrete applications of the scheme 
described in the first part of the previous section are present
ed. 

A. Potential KdV equation 

Letg denote the completion (in the sense of Sec. liB) of 
g, g being defined by (2.27a)-(2.27c). 

In accordance with Sec. II A, we decompose g into the 
subalgebras h and v: 

g=hEllv, 

where 
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aEv 
iff 

00 

a(A) = ae( - 1) + L (al,\)h(2k) + al,2)e(2k + 1) 
k=O 

and 
bEh 

iff 
00 

b(A) = Pf( - 1) + L (b l,\)h( - 2k) 
k=' 

+ b l,2)e( - (2k + 1») + b l,31( - (2k + 1))). 

The subalgebras h and v differ but slightly from h (Aw) and 
v(A w )' Indeed, v has only one more element e( - 1), and 
this makes va maximal parabolic subalgebra of g. Similarly, 
h differs by one element from h (Aw ). Following the discus
sion in Sec. II B [see e.g., (2.30) and (2.31)], we can intro
duce three Banach-Lie groups G, H, and V, the Lie algebras 
of which are, respectively, g, h, and v. Now consider y = yO 
and an action of C2 on G IV. The imbedding a of C2 into y is 
defined by choosing a sequence l-+a(1) = 1, 2-+a(2) = 3 
(see Sec. II A). This means that t = tIP, + t3 P3 is mapped 
by a [see (2.6)] into 

1..= exp(t,P, + t3P3)Er. (3.2) 

Then, let [g] be an element in M and suppose [g] be acted 
upon by 1.. to the left. Assume, in addition, that g = gHgV' 
Then (at least for small t 's), from (2.9) we obtain 

1: [g] =gH(1..) (3.3a) 

where 

(3.3b) 

The last equation describes the flow 1..g in terms of the mo
tion g v (1..) along the fiber and the motion gH (1..) on the 
manifoldM. 

From (2.26a), we have 

P, = e(1) + f(1), P3 = e(3) + f(3). (3.4) 

We can parametrize the first few terms of gH (1..) as follows 
[see (2.30)]: 

gH(1..) =I+Pf( -1) +b( -2) +o( -3), (3.5) 

whereb( - 2) =A -2(aI - al2u3) , 0"3 is the third Pauli ma
trix, and o(n) contains only powers orA. \ k<n. Consequent
ly, 

gii'(1..) =1 -Pf( -1) -be - 2) +o( - 3). (3.6) 

With the help of (3.5) and (3.4), we can write 

L, (1: [g]) = apf( - 1) + o( - 2), (3.7) 

and also 

gii 1 (1..)P,gH (1..) 

= (I - /3f( - 1) - b ( - 2) + 0 ( - 3) ) 

XO",(1)(I+Pf( -1) +b( -2) +o( -3»), (3.8) 

where 0", (1) = AO",. 
By straightforward algebra, (3.8) reduces to 

gii '(1..)P,gH (1..) 

=0",(1) +/30"3 +ae( -1) -/32f( -1) 
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- af( - 1) + o( - 2). (3.9) 

The last equation, along with (3.7), allows one to compute 
M, (1: [g] ), defined earlier by (2.19), yielding 

M,(1: [g]) = - (0",(1) +/30"3 + ae( - 1)) 

+ (/32 + a + ap)f( - 1) + o( - 2). 

However,M,(1: [g]) belongs to v, hence, by virtue of (3.1), 
the coefficient at f( - 1), as well as all of the coefficients in 
o ( - 2), have to vanish. Thus M, (1: [g]) contains only 
finitely many terms, 

M,(1:[g]) = -(0",(1)+/30"3+ae(-1)), (3.10) 

where 

/3 2 + a + ap = o. 
Similarly, to compute M3 (1..' [g] ), we write 

L3(1:[g]) =a~f( -1) +o( -2), 

and with the help of (3.9) we obtain 

gii '(1..)P~H (1..) 

=A 2gii '(1..)P,gH(1..) 

(3.11 ) 

(3.12) 

= 0", (3) + /30"3(2) - (a + /3 2)f(1) + ae(1) + Y0"3 

-c5e( -1) -O"f( -1) +o( -2), (3.13) 

where some yet to be specified parameters y, c5, 0" have been 
introduced. Since M3 (1..' [g]) belongs to v, we can right 
away eliminate the coefficient atf( - 1), thereby obtaining 

O"+a~=o. (3.14) 

Furthermore, a relation between y and c5 can be established 
by the use of the following method. Compute the determi
nantofgii '(1..)P~H (1..). It reads det 0", (3) = - A 6, ifone 
evaluates it directly. However, by making use of (3.13) and 
(3.14), we arrive at - A 6 + A 2(2PY - c5 - a(a + /3 2) 
+ a~) + 0(0). Hence 

2Py - c5 - a(a + P 2) + a~ = O. (3.15) 

Using (2.19), with the help of (3.12) and (3.13), we can 
express M3 (1: [g] ) as follows: 

M3(1..· [g]) = A 2M, (1: [g]) + (a + /3 2)f(1) 

- Y0"3 + c5e( - 1). (3.16) 

The remaining part of the derivation consist of (i) the com
putation of the zero-curvature condition (2.20) for 
M,(1:[g]) andM3(1:[g]), and (ii) the elimination ofa 
and c5 by the use of the constraints (3.11) and (3.15). 

Upon substitution of (3.10) and (3.16) into (2.20) and 
performing a standard computation, we arrive at a Laurent 
polynomial in A; by virtue of (2.20), the coefficients of this 
polynomial have to vanish. All of these coefficients, along 
with the corresponding elements of the basis of v, are listed 
below: 

(ap - ap)0"3(2) = 0; 

(a,a + 2y)e( 1) = 0; 

(a; + 2Pap - 2y)f(1) = 0; 

(a~ - a,y + apa + c5)0"3 = 0; 

( - a3a - a,c5 + 2ya + 2Pc5)e( - 1) = o. 
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Hence, in particular, we obtain 

ala = - 2r, 
a/3= air - a aJ] -~. 

( 3.17) 

(3.18 ) 

After substituting (3.17) into (3.18), it follows from (3.11) 
and (3.15) that 

aj3 = ~a~ ({32 + aJ]) + 2({32 + aJ]) 

XaJ]-a/3-{3a l (aJ] +(32), 

which in turn is equivalent to the potential KdV equation 

aj3 = ia1{3 + ~(aJ])2. (3.19) 

B. The slne-Gordon equation 

Consider the subgroup G' of G defined as follows: 

, { - (a (A. ) b(A. »)} 
G = geG, g(A.) = b(A.) a(A.) , (3.20) 

where the Fourier coefficients of a (A.) and a (A.) are complex 
conjugates of each other. The Lie algebra g' of G ' consists of 
elements of the form 

(~(A.) 
\p(A.) 

(3(A.) ) 
- ia(A.) , 

where a (A.) has real Fourier coefficients. This algebra has a 
natural decomposition 

g' =g'_ $g'+ =g'nh(A) $g'nv(A). (3.21) 

Now consider a direct product 

G'XG'=-=G = {(gl,g2); gl,g2eG '}. (3.22) 

The Lie algebra of a direct product is the direct sum of the 
corresponding Lie algebras, i.e., 

(Ref. 21) belongs to v. In addition, this time r has coeffi
cients in R. The imbedding a ofR2 into ris defined by choos
ing a(1) = - 1, a(2) = 1, which means that teR2 is 
mapped into 

,L= exp(t_P -I + t+P1)er. (3.26) 

Now,Lacts on G diagonally, i.e., 

1J.g1,g2) == (.Lgl,.Lg2)· 

Assume that (gl,g2)eG and 

(3.27) 

gl =gl-gV, g2 =g2+gv, (3.28) 

where (gl-,g2+)eH and (gv,gv)eV. Since for small t's, we 
have1J.g1,g2)eHV, there existsgv(,L)eV such that 

.Lgl = (.Lgl)-gV(,L), (3.29a) 

.Lg2 = (.Lg2)+gV(,L)· (3.29b) 

By eliminatinggv(,L), we can rewrite (3.29a) and (3.29b) 
as follows: 

(.Lgl)(.Lg2)-1 = (.LgIL(.Lg2) ::;l. (3.30) 

It is clear that (3.30) is equivalent to (3.29). We would like 
to point out that (3.30) is a special case of the Riemann
Hilbert problem.2 The Riemann-Hilbert problem appears 
within the context of the Zakharov-Shabat method as a 
means of proliferating solutions to nonlinear differential 
equations (see the Introduction) . In that setting, our,L would 
represent a vacuum solution that becomes dressed through 
(3.30). 

To make contact with the preceding example of the 
KdV equation, we can spell out the local description of the 
orbit R2. [g): 

1: [g) = «.LgIL,(1.g2)+), (3.31) 

g = (g',g'). 

Define 

(3.23) where g= (gl,g2)' Correspondingly, the vector fields 
L; (1: [g» take the form 

h = (g'_ ,g'+ ) 

and, respectively, 

(3.24) L_(1: [g) = «1.g1) = I a_1(.LgI)_' 

(.Lg2) ~ I a_ I (1.g2)+), (3.32a) 

v = {(x,x); xeg'}. (3.25) L+(1: [g» = «.LgI) = I a+I(.LgI)_, 

Lemma 1: Let h,v be given by (3.24) and (3.25). Then 

g= h$v. 

Proof: One must show that any (xl ,x2)eg can be 
uniquely decomposed in terms of elements from hand v. Let 
(X I,x2)eg and choose 

x_eg'_ and x+eg'+, 

such that XI - X2 = x_ + x+. Moreover, set X = XI - X_. 
Then 

x+ +x=x+ +xl-x_ =xl - (X I -X2) =X2 

and 

(XI,x2) = (x_,x+) + (x,x) 

follows. This sum is direct, since 

(x,x)e(g'_ ,g'+ ) 

implies X = O. 
Denote by V, H the connected subgroups of G whose Lie 

algebras are v and h and consider the homogeneous manifold 
M = G IV. Note that now the whole Abelian subalgebra r 
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(3.32b) 

where a_I = alae, a+ 1 = alat+. 
As discussed in Sec. II A, one can map the orbit Rk

• [g) 
into the submanifold of G defined by (2.17). The counter
part of (2.17) is given by 

tP(1: [g» = (glgi I(.L), g2Ki I(,L»). 

The vector fields tangent to this submanifold, when pulled 
back to the origin of the group G, read 

M_(llg» 

= (tP-I(.L' [g] )a_ItP(.L· [g]») 

= (gv(,L)a-lgi 1(,L),gv(,L)a_lgi I(,L») 

= (1.gI) = I a_I(.LgI)_ - (.LgI) = Ip -1(.LgI)-' 

(.Lg2) ~ I a_ I (1.g2) + - (.Lg2) ~ Ip -1(.Lg2)+)' 

where use has been made of (3.29a) and (3.29b). Thecondi
tion that M _ (1: [g] ) belongs to v means that 

(.LgI) = I a_ I (1.gI)_ - (1.gI) = Ip -1(.LgIL 
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From (2.27), we obtain 

P_ 1 =e( -1) +f( -1). 

Set 

(.Lg2):;: 1 = e~a e~la}I + 0(.1», (3.34) 

where 0(.1) contains only positive powers orA. Upon substi
tuting (3.34) into (3.33) and comparing powers of A, we 
find that 

M_U: [g» = - (cos 2a O'1( - 1) - sin 2a O'1( -1), 

COS2aO'I( -1) -sin2aO'2( -1)). 

A similar computation performed for 

M+U: [g» = tP(.t· [g] )-1 altPU: [g» 

gives 

(3.35) 

M U: [g]) = - (0'1(1) + i a1aO'3,O'I(1) + i a1aO'3)' 
+ (3.36) 

The final step is to evaluate the zero-curvature condition 
(2.20). A straightforward computation shows that the 
above equation is equivalent to 

(a_I a+1a - 2 sin 2a)O'3 = 0, (3.37) 

which in tum produces the sine-Gordon equation 

a_1a+1a = 2 sin 2a. (3.38) 

This equation is invariant under the following transforma
tion: 

anew (t_,t+ ) = a(pt_,p-It+), 

which agrees with (2.23), if one sets 1= -l,a(1) = -1 
[see also (3.35)]. 

We would like to remark that the above formula holds 
only for realp. In our setting, this implies thatp can take on 
two discrete values {- 1,l}. However, it is possible to ex
tend our discussion to other real p's by considering those 
elements geG for which g(p )eG, where g(p) (A) = g(pA). 
For instance, let us choose the weight function w [see 
(2.28)] to be equal to one. With this choice of w, Aw be
comes a Banach space of maps, S 1 _ C, with absolutely con
vergent Fourier series. Then we can consider a subset of Aw 
that consists of real analytic functions, that is, functions ana
lytic in some annulus containing S I. Takeg to be one of such 
functions, g is therefore analytic in the annulus lIr < 1.1 I < r 
for some r> 1. Thusg(p)eA w ifp<r. 

Finally, (3.10) along with (3.16), (3.35), and (3.36) are 
Lax pairs for the KdV and the sine-Gordon equation. They 
have been derived from commuting vector fields of infinitesi
mal translations on infinite-dimensional manifolds. 

IV. SCALE INVARIANT RICCATI EQUATION ON AN 
INFINITE-DIMENSIONAL GRASSMAN IAN MANIFOLD 

In this section, an account is given of another example 
illustrating how one can relate nonlinear differential equa-
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tions to an action of the translation group on an infinite
dimensional manifold. 

Consider the space H = L 2 (S I) of all square-integrable 
complex-valued functions on the unit circle S 1 = {AeC; 
1.1 I = 1}. This is a separable Hilbert space with the scalar 
product ('1') given by 

(f,g) = _1_ r27T 

f (eiIP )g(eiIP)dtp. 
21T Jo (4.1 ) 

One defines two closed subspaces H + and H _, the for
mer being spanned by the basis elements {A k, k~O} and the 
latter by {A k, k < O}. Furthermore, let V + denote the set of 
Hilbert-8chmidt operators from H + to H _, and V - the set 
of all bounded operators from H _ to H +. With any pair 
(x,y) such that xe V + ,ye V -, one can associate a closed sub
space (x:y) of Hby setting, 12 

(x:y) = closed span of the columns 

(
I -yx) 

of the matrix _ x ' (4.2) 

where the matrix is written relative to the splitting 
H = H+ fBH_. Another pair (x',y')eV+ X V- gives the 
same closed subspace if and only if there is an invertible 
operator geGL(H +) such that 

(I =~x) = (I ~~~')g. (4.3) 

From ( 4. 3), it follows that x = x'g, and, upon substituting x 
for x'g in the upper block of (4.2), one obtains 

g = I - (y - y')x. (4.4) 

Since g is invertible, I - (y - y') has to be invertible for 
the pair (x',y') to represent the same subspace as (x,y). If 
I - (y - y')x is invertible, x' can be found from the relation 

x'=x[I- (y-y')X]-I. (4.5) 

The set X of all closed subspaces of H constructed via (4.2) 
can be shown to be a Hilbert manifold. Here X is an infinite
dimensional analog of the Grassman manifold. A more com
plete statement reads l2 as follows. 

Theorem 1: (i) The sets Ua = {(x:a); xeV+}, aeV-, 
together with the maps 

'l'a: V+-Ua , x-(x:a), 

are charts of X. 
(ii) The "change of coordinates" 

tpba = 'l'b-10'l'a-I(Ua n Ub ) -'I'b-I(Ua nUb), 

is given by 

tpba (x) = xli - (a - b)x] -I. 

(iii) ForanyaeV-, the chart Ug is open and dense in X. 
From (i), it is clear that X is a Hilbert manifold: X is 

modeled on the Hilbert space of Hilbert-Schmidt operators. 

A. COO action onX 

Let.t be a finite sequence of numbers from C, i.e., 
.t= (t1,t2, ... ). The set ofallsuch.t's forms a vector space. We 
denote this vector space by Coo. The action of .ton X is given 
by 
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.L= exp L tkPk, (4.6) 
k=1 

where Pk is the kth power of the shift operator P (PA m 

= A m + 1 for each meZ). Hence an imbedding ofC'" into the 
group of automorphisms of X is accomplished by the choice 
of the Abelian algebra (see Sec. II A) 

r=EBCP i 

iEZ 

and the map 

(4.7) 

i-+a(i) = i, for i;>1. (4.8) 

To describe explicitly the·action of .Lon X, we write the ma
trix of .Las follows: 

_ (a(.L) b(.L») (4.9) 
.L- 0 d(.L) , 

where the block entries are written relative to the splitting 
H =H+ EBH_. Now let Wbe a point in X. Hence W= (x:y) 
for some (x,y)e V + X V -. Then, by using ( 4.2), we define a 
new point1: Wby setting1: W = closed span of the columns 
of the matrix 

(4.10) 

Carrying out the multiplication of matrices in (4.10), we 
obtain 

1: W = (XL (.L): y(.L»), 

where 

xd.L) = d(.L)xa(.L)-1, 

y(.L) = a(.L)yd(.L) -I + b(.L)d(.L) -I. 

(4.11 ) 

(4.12a) 

(4.12b) 

Formulas (4.12a) and (4.12b) describe an action of the 
groupC'" on V+ X V-. It is important to notice that (4.12a) 
itself describes a linear action of COO on V +. However, from 
the point of view of the manifold X, this linear action on V + 

has to be accompanied by a compatible change of charts as 
defined by y(.L). This point of view will be explored more 
thoroughly in Sec. IV C. 

In the remaining part of this section we study the action 
of C'" in the particular chart Uo. 

Recall the definitions 

Uo = {(x:O); XEV+} 

and 

'110: X-+ (x:O). 

Furthermore, sety = 0 in (4.12b), then, from (4.12a) and 
(4.12b), 

1: W =1: (x:O) = (XL (.L),b(.L)d(.L) -I). (4.13) 

The last equation means that d(.L)xa-I(.L) is the coordi
nate of the point 1: W in the chart Uq(tl' where q(t) 
= b(.L)d(.L)-I. Now assuming that1: Wis in the domain 
of the chart Uo, we can write (4.13) in terms of the Uo chart. 
Indeed, from Theorem 1 (ii), we obtain 

1: (x:O) = (XL (.L) [I - b(.L)d(.L) -IXL (.L)] -1:0) 

= (XL (.L)[I - b(.L)xa(.L) -I] -1:0). 

Hence 
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1:x=x(.L) = xd.L) [I - b(.L)d(.L) -IXL (.L)]-I 
(4.14) 

describes for small.L's a nonlinear representation of the group 
of translations on V + . 

On the other hand,1:X is a point of the orbit C"" W, if 
written in the Uo chart. Hence from (4.14) we can compute 
the vector fields X i (1:W) defined by (2.10) and (2.11), 
which are tangent to the orbit C'" . W. A simple computation 
shows that in the chart Uo, 

Xi (1: W) = aix(.L) 

= p i_ x(.L) - x(.L)p i+ + x(.L)s(i)x(.L), 

i> 1, (4.15) 

where 

Therefore the Riccati equation (4.15) describes the vector 
fields tangent to the orbit C.,. . W. A generic role this equation 
plays in relating the KP equation to the action of C.,. on X is 
discussed in Ref. 12. Moreover, in the same paper, it has been 
shown that one of the matrix entries of X ( .L ), namely 
X(.L)_I,O = (A -llx(.L)IA o), satisfies the potential KP 
equation 

~ a iX(.LL 1,0 = al [aJX(.L) _ 1,0 - ! a ix(.L) _ 1,0 

+ ~(alx(.L) _ 1,0)2]. (4.16) 

B. Scale Invarlance of the Rlccatl equation 

The remainder of this section is devoted to the study of 
the scaling properties of the Riccati equation (4.15), as well 
as the differential equation related to the linear representa
tion (4.12a). 

First, consider the operator D(p)eGL(H), PEC, 
Ip I = 1, defined by the equation 

(D(P)f)(A) =f(pA), for feH=L2(SI). (4.17) 

The matrix representation for this operator reads 

D(p) = (4.18 ) 

The corresponding diagonal blocks (relative to H + and 
H _) are denoted as D + (p) and D _ (p). 

Next we consider the adjoint action of D(p) on r, 
(D(p)pkD(p)-I)f(A) = (D(p)pk)f(p-IA ) 

= D(p)A kf(p-IA ) = pkA kf(A) 

= pk(pkj) (A). 

That is, 

D(p)pkD(P-I) =pkpk, ( 4.19) 

which agrees with (2.4). 
Finally, define an action of D (p) on X by setting 
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D(p)' (x:y) = (D_ (p)xD -;.1(p):D+(p)yD = I(p») 

=: (x(p) :y(p». (4.20) 

From (4.11), we obtain that 

D(p)'1: (x:y) = D(p) . (XL CO:yCO) 

= (D_(P)XL UJD -;.I(p): 

D+ (p)yU.>D = I(p»). (4.21 ) 

However, with the help of (4.12a) and (4.12b), we obtain 

D_(p)xL UJD -;.I(p) 

= D_(p)dCL)D = l(p)x(p)D+(p)aUJ-ID -;.I(p). 

To interpret the latter formula, with the help of (4.9), we 
compute 

D(p ).Jl)(p)-I 

= (D+(p)aUo .. )D -;.I(p) D+(p)bUJD =I(p») 
D_(p)dUJD = I(p) . 

(4.22) 

By virtue of (4.6) and (4.19), (4.22) can be written as 

D(p).Jl) -l(p) =11.p). (4.23) 

From (4.23), it follows that 

D_(p)xL UJD -;.I(p) = d (11.p»)x(p)a- I(11.p») 

holds. Similarly, by (4.12b), (4.22), and (4.23), 

D+(p)yUJD =I(p) 

=D+(p)aUJyd-1UJD =I(p) 

+D+(p)bUJdUJD =I(p) 

= a(l1p) lY(p)d (11.p) )-1 + b (11.p»)d (11.p) )-1. 

Hence 

D(p)'1: (x:y) =11.p) ·(x(p):y(p»). 

The upshot is clearly the same as in Sec. II. 
Corollary 1: The set of all orbits 

o "" (X) = X /C"" 

is invariant under the scale transformation D(p). 

(4.24) 

Let D(p). denote the induced action of D(p) on vec
tors tangent to X. 

Corollary 2: 

D(p).X/(1: W) =p/X/(11.p)· W(p»), 

for i>1. 
Writing the above formula at the point11.p-I). Wand 

using (4.21) and (4.15), we arrive at 

D(p).X/(11.p-l). W) =/X/(1: W(P») 

or 

X/(1: W(p») =p-/D_(p)X/(l1p-I). W)D -;.I(p), 

which is the counterpart of (2.16). 

C. Group-theoretical linearization of the Rlccatl 
equation 

This part contains a detailed study of the linear repre
sentation of the group C"" on V +, given by (4.12a). The 
whole formalism that has been developed so far is equally 
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well applicable to this case. Here V + can be thought of as a 
manifold M (or X), with the global canonical chart V + . 

Then the orbit 

l..L ·x=:xd1..) =d(1..)xa(1..)-l (4.25) 

gives rise to the vector fields tangent to it, 

X/ (1..L 'x) = a/XL (1..) = p i
_ XL (1..) - XL (1..)p i+ . 

(4.26) 

Clearly, (4.26) corresponds to the linear part of (4.15). 
Moreover, the following holds. 

Theorem 2: The orbit XL (1..) satisfies the linearized po
tential KP equation [see (4.16) ] , 

iaixd1..) =ada~L(1..) -la~xL(1..>]· 
Proof: From (4.26), by a straightforward computation, 

one obtains 

(i) 3 a iXL (1..) = 3P"-- XL (1..) - 6p 2
_ XL (1..)P 2+ 

+ 3xL (1..)P~ ; 

(H) 4 ala~d1..) = 4P"-- xd1..) - 4p 3_ XL (1..)P + 

- 4P _XL (1..)P 3+ + 4XL (1..)P~ ; 

(iii) -a1xd1..) = -P"--xL (1..) +4p3_xd1..)P+ 

- XL (1..)P~ - 6p 2
_ XL (1..)P 2+ 

+ 4P _XL (1..)P 3+ . 

Adding (H) and (Hi), we obtain (i). 
Corollary 3: Each matrix entry of XL (1..) satisfies the 

linearized potential KP equation. 
Finally, recall that X ( 1..) _ 1,0 satisfies the potential KP 

equation. From (4.14) and Theorem 2, it follows that 

x(1..L I,o = f xd1..)_I,d[I-b(1..)xaCO- 1]-1lk,0· 
k=O 

(4.27) 

Hence, all the solutions to the potential KP equation derived 
from the proposed scheme are linear combinations of the 
elements XL (1..) _ I,k which satisfy the linearized KP equa
tion, with coefficients given by the transition matrix f/JOqu.) 
[Theorem 1 (H) and (4.14)],forq(1..) =b(1..)d(1..)-I. 

V. SUMMARY AND CONCLUSIONS 

This paper is to be viewed as an attempt to describe 
nonlinear partial differential equations admitting certain co
variance groups from the perspective of infinite-dimensional 
geometry. The study is restricted here to those equations 
that are invariant under a semidirect product of translations 
and scale transformations. 

The method proposed requires that an infinite-dimen
sional manifold M have among its automorphisms both 
translations and scale transformations. One studies a set of 
submanifolds of M that is invariant under both translations 
and scale transformations. Such a set is provided by the 
union of orbits of the group of translations. By restricting the 
corresponding vector fields (infinitesimal translations) to 
these orbits and exploring their commutativity, one obtains 
nonlinear equations, invariant under translations and scale 
transformations. The potential KdV equation as well as the 
sine-Gordon equation are derived as an illustration. These 
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equations are well known; their derivations, however, are 
different from the standard ones involving the matrix Lax 
formulation. In particular, the method presented here starts 
from the action of an Abelian group and Lax pairs are con
structed from the commuting vector fields generated by this 
action. 

Moreover, as has been alluded to in Sec. III, our con
struction exhibits some commonalities with the Zakharov
Shabat dressing method, more precisely, with the so-called 
vacuum dressing4 and the Riemann-Hilbert problem asso
ciated to it. However, as the example of the potential KdV 
equation suggests, more general factorization problems than 
those appearing in connection to the sine-Gordon equation 
or principal chiral models are needed. In those cases, one 
considers the factorization of a matrix defined on the unit 
circle into the matrix analytic inside the unit circle and an
other matrix analytic outside. This situation should be con
trasted with (3.3b) and (2.8). 

Finally, Sec. IV contains a discussion of the Riccati 
equation ( 4.15) obtained via the same method using the infi
nite-dimensional Grassmannian manifold (4.2). The qua
dratic nonlinearity of the latter equation is discussed from 
the point of view of the geometry of this manifold. Explicit 
formulas relating the quadratic nonlinearity to the transition 
functions between different charts are derived and presented 
in the form of ( 4.27). It would be very interesting to com
pare the results of Sec. IV with the recent studies of systems 
of nonlinear ordinary differential equations related to finite
dimensional homogeneous spaces.22

-
25 Our method has been 

successfully applied to several other examples (see Ref. 26 
for more). What remains unclear to us is the exact range of 
applicability of our method. In particular, we consider it to 
be a very interesting question as to which extent one can 
apply the results of the paper to nonlinear equations invar
iant under the Poincare group. 
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The Lax conjecture for the KdV equation Ut + 6uux + Uxxx = 0 is proved. Let u be the 
solution of the KdV equation, which is defined for all x and t and vanishes at x = ± 00. Then 
there exists a discrete set of positive numbers c 1""'C N---called the eigenspeeds of u-and sets of 
phase shifts 0/ such that 

. {S(X-O/,Cj ), if c=cj , 
11m u(x + ct,t) = 'f 

t- ± 00 0, I c'#cj ' 

where Sis a solitary wave [Po D. Lax, Commun. Pure Appl. Math. 21, 467 (1968)]. 

I. INTRODUCTION AND RESULTS 

Kruskal and Zabusky,I-3 by analyzing numerically 
computed solutions of the KdV equation, observed two im
portant phenomena: (i) for very large time t, the solution 
forming many solitons travels toward the right side and, 
yielding a "oscillatory tail," travels toward the left side; and 
(ii) the solution is quite stable such that any soliton pre
serves its shape and velocity upon collision with any other 
soliton. Gardner et al.4 developed (ii) in detail, in which 
they established the remarkable inverse method. This meth
od is well known and has had great success. About (i), Lax 
gives a precise formulation. 

Let u(x,t) be the solution of the Cauchy problem ofthe 
KdV equation: 

Ut (x,t) + 6u(x,t)ux (x,t) + Uxxx (x,t) = 0, 

u(x,O) = uo(x), - 00 <x< 00. 

(1) 

Then there exist constants cj , j = 1,2, ... ,N, called eigen
speeds of u (x,t), and phase shifts 0/ ,j = 1,2, ... ,N, such that 

. {S(X-o.±,c.), ifc=cj , 
11m u(x + ct) = J J • 

t_ ± 00 0, If c'#cj ' 

where S is a solitary wave. Laxs asserted the following. 
Equation (1) is called the evolutional equation corre

sponding to the problem of the eigenvalue of 

"'xx + [k 2 + U(X,t) 1'" = 0, (2) 

where u (x,t) is the solution of Eq. (1). If the cj are the 
eigenspeeds of the solution of Eq. (1), - cJI4 will be the 
eigenvalue of Eq. (2), and vice versa, i.e., if - kJ is the 
eigenvalue ofEq. (2), 4k J will be the eigenspeed of the solu
tion of the equation. 

The first half of this assertion is proved by Lax.s Tan
aka6

•
7 gave a demonstration about this conjecture. This pa

per gives a new demonstration improving on Tanaka's result 
both by allowing more general data and by getting more 
complete results. Tu8 also hopes that this problem can be 
fully resolved. 

Theorem 1: Let the initial data uo(x) of the Cauchy 
problem [Eq. (1) 1 satisfy the following conditions: 

uo(x)eD 4 (x), 

tIo(x) =o(lxl- 10
), j<.4, asx- ± 00, 

(3) 

J: 00 uo(x)dx>O. (4) 

Then, corresponding to the eigenvalue - k J of (2), there 
must be N eigenspeeds cj of ( 1) with 

cj = 4k J, j = 1,2, ... ,N. 

This theorem will be proved using the inverse scattering 
method. 

II. INVERSE SCATTERING METHOD 

The inverse scattering method has been stated in many 
papers,9.10.11 and here we only describe it in outline. 

In the pair of problems (1) and (2), the solution of (1 ) 
is called the potential of (2). When t = 0, the potential 
u(x,O) = uo(x) is known, by which we may obtain the fol-
lowing scattering data: . 

(a) -k~,-kL ... ,-k~, 

kl <k2 < ... <kN (eigenvalues), 

(b) cj, j = 1,2, ... ,N (normalizing constants corre-

sponding to eigenvalues - k J), 
( c ) b (k) (the reflection coefficient). 

The method for obtaining scattering data from the potential 
is called the direct scattering method. If the scattering coeffi
cients evolve in time according to the rules 

kj (t) = kj , cJ(t) = cje8kJt
, j = 1,2, ... ,N, 

b(k,t) = b(k)e8ik 't, 

then the potential ofEq. (2) corresponding to these scatter
ing coefficients will be the solution of the Cauchy problem of 
Eq. (1) under the initial data u(x,O) =uo(x). The method 
for obtaining the potential in terms of the known scattering 
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coefficients is called the inverse scattering method. The topic 
of this method is to establish the Gel'fand-Levitan-Mar
chenko (GLM) equation using the scattering coefficients: 

- 00 <x < a:, y;>O, t;>O, 
N 3 

B ( + t) - ~ 2 Skjt -2kjCx+y) 
d X y, - k cje e , 

j=1 

Be (x + y,t) = ~ f"" b(k)eSik't+ 2ik(x+y) dk, 
1T _"" 

B(x + y,t) = 2Bd (x + y,t) + Be (x + y,t), 

K(x,y,t) + Sa"" B(x + y + z,t)K(x,z,t)dz + B(x + y,t) = ° 
(GLM equation), (5) 

a 
u(x,t) = - -K(x,O,t). ax (6) 

Cohen II has demonstrated that, under initial data satisfying 
(3), we have 

b(k)e C 7 (k), Ib (m) (k) I = o( Ik 1-4), 

as Ikl ..... oo, m<7, (7) 

and that the solution ofEq. ( 1) can really be resolved by (5) 
and (6) with 

K(x,y,t)e L 1[0,00) nL "" [O,oo)e L 2[0,00), 

- 00 < x < 00, t;>O. 
Zabuskyl2 has proved that, under initial data satisfying (4), 
at least one of the eigenvalues of Eq. (2) exists: Thus the first 
conclusion of Theorem 1 holds and the remainder requires 
only that we prove the second conclusion. We shall prove it 
in two steps. First, letb(k) =0, i.e., let u(x,t) be anN-soliton 
solution, and, next, let b(k) ~O. 

Theorem 2: Suppose that Ud (x,t) is the N-soliton solu
tion of Eq. (1), i.e., where Be (x,t) =0, under initial data 
satisfying (3) and (4). Then there must exist N eigenspeeds 
cj , j = 1,2, ... ,N, with 

cj = 4kJ. 

Proot See the Appendix. 

III. SOME LEMMAS 

Before discussing the case b(k) ~O, we state some lem
mas. 

Lemma 1: Set 

11(r,t) =-I-f"" b(k)eSik't+ikrdk, 
21T - "" 

where (r,t)e( - 00,00) X [0,00), R(k)eC I( - 00,00 ), 

IR(k)I,MI, IR '(k)I,M2, - 00 <k< 00, and R(k) 
= O( Ik 1-2 ),ask ..... 00. Then we have, for any r;>ro uniform
ly, 

11(r,t) ..... O, as t ..... oo. (8) 

Proof: Setting k ' = kt 1/3 (for brevity we still write k ' as 
k), it follows that 

11(r,t) = --I-f"" R (~)ei(Sk'+krl'I/') dk. (9) 
21Tt 1/3 _ "" t 1/3 

Taking an apropose large positive constant M, we divide the 
integral into three parts: 
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11(r,t) = _1_1 {fM + r"" + f-M}R (~) 
21Tt 13 -M JM _"" t l/3 

X ei(Sk' + krl' 1/') dk 

=A +B+C. (10) 

We estimate these integrals respectively. First, 

IA I <-1-1 fM R (~)ei(Sk'+krlt'13) dk I 
21Tt 1/3 _ M t 1/3 

'21T!1/3 J~JRC~3)ldk<21T~/3' (11) 

where Ai = MMI • Next, 

B= __ I_ r""R (~)ei(Sk'+krl'I/') dk 
21Tt 1/3 JM t l/3 

= __ 1_{ _ R ( M )ei(SM3 + Mrlt '1')/1(24M' + rlt 1/') 

21Tt 1/3 t 1/3 

+ r"" 48kR (~)ei(Sk'+krl'I/')/i(24k'+rl'I/')' dk 
JM t 1/3 

-J: R ,( t ~3 )ei(Sk' + krl,I/')/i(24k'rl' 1/') dk }. 

Thus it follows that 

1 {I R (M It 1/3) I 
IBI'21Tt I/3 24M2 + rlt l/3 

r"" 48k IR (k It 113) I 
+ JM (24k 2 + rlt 1/3)2 dk 

r"" IR'(klt l13 )1 } 
+ JM (24k 2 + rlt 1/3)dk . 

When r;>ro, for an apropose large t we have 24k 2 

+ rlt 1/3;>24k 2 - 1. Hence it follows that 

r"" Mt-
1/3 

} 
+ JM (24k ~ - 1)dk 

, 1 { MI 

21Tt 1/3 24M2 - 1 

+ I + ~~2~ __ __ i "" 48kM i"" M t -1/3 } 
M (24k 2 - 1)2 dk M (24k 2 - l)dk 

,_1_{ 2MI + In(.J24M + 1) M2 } 
21Tt 1/3 24M2 - 1 24M - 1 2.J24· 

(12) 

Similarly, we get 

ICI, 1 {2MI 1(24M+l)M2 } 
21Tt 1/3 24M2 _ 1 + n 24M _ 1 2.J24· (13) 

Combining (11) - ( 13 ), eventually we have 

111(r.') I ,colt 113, Co = const. 

Therefore, for r;>ro uniformly, 

111(r,t)I ..... O, as t ..... oo. 

The lemma is proved. 
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Corollary: Suppose that ko i= ° is real and that n is an 
arbitrary positive integer; then we have, for r>ro uniformly, 

o(n)(r,t) 

1 Joo e 8ik 't + ikr = - R(k) dk ..... O, as t ..... 00. (14) 
21T - 00 (ko - ik)n 

Lemma 2: If the function 0 (r,t) is defined as Lemma 1, 
whereR(k)E C 2

( - 00,00) andR '(k) andR "Ck) are sum
mable, then 

100 

O(r,t)dr ..... O, as t ..... 00. 

Proof Since IR '(k)I<CI, IR "(k)I<C2, - 00 <k 
< 00. Picking an appropriately large positive number M, we 
divide the integral into two parts: 

Loo o (r,t)dr = UM 

+ J:)dr O(r,t) =A + B. 

From Lemma 1 it is seen that for an appropriately large t 
there is a constant C such that 

IO(r,t) 1 <C It 1/3. 

Thus 

LOO CM 
IA 1< IO(r,t)ldr<----m-' 

o t 
(15) 

After twice integrating by parts for B, we obtain 

B = dr- dk( -1)R "(k) e 2 2 LOO 1 Joo i(8k't+kr) 

M 21T - 00 (24k t + r) 

+ dr- dk 3R '(k)48kt e 2 3 L
oo 1 Joo i(8k't+kr) 

M 21T - 00 (24k t + r) 

+ dr- dk R(k)48t e 2 3 Loo 1 Joo i(8k't+kr) 

M 21T - 00 (24k t + r) 

+ roo dr_I_Joo dk( _ 3)R(k)(48kt)2 
JM 21T - 00 

ei(8k't + kr) 

X ----,,...---...,. 
(24k 2t + r)4 

=BI +B2 +B3 +B4· 

Then these integrals are estimated, respectively, as follows: 

IBII<_I Joo dkIR"(k)I{OOdr 21 2 
21T - 00 JM (24k t + r) 

<ELf 00 dk 1 < C2 • (16) 
21T _ 00 (24k 2t + M) 2 (24t) 1/2 

Because the estimates of B2, B3, and B4 are similar, we esti
mate only B2• As in Lemma 1, taking constants MI <0, 
M2 > 0, we divide the integral into three sections 

B2 = roo dr _1_( {M2 + roo + JM. )dk 3R ' (k)48kt 
JM 21T JM. JM2 - 00 

ei(8k't + kr) 

X B +B +B . (24k 2t+r)3 2,1 2,2 2,3 

Since the estimation of B2,I is easy, we consider only B2,2 and 
B2,3 • It follows immediately that 
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IB
2
,21 < roo dr _1_ roo dk 31R (2k ) 148t 3 

JM 21T JM2 (24k t + r) 

<_1_ {OOdk3IR'(k)148t {OOdr 21 3 

21T JM2 JM2 (24k t + r) 

< 36CI roo dk 48kt < 36CI 
1T J M2 (24k 2t + M) 2 24M ~ t + M 

(17) 

Similarly, 

IB2,31 <_1_ JM. dk 31R '(k) 148kt roo dr 21 3 

21T - 00 JM (24k t + r) 

< 36CI JM. dk 48kt < 36CI 
1T -00 (24k 2t+M)2 24Mft+M' 

Combining (15)-(18), we obtain 

100 

O(r,t)dr ..... O, as t ..... 00. 

The lemma is proved. 

(18) 

It is not hard to prove the following corollaries. 
Corollary 1: Suppose o(n) (r,t) is defined as (14); then, 

at t ..... 00, 

100 

o(n) (r,t)dr ..... O. 

Corollary 2: Suppose o(n)(r,t) is defined as (14). Then, 
for r>ro uniformly, 

100 

••• 100 

O(j,)(r + r l ,t)OU2)(rl + r2,t)·· ·oUn) 

X (rn + r,t) dr ldr2 ... drn ..... 0, as t ..... 00. 

wherejl,j2, ... ,jn are any positive integers. 
Corollary 3: Let I( r) be a bounded function in [0, 00 ); 

then 

loodrl(r)o(r,t)-+o, as t-+oo. 

IV. EIGENSPEED OF THE GENERAL SOLUTION 

We turn now to the proof of Theorem 1. Let C [0,00 ) be 
a normed space consisting of the bounded continous func
tion with the norm 

Ilfll = suplf(y) I· 
y>o 

It is not hard to verify that this space is a B space. We defined 
the linear parameter operators Cx,,,[)x,t in C[O, 00 ): 

(Cx,t}) (y) = 100 

Be (x + y + z,t)/(z)dz, 

([)x,t}) (y) = Loo 2Bd (x + y + z,t)/(z)dz, 

where b(k) satisfies condition (7). In view of the corollary 
of Lemma 2, it is readily known that Cx,t and Dx •t are really 
linear operators. 

For these operators, we establish the theorem of Neu
mann expansion. For this purpose, first of all, we describe 
some lemmas. 
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Lemma 3: 

IIC".tll-O, - 00 <x< 00, as t- 00. 

Proof: By definition, we have 

IIC".tll = sup sup/ ('" ~f'" R(k)e8ik 't+ik(,,+y+z) 
IVII = 1 y:>O Jo 1T' _ '" 

x dkf(Z)dzl. 

According to Corollary 3 of lemma 2, it follows that 

supl'I-O, as t_ 00. 

Thus 

IIC".tll-O, as t-oo. 

The lemma is proved. 
Lemma 4: (1 + ]I)".t) -I exists for - 00 < x < 00, t;;;.O, 

and fixed Xo: 

11(1 + ]I)".t) - 111<M, if x;;;,xo, 

where M is constant. 
Proof: By definition, we have 

11 (1 + Dxt)-III = sup 11(1 + ]l)xt)-111· 
. IVII=I . 

Setting 

(1 + O".t )-1= K(x,y,t) ==K".t (Y), 
N 

K(x,y,t) = L e - 2kj YC j(X,t) + f(y) , 
j=1 

itfollows from (20) and (21) that 

Cj(x,t) + 2cJe8kfte - 2kj " i. CI(x,t) 
1=12(kj +kl ) 

Sa
'" J - _ 2c7 8k j t -2kj (,,+z)'ji( )d =R ( t) - je e Z z- j x, , 

o 

j= 1,2, ... ,N. 

Thus 

CI(x,t) = (detAI)/(detA), 

(19) 

(20) 

(21) 

(22) 

where A is the coefficient matrix of equation, and Al is a 
matrix formed by A substituted in the right-hand side for the 
I th column. Substituting (22) into (21), it easily follows 
from (18) that 

11(1 + Ox.t)-III 

I
N e- 2k

,y detA· I 
= sup sup L ' +f(y) 

IVII = 1 y:>O i= 1 detA 

<M, if x;;;,xo, 

where M is constant. The lemma is proved. 
From Lemmas 3 and 4, we may conclude the following 

lemma. 

Lemma 5: For x;;;'xo, there is a to, and when t;;;.to, we 
have 

II (1 + ]I)".t) -IC".t II < 1. 

Theorem 3: In C[O,oo), the inverse of the operator 
(1 + Dx•t ) -ICx.t ) exists and 

[ 1+ (1 + Ox.t ) -ICx•t ] - 1 

'" 
= L (_l)n[(1+]I)x.t)-ICx.tr· (23) 

n=O 
Proof: From Lemma 4, it is known that (1 + O".t ) -I is a 

bounded linear operator in C[O,oo) and (1 + ]l)x.t) -ICx.t 
also is true. Hence it follows at once from Lemma 5 that (22) 
holds under the convergence of operatoral norm.13 The 
theorem is proved. 

Putting 

K(x,y,t) = Kx.t (Y), 

- Be (x + y,t) = Qx.t (Y), - Bd (x + y,t) = Wx•t (y)/2, 

it is known from Lemma 1 that Wx.t (Y), Qx.t (y) belong to 
C[O,oo). Thus the GLM equation [Eq. (5)] is the oper
ational equation in C[O,oo), which may be written as 

(24) 

Theorem 4: Let the scattering coefficient b(k) satisfy 
(7); then there exists a unique solution in C[ 0,00 ) satisfying 
the GLM equation, and 

'" 
Kx,t (y) = L ( - l)n[ (1 + 0x.t) -ICx,t r 

n=O 

x [Kd(x,t) + (1 + Ox,t)-IQX.'] , (25) 

Proof: Acting the operator (1 + Ox,t)-I on Eq. (24), 
from Theorem 2 it follows that 

(I + (1 + Dx,t) -ICx,t )K",t = (1 + 0x.t) -I ( Wx,t + Qx,t)' 

Kx•t (y) 

= (I + (1 + ]l)x,t) -IC",t)-I(1 + ]l)x,t )-I( Wx,t + Qx.t). 

Furthermore, considering Theorem 3, it is known at once 
that K(x,y,t) =K",t(y)eC[O,oo) exists and (25) holds. 
The theorem is proved. 

We may obtain the explicit expression of K x•t (y) using 
the method of Theorem 2 and Lemma 4. To do this, we 
define 

. 1 f'" e8ik3t+ik(x+y) 
n~)(x + y,t) = - b(k) , 

21T' - '" (kj - ik)n dk 

. 1 f'" e8ik3t+ik(x+y) 
!y',1 (x + Y t) = - b(k) . 

n,m , 21T' _ '" (kj _ ik)n(kl _ ik)m dk 

Likewise, A expresses the coefficient matrix as in Lemma 2. 
Then 

N N 
K(x,y,t) = Le-2kP'{ap)(x,t) -a¥)(x,t) +a~f)(x,t) + ... }+ L np)(x+y,t)e- 2kjX{ap)(x,t) -a¥)(x,t) + ... } 

j=I }=I 

(26) 
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where 

a~)(x,t) = detA;,JdetA. 

Here A. is the matrix formed by matrix A substituting the ',n 
column 

n = 1, 2 Sk]t - 2kl' 
- cje e , 

n =2, 2 Sk]t - 2kl'r. (j) (2x t) -cje e UI " 

J N 
- cJeSkjte - 2kl' L O\~r)(2x,t)a\/) (x,t), n=3, 

1=1 

_ cJeSk]te-2kl'[ fai/)(x,t)e-2k,x0\~r)(2x,t) 
1=1 

n=4, 

(j) (j) i~ ] + 0 0 1 (z + x,t)Oo (z + x,t)dz , 

j= 1,2, ... ,N, 

into the I th column. Differentiating the GLM equation with 
respect to x and then using an abstract version, 

(l + Dx,t + Cx,t )Rx,t = Sx,t + Tx, .. 

where 

a 
Rx,t (y) = ax K(x,y,t), 

a 
Sxt(y) = --B(x+y,t), 

, ax 

Tx,t (y) = - i~ (~ B(x + y + z,t) )K(x,z,t)dz, 

(27) 

We obtain from Lemma 2 and Theorem 4 that Sx,t (y) and 
Tx,t (y) belong to C[ O. 00 ). 

By analogy with Theorem 4, the following theorem 
holds. 

Theorem 5: If scattering coefficients satisfy (7), then 
there exists a unique solution in C[O, 00) satisfying Eq. (27), 
and 

a 
-K(x,y,t) 
ax 

= f (- l)n[ (l + Dx,t)-ICx,t r~K(x, ... ,t) 
n=O ax 

+ (l + Dx,t)-I(Sx,t + Tx,t)· (28) 

Theorem 6: Suppose that K(x,y,t) is the solution ofthe 
GLM equation under scattering coefficients satisfying (7) 
and that kd (x,y,t) is the solution where b(k) =0. Then, for 
x;;;'xo, y;;;.O uniformly, as t -+ 00, 

a a 
K (x,y,t) -+ Kd (x,y,t) , - K (x,y,t) -+ - Kd (x,y,t). 

ax ax 

Proof' Because b (k) satisfies (7) , it follows from 
Theorem 4 that (26) holds. Moreover, one obtains, by rear
ranging these terms, 

K (n)(x,y,t) = Kd (x,y,t) + { ... } + K ~n)(x,y,t), 

where K (n) (x,y,t) is the sum of the first n terms of a series 
solution which converges uniformly to K(x,y,t) , as n-+ 00, 

and K ~n) (x,y,t) is the same when Bd (x + y,t) =0. From 
Lemmas 1 and 2 and their corollaries, it is not hard to verify 
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that K ~n) (x,y,t) and { ... } converge uniformly to zero, as 
t-+ 00, for x;;;,xo, y;;;'O. Hence, for x;;;,xo, y;;;'O uniformly, 

lim [K(x,y,t) - Kd (x,y,t)] 
t-~ 

= lim lim [K(n)(x,y,t) -Kd(x,y,t)] 
1-00 "-00 

= lim lim [K (n) (X,y,t) - Kd (X,y,t)] = o. 
"-00 1-00 

Similarly we have, for x;;;'xo, y;;;.O uniformly, 

a a 
-K(x,y,t)-+-Kd(x,y,t), as t-+oo. 
ax ax 

The theorem is proved. 
Theorem 7: Suppose that u(x,t) and ud (x,t) are the so

lution and N-soliton solution of Eq. (1) under the initial 
data uo(x) satisfying (3) and (4), respectively. Then we 
have, for x;;;,xo uniformly, 

u(x,t) -+ud(x,t), as t-+ 00. 

Proof Owing to the fact that when the initial data satisfy 
( 3) and (4), scattering coefficients will satisfy (7), we ob
tain 

a 
u(x,t) = - -K(x,O,t), 

ax 

a 
ud(x,t) = - -Kd (x,O,t). 

ax 

When t -+ - 00, we may establish Theorem 7 similarly to 
Theorem 6. The theorem is proved. 

Combining Theorem 2 and Theorem 7, we may directly 
obtain the proof of Theorem 1. In fact, the conclusion of 
Theorem 1 holds for Ud (x,t), and, on the other hand, since 
u(x,t) -+Ud (x,t) , as t-+ ± 00, for x;;;,xo uniformly, therefore 

lim u(x + ct,t) = lim ud (x + ct,t) 
1- ± 00 t_ ± 00 

= {S(X-o/,Cj ), if c=cj , 

0, if c:j:cj • 

Thus Theorem 1 is proved. 

APPENDIX: THE PROOF OF THEOREM 2 

Proof First, we give the expression of the N-soliton solu
tion. The GLM equation is as follows: 

Kd (x,y,t) + i~ 2Bd (x + y + z,t)Kd (x,z,t)dz 

+ 2Bd(x + y,t) = O. (AI) 

Set 
N 

Kd(x,y,t) = L2h;(x,t)e-k,(x+y). (A2) 
;=1 

Substituting (A2) into (AI) we get 

N c2 
J 

h; (x,t) + L hn (x,t) n eSk,te - (k. + k,)x 
n= 1 k n + k; 

2 Sk ft - k,x . - 1 2 N - c;e ,I - , , ... , . 

Let A be the coefficient matrix of the above equation, 
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A - £ + [ 2/(k + k )] SkJt - (k,+ kj)x iJ - uiJ ci i j e e , 

and let Ak be the matrix formed by A, the kth column of 
which is the derivative of the k th column of matrix A with 
respect to x. Then 

hi(x) = (detAi)ik,x/detA, 

so that 

K ( t) 
- ~ 2 detAi k,(x-y) 

d x,y, - ~ e. 
i=1 detA 

According to the method of Hirota, 14 Ud (x,t) may be repre
sented as 

ud(x,t) = -2In(f)xx = -2[lxx/f- (fx/j)2], 

where 

f = L exp( L BiJJL;/Lj + fJLiXi)' 
1'=0.1 I <:'i <j<:.N i= I 

here 1:1' = 0,1 implies the summation over all possible combi
nations ofJLI = 0,1, .. . ,f.LN = 0.1, 

Xi = 2kix - Piki t + ro Pi = 8k 7, 
ri = In (c7/2ki ), eB'J = (ki - kj )/(ki + kj ) )2. 

To obtain the exponding form of f, we adopt the symbol 
C<jJ) (X,B), which expresses, taking any p numbers 
Xi ,xi , ... ,xi of X I,x2"",x N' the summation of all terms: ,. p 

[2(ki, +ki• + ... + kip) yexP{I<:.m<i<:.P Bim,i, + mtIXm}. 

Then 
N 

f(X,t) = 1 + L exp(Xi ) 
i=1 

N 

Ix (X,t) = L 2ki exp(Xi ) 
i=1 

+ C~,l)(X,B) + ... + Clf,l) (X,B), 

N 

fxx (X,t) = L (2ki )2 exp(Xi ) 
i=1 
+ C~,2)(X,B) + ... + Clf,2) (X,B). 

We consider now the limitation of Ud (x + ct,t), when 
t -+ 00. It is not hard to verify that, as t -+ 00 , 

exp (2kj (x + ct) - Pjkj + rj ) 

{

O, c<4kJ, 

-+ exp(2kjx + rj ), c = 4kJ, 

00, d>4kJ. 

We use the sign Xj to express ~ in which x is replaced by 
x+ct. 

(1) When4kLI <c<4k~,J=2,3, ... ,N, 

- too, j<J-1, 
exp(~) -+ • as t-+ 00. 

0, J>J, 
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In this case, as t -+ 00, the terms containing the factors 
exp(XI + X2 + .. , + XJ _ I) dominate within all terms. 
Hence, as t -+ 00 , 

Ud (x + ct,t) -+0. 

(2) When c = 4k~, J = 2,3, ... ,N, as t-+ 00, 

{

oo, j<.J - I, 

exp(~) -+ exp(2kJx + rj ), j = J, 

0, j>J + 1. 

In this case, the terms containing the factors exp(1:f:: II~) 
or exp (1:f = 1 ~ ) dominate within all terms. Hence, as t -+ 00 , 

Ud(X + ct,t) 

-+ - 8k J exp( L BiJ)exp( L BiJ 
1 <:.i<j<:.J - 1 I <:.i<j<:.J 

+ 2kJx + rJ) [exp(<:.i<j;J _ 1BiJ) 

+ exp( L BiJ + 2kJx + rJ)] -2 -soliton. 
I <:.i<J<:.J 

(3) When4k~ <c, Ud (x + ct,t) -0. as t- 00. Thus the 
proof is the same as in (1). 

( 4) When c < 4k ~ , we have, as t - 00 , 

exp(Xj)-O, j= l,2, ... ,N. 

Therefore, as t - 00, 

Ud (x + ct,t) -0. 
(5) When c = 4k L we have, as t - 00 , 

Ud (x + ct) - - 2(2kl )2 exp(2klx + r l ) 

X [1 + exp(2k lx + r l )]-2 

-soliton. 

When t- - 00, the proof is similar. Thus Theorem 2 is 
proved. 
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A new formalism for solving general nonlinear equations is proposed. Given a nonlinear 
operator equation, a dual operator is constructed, canonically, similar to the adjoint operator 
in linear theory. By using this dual operator, advanced and retarded propagators (analogs of 
the Green's functions in linear theory) are generated. These propagators satisfy the customary 
reciprocity and semigroup properties and yield the formal solution of the original nonlinear 
problem. It is further shown that these propagators can be obtained either by solving a linear 
equation that still contains an implicit dependence on the problem's solution or by solving a 
closed-form nonlinear integral equation from which the problem's solution itself is completely 
eliminated. The formalism is canonical in the sense that its applicability is not affected by the 
particularities ofthe nonlinear operator, boundary conditions, and underlying phase space. All 
aspects of applying this formalism to nonlinear problems are illustrated analytically on the 
Riccati equation. 

I. INTRODUCTION 

Triggered by the pioneering work ofZabusky and Krus
kal,1 and Gardner, Greene, Kruskal, and Miura2 on the 
Korteweg-de Vries equation, the study of integrable nonlin
ear partial differential equations has since been established 
as a new branch of mathematical physics. So far, the general 
effort in this branch has been focused on attempting to cast 
the nonlinear (evolution) equation under consideration as a 
nonlinear Hamiltonian system and, if successful, to make 
further progress by investigating special properties such as 
( complete) integrability, applicability of inverse scattering 
transforms, and Lax-pair representations. As amply docu
mented in many articles and several treatises (see, e.g., Ref. 
3 and references therein), the fundamental motivation un
derlying this effort has been the attempt to solve nonlinear 
equations by using the powerful and refined methods of the 
theory for linear operators. 

Although the inverse scattering transform method has 
been successfully used to solve (or, at least, to test the inte
grability of) particular types of nonlinear evolution equa
tions, as yet there is no canonical procedure to construct the 
inverse scattering problem (or, alternatively, a Lax pair4) 
for a general nonlinear system. A useful, but still not general, 
approach towards establishing such a procedure has been 
proposed by Chen, Lee, and Liu.s The connection between 
nonlinear partial differential equations solvable by inverse 
scattering transform techniques and nonlinear ordinary dif
ferential equations of Painleve type (see, e.g., Ref. 3) has 
been recently extended to include a certain class of nonlocal 
integrodifferential equations.6 Concepts of non locality have 
been also used, in other contexts, for transforming a local 

nonlinear problem into a nonlocalIinear one.7 Recently, a 
new general class of integrable nonlinear partial differential 
equations on an infinite three-dimensional (3-D) lattice has 
been found from the compatibility condition of a linear non
homogeneous system of equations that is invariant under a 
certain nonlocal integral transformation.8 Further informa
tion about a given nonlinear equation can be obtained by 
exploiting its "algebraic properties," i.e., the Lie group that 
leaves it invariant.9

•
10 

It is important to note that several of the aforemen
tioned methods use, rather extensively, various linearized 
(variational, tangential, or gradient) equations4 •S,10,l1 asso
ciated with the nonlinear problem under consideration. 
Most of these investigations were aimed at discovering 
whether these nonlinear (evolution) equations possessed a 
Hamiltonian structure or not; occasionally, these investiga
tions used variational equations for various conserved func
tionals of the field variables rather than variational equa
tions obtained directly from the nonlinear equations 
underlying the problem. However, to our knowledge, none 
of these investigations used the integrated variational equa
tions that will prove essential to the new formalism we devel
op in this work. 

This new formalism (see also Ref. 12) is for solving 
physical problems represented by general nonlinear opera
tor equations of any dimensionality, on a finite or infinite 
domain, and involving nonlinear boundary and/or initial 
conditions. The detailed mathematical description of this 
general nonlinear problem is presented in Sec. II. In Sec. III, 
we construct the dual operator, which is shown to play for 
the nonlinear problem described in Sec. II a role that is simi-
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lar to the role the customary adjoint operator plays for linear 
problems. This dual operator is fundamental to introducing 
and constructing the advanced and retarded propagators for 
the nonlinear problem. We construct these propagators in 
Sec. IV, show that they generalize the Green's functions 
used for solving linear problems, and use them to derive the 
closed-form integral representation of the solution to the 
nonlinear problem described in Sec. II. In Sec. V, we intro
duce the closed-form integral equations satisfied by these 
propagators. Section VI presents functional-series expan
sions for both the propagators and the solution to the nonlin
ear problem; these series expansions appear as generaliza
tions of the customary perturbation theory expansions. The 
usefulness of the formalism presented in Secs. II-VI is illus
trated in Sec. VII by applying it to the Riccati equation-a 
nonlinear equation with a known analytical solution. Final
ly, the conclusions are summarized in Sec. VIII. 

II. STATEMENT OF THE PROBLEM 

Consider that the physical problem is represented by a 
general nonlinear equation of the form 

N(u(x),a(x),x) = 0, in n, (1) 

where the following conditions apply. 
(1) x = (xI, ... ,xn )enCR n is the phase-space position 

vector; n, henceforth referred to as the phase space of the 
problem, is an open domain with piecewise smooth bound
aryan. If the problem is time dependent, the set (x 1, ••• ,Xn ) is 
understood to include the time variable t among the indepen
dent variables. 

(2) ueHl is the state vector; for notational simplicity, u 
is considered in this work to be a scalar-valued function, 
although the derivations to follow remain in principle un
changed even if u is a vector-valued function; HI is a Hilbert 
space endowed with an inner product denoted by ( , ). 

(3) a(x) = (al, ... ,al ) is the vector of parameters ap
pearing in the description of the physical problem. 

(4) N: D(N) CHI -+H2 is a nonlinear operator acting 
on u, with domain D(N) dense in HI; H2 is a Hilbert space 
endowed with an inner product denoted by [ , ]. The non
homogeneous (source) terms in Eq. (1) are represented by 
N(0,a(x),x)eH2; of course, ifEq. (1) is homogeneous, then 
N(O,a,x) = 0. In this work, N is considered to contain 
(combinations of) integral, multiplicative, and differential 
operators. Therefore a set of boundary linitial conditions is 
needed to specify D(N). These conditions are denoted by 

B(u,a) = 0, on an, (2) 

where the components of the vector-valued operator B are 
partial differential operators with coefficients defined in the 
whole of n; nonhomogeneous boundary terms are represent
ed by the nonzero components of B(O,a). 

III. CONSTRUCTION OF THE DUAL OPERATOR N+(u) 

The crux of representing the solution of Eqs. (1) and 
(2) in an integral form is the construction of an operator 
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N+(u) analogous to the adjoint operator in linear theory, 
and henceforth referred to as the operator dual to N ( u ). It is 
expected that, unlike the adjoint in linear theory, this dual 
cannot have a "global" definition but must depend para
metrically on u. Since the main purpose of this work is to 
develop the algorithmic structure of the formalism, we expli
citly assume that the formal operations to follow make sense. 

The operator N + (u) is required to satisfy the relation
ship 

[N(u),v] = (u,N+(u)v), (3) 

and to act linearly on any v in the domain 

D(N+(u») = {veH2 13heHl with (u,h) = [N(u),v], 

for any ueD(N)}. (4) 

As will be seen in the following, the operator N + ( u) can 
be uniquely defined to satisfy Eqs. (3) and (4) for a large 
class of nonlinear operators N(u). The construction of 
N + (u) starts from the fundamental theorem of calculus in 
nonlinear functional analysis; this theorem states 13 that 

N(uo + h) - N(uo) = f 8N(uo + Eh;h)dE, (5) 

where 

(6) 

is the first Gateaux variation of N(u) at Uo with increment h, 
for uo,heD(N). 

Setting Uo = ° and h = u in Eq. (5) and replacing the 
resulting equation for N( u) in the left side of Eq. (3) gives 

[N(u),v] = [N(O) + f 8N(EU;U)dE,V]. (7) 

Comparing the right sides of Eqs. (7) and (3) shows that 
N + (u) can be constructed if and only if it is possible to 
extract a linear u dependence from the first term of the inner 
product appearing on the right side ofEq. (7). This is possi
ble if and only if N(u) admits a first Gateaux derivative 
N'(uo) at uoeD(N) , in which case 

(8) 

where N'(uo) operates linearly on (the second argument) 
heD(N). The parametric dependence of N' on Uo is, in gen
eral, nonlinear. 

In view of the linearity property expressed by Eq. (8), 

the right side ofEq. (7) can be written as an inner product of 
the form (u,·) in HI by writing a Green's formula for the 
inner product [N'(u)h,v], i.e., 

[N'(u)h,v] = (h,[N'(u) ]*v) + {u(u)(h,v)}, (9) 

where 

ve{veH2 13weHl with (h,w) = [N'(u)h,v], 

for any heD(N)}, 

and {u( u) (h,v)} represents the bilinear form on the bound
ary spaces that arise from the customary integrations by 
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parts. 14 Note that u(u) depends, in general, nonlinearly 
onu. 

The equations N'(u)h = 0 and [N'(u) ]*v = 0 are 
usually referred to as the direct and adjoint variational (gra
dient, tangential) equations associated with Eq. (1). Such 
variational equations have been used to some extent in pre
vious works3,4,IO,ll to investigate the (possibly Hamilto
nian) structure of the original nonlinear equation. Vari
ational methods have also been used to generate closed 
equations for the one-particle Green's functions to obtain 
functionals of the solution in field and many-body 15 theories, 
and for sensitivity analysis 16 of general nonlinear systems. 
However, the variational equations themselves cannot be 
used to define a propagator similar to the propagators 
(Green's functions) for linear systems. 

Replacing u by EU in Eq. (9) and integrating over E from 
o to 1 gives 

[L(u)h,v] = (h,L *(u)v) + {:~.(u)(h,v)}, (10) 

where the operators L ( u ), L * ( u ), and l: ( u) are defined as 

L(u)= f N'(Eu)dE, (11) 

L*(u)= f [N'(Eu)]*dE, (12) 

and 

l:(u) = f u(Eu)dE. ( 13) 

Just like the operators N' (u), [N' (u)] *, and u(u), the inte
grated operators L (u), L * (u), and l: (u) still act linearly on 
the vector h although, in general, they depend nonlinearly on 
u. Note the important property 

L(u)u = f N'(EU)U dE = N(u) - N(O), (14) 

which highlights the fact that, unlike the variational equa
tions, the integrated operator L (u) is related directly to the 
original nonlinear operator N(u); this property is essential 
for the development of propagators for nonlinear systems, as 
will be shown in the following. 

Equation (10) is valid for any heHl and veH2; in partic
ular, it is valid for h=u. Replacing h in Eq. (10) by u, using 
Eq. ( 14), and comparing the resulting equation with Eq. (3) 
shows that the dual operator N + (u) can be uniquely repre
sented as 

N+(u) = (u/lluIl 2
) N(O) +L*(u) +S(u). (15) 

Note that the right-hand side of (15) is singular for 
u = 0, thus properly accounting for the nonhomogeneous 
(source) term N(O). In Eq. (15), S(u) is a symbolic nota
tion for the operator that generates the boundary form 
{l:(u)(u,v)}, and the overbar denotes complex conjuga
tion. Of course, if u is a vector-valued function, the first term 
on the right side ofEq. (15) needs to be rewritten in terms of 
the transposed product of the column vector N(O) with the 
row vector u//lu/l 2

• However, the formalism (although more 
complicated) remains canonical and leads to a unique 
expression for the dual N + (u ). The uniqueness of the repre
sentation ( 15) is ensured by the requirement that Eq. (3) be 
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satisfied in a functional sense, i.e., together with the func
tional derivative (9) considered in the limit h-+u. 

In practice, the explicit expressions of L ( u) and L * ( u ) 
are always needed, but the explicit expression of the dual 
N + (u), i.e., Eq. (15), is not; the main purpose of writing Eq. 
( 15) was to highlight the formal correspondence between 
the dual N + (u) and the customary adjoint operator encoun
tered in linear functional analysis. 

IV. PROPAGATORS FOR NONLINEAR OPERATOR 
EQUATIONS 

A. The advanced propagator G*(u(x);X,x') 

Taking L *(u) as defined by Eq. (12), consider 
G * (u(x);x,x') to be the (unique) solution of the linear sys
tem 

L *(u(x»)G *(u(x);X,x') = o(x - x'), in n, (16) 

r*(G *(u(x);X,x'») = 0, on an. (17) 

where the operator r*, acting linearly on G *, represents 
boundary and/or initial conditions for G * on an, as speci
fied below. 

Forming the inner products ofEqs. (1) and (16) with 
G * and u, respectively, subtracting one from the other, and 
using the definition of the dual N + (u) v given in Eq. (15) 
shows that 

[N (u (x) ),G *(u(x);x,x')] 

- (u(x),L *(u(x»)G*(u(x);x,x') 

= 0 - u(x') = (u(x),(u//lu/l 2
) N(O)G*(u(x);x,x') 

+ {l:(u(x»)(u(x),G *(u(x);x,x'»)}. 

The initiallboundary conditions represented by r* ( G *) = 0 
in Eq. (17) are now chosen to attain, optimally, the follow
ingobjectives: (a) toensurethatEqs. (16) and (17) consti
tute a well-posed problem for G *; (b) to simplify the proce
dure for solving Eqs. (16) and (17) toobtainG*(u(x);x,x'); 
and (c) to simplify the expression of the residual terms on 
an after using (i) the (possibly nonlinear) initial/boundary 
conditionsB(u) = 0 for u(x) given in Eq. (2), and (ii) the 
boundary/initial conditions for G *(u (x) ;x,x') given by Eq. 
( 17). Note that these residual terms, henceforth denoted by 
{l:(u)(U,G*)}B(u) =0, y*(G*) =0' remain linear in G* after 
using Eqs. (2) and (17) in Eq. (18). Although the selection 
of the initiallboundary conditions r* ( G *) = 0 is not unique 
in general, the physical problem modeled by the original 
nonlinear system [i.e., Eqs. (1) and (2)] often provides 
clear guidelines for selecting r* (G *) = O. 

Following the above procedure to select the boundary/ 
initial conditions r* ( G *) = 0, and using these conditions 
together with Eq. (2) in the previous equation yields the 
solution u (x) for the original nonlinear system as follows: 

u(x') = - (u(x),(u//lu/l 2
) N(O)G*(u(x);X,x') 

- {l:(u(x»)(u(x), 

G *(u(x),x,x'»)}B(U) =0, y*(G*) =0' (18) 

Equation (18) highlights the role ofG * (u(x);x,x') as an 
"advanced propagator" for the solution u(x), since G * acts 
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to propagate the source term N(O) and the initiallboundary 
conditions for u, from u(x) to u(x'), just as the customary 
propagator acts for the linear problems in field theory. Note, 
though, that-in contradistinction to the case of these linear 
problems-the advanced propagator G * (u (x) ;x,x') for the 
nonlinear system represented by Eqs. (1) and (2) depends 
implicitly and, in general, nonlinearly on the solution u (x). 
We notice that when Eq. (1) is a true initial value problem 
(i.e., the volume and boundary sources reduce to initial con
ditions only), Eq. (18) reduces to 

u(x',t') = f u(x,O)G*(u(x,O);x,O,x',t')dx. 

On this form, the semigroup property of G * is readily avail
able, namely, 

G *(u(x,O);x,O,x" ,t") 

= f dx' G*(u(x,O);X,O,x',t')G*(u(x',t');X',t',x",t"). 

(19) 

B. The retarded propagator G(u(x);X,x') 

Consider next the solution G (u (x );x,x') of the linearsys-
tern 

L(u(x»)G(u(x);x,x')=c5(x-x'), in n, (20) 

y(G(u(x);x,x'») = 0, on an, (21) 

where the operator y( G), linear in G, represents initial and/ 
or boundary conditions for G on an chosen such that the 
replacement of y( G) = 0 and y* (G *) = 0 in the bilinear 
form{l:(u)(G,G *)}y(G) =0, r"(G.) = 0 causes the resulting 
(surface) integral over an to vanish. 

Forming the inner products of Eq. (16) with 
G(u(x),x,x") [or" alternatively, of Eq. (20) with 
G *(u(x),x,x")] and using Eq. (10) together with Eqs. (17) 
and (21) leads to 

G *(u(x);X,x') = G (u(x');X' ,x). (22) 

Equation (22) is the reciprocity relationship between the 
advanced and the retarded propagators G * and G, respec
tively. Although G and G * depend on u, this reciprocity rela
tionship is identical to the reciprocity relationship satisfied 
by the advanced and retarded propagators encountered in 
linear problems. This is not surprising since by construction 
G and G * satisfy linear equations. Furthermore, it follows 
from Eqs. (22) and (18) that the solution u(x) of the non
linear problem represented by Eqs. (1) and (2) can also be , 

represented in terms of the retarded propagator G by an 
expression similar to Eq. (18). These expressions give the 
solution u (x) of the nonlinear system represented by Eqs. 
( 1) and (2) in an integral form, in terms of the advanced or 
retarded propagators, respectively. Both of these integral 
forms are formally similar to those encountered in linear 
problems as can be found in field theory .15 But, in contradis
tinction to those linear problems, Eq. (18) and its retarded 
propagator counterpart are nonlinear integral equations 
since both the retarded and the advanced propagators de
pend parametrically on the solution u. 

V.INTEGRAL EQUATIONS FOR PROPAGATORS 

A.lntegral equation satisfied by the forward 
propagator 

Consider that Uo (x) is known, and consider the two sys
tems satisfied, respectively, by the propagators 

Go(x" ,x) =G (uo(x" );x",x) 

and 

G~(x" ,x') =G *(u(x");x",x'), 

i.e., 

L(uo(x"»)Go(x",x) =c5(x" -x), in n, (23) 

y(Go(x" ,x») = 0, on an, (24) 

and 

L*(u(x"»)G~(x",x') =c5(x" -x'), in n, (25) 

y*(G~(x",x'») = 0, on an. (26) 

Forming the inner products of Eqs. (25) and (23) with 
Go(x",x) and G~(x",x'), respectively, yields 

[L(uo(x"»)Go(x",x),G~(x",x')] =G~(x,x'), (27) 

and 

(Go(x" ,x),L *(u(x"»)G ~(x" ,x') > 

= Go(x',x) = Gt(x,x'), by reciprocity. (28) 

Subtracting Eq. (28) from Eq. (27) gives 

G~(x,x') - Gt(x,x') 

= [L (uo(x" »)Go(x" ,x),G ~(x" ,x')] 

- (Go(x",x),L *(u(x"»)G~(x",x'». (29) 

Writing Eq. (10) for the particular case when u = uo(x"), 
h = Go(x",x), and v = G~(x",x') shows that the first term 
on the right side ofEq. (29) can be recast as 

[L (uo(x" ))Go(x" ,x),G ~(x" ,x')] = (Go(x" ,x),L *(uo(x"»)G ~(x" ,x') > 

+ {l:(uo(x") )(Go(x" ,x),G ~ (x" ,x'»)} y(Go) = 0, r"<G:) = o' (30) 

Therefore replacing (30) in (29) and using the reciprocity relationship to replace Go(x",x) by Gt(x,x") in the resulting 
expression leads to 

G~(x,x') = Gt(x,x') + (Gt(x,x"),[L *(uo(x"») -L *(u(x"»)]G~(x",x'» 

+ {l:(uo(x"»)(Go(x",x),G~(x" ,x'»)}Y<Go) =0, r"(G:) =0' 

Equation (31) is the closed-form nonlinear integral equation satisfied by the forward propagator. 
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B. Integral equation satisfied by the backward propagator 

and 

i.e., 

and 

As before, consider that uo(x,t) is known, and consider the systems satisfied, respectively, by the propagators 

Gu (x",x) =G (u(x" );x",x) 

G~(X" ,x)=G*(uo(x"),x" ,x'), 

L (u(x"»)Gu (x",x) = 8(x" - x), in n, 
rtGu (x",x» = 0, on an, 

L *(uo(x"»)G~(x" ,x') 8(x" -x'), in n, 
r*(G~(x" ,x'») 0, on an. 

Taking the inner products of (32) and (34) with G~(x" ,x') and Gu (x" ,x), respectively, gives 

[L (u(x"»)Gu (x" ,x),G~(x",x')] = G~(x,x') Go(x',x), 

by reciprocity, and 

(Gu (x" ,x),L *(uo(x"»)G~(x" ,x'» = Gu (x',x). 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

Proceeding as before, i.e., using Eq. (10) to recast the left side of Eq. (37) in terms of L and subtracting Eq. (36) from Eq. 
(37), leads to the following nonlinear integral equation for the backward propagator Gu (x',x): 

Gu(x',x) = Go(x',x) + [(L(uo(x"» L{u(x"»))Gu(x",x),Go(x',x")] 

- {l:(uo(x") )(Gu (x" ,x),G ~(x" ,x'»)} r(G.) o. y*(G/!,) =0' (38) 

It is essential to note that the integral equations (31) and (38) for the advanced and the retarded propagator, respectively, are 
exact, and their nonlinear character reflects exactly the nonlinearities in the original system represented by Eq. (1). Thus Eqs. 
(31) and (38) are fundamentally different-both as to the way they were derived and as to their final forms-from the 
nonlinear equations expressing the Green's functions for one, two, or many particles in many-body and field theoriesl5

; in 
these theories, the nonlinearities appearing in the respective Green's functions are not intrinsic, but are introduced as a result 
of the approximations needed to close the respective equations. 

In general, Eqs. (31) and (38) for the advanced and retarded propagators G~ and Gu ' respectively, are nonlinear 
integrodifferential equations. However, the order of the highest derivative appearing in Eqs. (31) and (38) will be lower than 
the order of the highest derivative appearing in the original nonlinear system represented by Eq. (1); in many cases Eqs. (31) 
and/or (38) actually reduce to purely integral equations. 

Although exact and retaining the full nonlinear character of the original problem [i.e., Eqs. (1) and (2) J, Eqs. (31) and 
(38) may still be difficult to solve in practice. Nevertheless, Eqs. (31 ) and/or (38) together with Eq. (18) appear to open 
possibilities of applying well-established functional-analytic tools (such as fixed-point arguments and, as we shall present in 
the next section, perturbative series expansions) in ways not feasible for the original nonlinear problem. 

VI. SERIES EXPANSIONS 

Consider that uo(x) represents an arbitrary, but known, point in phase space, and that hex) =u(x) - uo(x) represents 
the difference between uo(x) and the solution u(x) ofEq. (1). The equation for hex) is obtained by applying Eq. (5) to Eq. 
(18). This gives 

hex') = - uo(x') - (uo + h,(uo + h)/Ii(uo + h) 112) N(O)G~(x,x'» 

(39) 

The relationship between the advanced propagator G~(x,x') and hex) is obtained by applying Eq. (5) to Eq. (31). This 
yields 

357 

G~(x,x') = G~(X,x') + {G~(x,x"),(f L */(UO + Eh)h dE) G~(x" ,xl») 

+ {l:{uo(x") )(Go(x" ,x),G ~(x" ,x'»)} y(Go) = 0, y*(G:") o· 
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The counterparts of Eqs. (39) and (40), i.e., the equations 
that relate h(x) and the retarded propagator Gu (x,x') , are 
similarly obtained. 

Note that Eq. (40) is linear in G ~ and can, in principle, 
be solved by standard linear methods, e.g., by iteration, in 
terms of the known quantities Uo and G ~. The kernel of this 
integral equation, though, depends parametrically on h. In 
practice, L *, (uo + Eh) may be further expanded in powers 
of h (using Taylor series for operators 13 ) ; such an expansion 
is useful when L * (u) has a polynomial-type dependence on 
u since then only a finite number of operators multilinear in 
h appear in the expansion. Replacing the resulting expres
sion for G ~ in Eq. (39) yields a closed-form nonlinear inte
gral equation for h involving only the known quantities Uo 
and G~. Note that ~(uo + h) in Eq. (39) may also need to 
be expanded in powers of h, i.e., 

~(uo + h) = ~(uo) + f ~'(uo + Eh;h)dE 

00 

= ~(uo) + L ~(n)(uo)h n. 
n=1 

The expansions represented by Eqs. (39) and (40) rep
resent generalizations of the Lippman-Schwinger-type ex
pansions, on the one hand, and invariant embedding, on the 
other hand. In particular, these equations can be used to 
obtain closed-form expressions for perturbation diagrams. 
Also, when Uo is a nominal solution ofthe system represent
ed by Eqs. (1) and (2), Eq. (39) can be used to perform an 
efficient, comprehensive, and global sensitivity analysis to 
assess the variations in Uo (or any function thereof) induced 
by any variations in the system's parameters. 

VII. ILLUSTRATIVE EXAMPLE: THE RICCATI 
EQUATION 

It is instructive to illustrate the application of the for
malism developed in Sees. II-VI to a simple example whose 
solution is available analytically, in closed form, namely the 
Riccati equation. In addition to being tractable analytically, 
the Riccati equation occurs naturally in many physical ap
plications such as control theory, 17 the Toda lattice,18 or the 
theory of reflection on random media. 19 

Thus we consider the Riccati equation 

du b 2 ° [0] b ° N(u)=-+ u -C= , tE ,tf , >, 
dt 

u(o) = U j >0, 

c>o, 

(41) 

(42) 

and we choose the spaces HI' H2 as HI = H2 = L2 ([ O,tf ]; 
dt). The unique solution of Eqs. (41) and (42) is 

Uj + (c/b) 1/2 tanh[t(bc) 1/2] 
u{t) = . (43) 

1 + Uj(b/c)1/2 tanh [t(bc) 1/2] 

The Gateaux differential of N(u) in Eq. (41) is the operator 
N'(u) acting on has 

N'(u)h = dh + 2buh. 
dt 

Therefore the predual and antidual of N(u) are given by 
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dh 
L(u)h =-+buh, 

dt 
(44) 

and 

dv 
L *(u)v = --+ buv 

dt ' 
(45) 

respectively. Thus the advanced propagator G ~ (t,t ') is the 
solution of 

L *(u)G~{t,t') 

dG*{t,t ') 
u +bu(t)G~{t,t') =8(t-t'), (46) 
dt 

G~{t,t') =0, at t=tf (i.e., for t>t'). (47) 

As expected, Eq. (46) is a (first-order, nonhomogeneous) 
linear equation for G ~ (t,t '); its solution is 

G~{t,t') =H+{t' -t)exp[f bU(T)dT] , (48) 

where H + (t' - t) is the unit step (Heaviside) function de
fined as 

H ( , {O, for t' < t, 
+t-t)= 

1, for t'>t. 
(49) 

Performing the calculations indicated prior to Eq. (18) gives 

O-u{t') 

= ff(~; G~{t,t') +bu2G~(t,t') -CG~(t,t'»)dt 

tf 
= [u(t)G~{t,t')]6" - Jo cG~{t,t')dt. 

This expression can be further reduced by using Eq. (47) 

and interchanging t and t ' to obtain 

tf 
u{t) = Jo cG~(t',t)dt' + UjG~(O,t). (50) 

Replacing G ~ (t , ,t) by its expression given in Eq. (48) and 
taking into accountthatH + (t - t') is zero for t' > t leads to 
the following implicit closed form for u{t): 

u(t) = exp( - f bU(T)dT) 

X[ui+c fdt'exp(f'bU(T)dT)]. (51) 

Equation (51) represents a fixed-point form of the original 
Riccati equation. It is easy to verify that the solution u (t) 
given by Eq, (51) indeed satisfies the original Riccati equa
tion together with the respective initial condition. 

The retarded propagator Gu (t,t") satisfies the linear 
system 

L(u)Gu{t,t") 

dG (t t") 
u , + bu(t)Gu (t,t") = 8(t - t"), (52) 
dt 

Gu(O,t") =0, at t=O (i.e., for t<t"). (53) 

Solving Eqs. (52) and (53) yields 
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Gu(t,t") =H+(t-t")exp [{" bU(r)dr]. (54) 

It is apparent from Eqs. (54) and (48) that the advanced 
and retarded propagators satisfy the reciprocity relationship 
given in Eq. (22), i.e., G!(t ",t') = Gu (t ',t"). Of course, 
the closed-form solutions for the propagators are not needed 
to obtain this reciprocity relationship; it can be obtained di
rectly by taking the inner products of Eqs. (46) and (52) 
with Gu (t,t") and G !(t,t '), respectively, subtracting one 
inner product from the other, and taking into account the 
initial and final time conditions given in Eqs. (47) and (53). 
Using this reciprocity relationship in Eq. (50) gives the al
ternative form of the solution u(t) in terms of the retarded 
propagator as 

u(t)= fleGu(t,t')dt' + ujGu(t,O). (55) 

The usefulness of the series expansions presented in Sec. 
VI can be highlighted by comparison to the customary per
turbation/iteration methods used for nonlinear equations. 
Recall that, in their most powerful setting, the perturbation/ 
iteration methods start by considering the nonlinear system 
to be a perturbation of the linear system obtained by neglect
ing the nonlinear terms. Thus, for the Riccati equation given 
by Eqs. (41) and (42), the corresponding linear system is 
obtained by neglecting the nonlinear term bu2

, so the start
ing point for the perturbation/iteration procedure is the lin
ear equation 

No ( ) - duo -o U = - - e - 0, uo(O) = U" dt I 

(56) 

The solution uo(t) = Uj + et ofEq. (56) is then used as the 
starting point in the perturbation/iteration procedure 

_ dUn 2 
Nn(U)=Tt-e= -bUn_I> un(O)=U j. (57) 

Solving Eq. (57) successively for n = 1,2, ... yields the 
successive approximations u.(t),u2(t), ... , for the solution 
U (t) of the Riccati equation. The explicit expressions of the 
first two iterates of U (t) are 

UI = (t) = U j + et - b(utt + eU;l2 + e2t 3/3), (58) 

and 

U2(t) = Uj + et - b(utt + euit
2 + e2t 3/3) 

+ b2(U~t2 + futet3 + ~e2Ujt4 + ~e3tS) 

- b 3(!u1t 3 + !eu~t4 + !C2uttS 

+ ¥3Uit 6 + lbe4t 7). (59) 

Thus the perturbation/iteration procedure yields a 
power series expansion, in powers of b, of the exact solution 
U (t) of the Riccati equation. Specifically, the nth approxi
mation Un (t) ofthe exact solution u(t) represents the power 
series expansion of u(t) up to and including the terms in 
b 2" - I. This fact can be readily verified by comparing the 
above expressions of uo, U I' and U2 with the direct expansion 
in powers of b of the exact solution given by Eq. (43), i.e., 

u(t) = Ui + et - b(utt + uit
2e + t 3e2/3) 

+ b2(U~t2 + futet3 + ~e2uit4 + p,e3t S) 

- b 3 (!u1t 3 + !eu~t4 + ~e2uttS + ~e3uit 6 

+i:Je4t 7
) +O(b 4)=uo + f biui(t)· (60) 

i=1 

T?e functions Go and G ~ are obtained using Uo = U i 

+ et in Eqs. (23) through (26); this gives 

and 

Go(t,t') =H+(t - t') 

Xexp[ bUi (t' - t) + be[ (t ')2 - t 2]12], 
(61) 

G~(t,t') =H+(t'-I) 

Xexp[ bUj (t - t') + bc[t 2 - (t ')2]12], 
(62) 

respectively. Of course, Eqs. (61) and (62) could also have 
been obtained by substituting Uo = U j + et in Eqs. (54) and 
(48), respectively, and performing the integrations over r. 
As expected, Go and G ~ satisfy the general reciprocity rela
tion between propagators as given by Eq. (22). 

In view of the expressions for L * (u ), L ( U ), and noting 
that {:~(uo) (Go,G!)} vanishes because of the respective ini
tial and final-time conditions for this example [cf., Eqs. 
(46), (47), (52), and (53)], the integral equation satisfied 
by the forward propagator, i.e., Eq. (31), reduces to 

i
ll 

G!(t,t') = G ~(t,t') + 0 G ~(t,t") 

x[ -bh(t")]G!(t",t')dt", (63) 

where h(t) =u(t) - uo(t). Solving Eq. (63) by iteration 
gives 

x [ - bh(r2) ]G~(r2,t ')dr2 dTI + fl fl fl G~(t,TI)[ - bh(T1 ) ]G~(TI,r2) 

X [ - bh(T2)]G~(T2,T3)[ - bh(T3)]G~(T3,t')dr3 dT2 dTI + O(h 4). (64) 

For this example, the expression for h(t), given in general by Eq. (39), becomes 

h(t) = - uo(t) + fl eG!(t',t)dt' + uiG!(O,t). (65) 

Replacing now Eq. (64) in Eq. (65) gives 
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x [ - bh(r2) )Gt(r2,t)dr2 drl + f' f' f' Gt(t ',r l ) [ - bh(rl ) )G~(rl,r2) [ - bh(r2) ]G~(r2,r3) 

X [- bh(r3)]Gt(r3,t)dr3dr2drl}dt' + U;{Gt(O,t) + f' G~(O,rl)[ - bh(rl)]G~(rl,t)drl 

i~i~ i~i~i~ + 0 0 Gt(O,rl ) [ -bh(rl )]Gt(rl,r2)[ -bh(r2)]Gt(r2,t)dr2drl + 0 0 0 G~(O,rl)[ -bh(rl )) 

XG~(rl,r2) [ - bh(r2) ]G~(r2,r3) [ - bh(r3) ]Gt(r3,t)dr3 dr2 drl}dt' + O(h 4). (66) 

Note that the expansions given in Eqs. (64) and (66) are 
valid for any b; each iteration brings in the product (bhG t), 
so that equal-order truncations on h, b, or G ~ are equivalent, 
but only as long as Eqs. (39) and (40) are the basis for the 
iterative solution. Otherwise, if G t is also expanded in pow
ers of b, the resulting expansion is severely restricted to small 
time values by the appearance of secular terms. This fact 
becomes apparent by noting that the expressions of G t and 
Go [cf. Eqs. (61) and (62)] already contain summed up 
powers of b in the respective exponential terms; in other 
words, the secular terms are already summed up, into a con
vergent expression for large t, in the forms of G ~ and Go. 
Thus the expansions shown in Eqs. (64) and (66) and, by 
implication, those given by Eqs. (39) and (40) have a con
siderably larger range of validity than the customary pertur
bation/iteration procedures for nonlinear equations. 

It is also important to note that the (approximation to 
the) solution u(t) obtained by either adding uo(t) to h(t) 
given by Eq. (66), or by replacing Eq. (64) in Eq. (50) and 
performing the respective integration, is completely equiva
lent to the corresponding iterate of the fixed-point (implicit) 
form solution represented by Eq. (51). For example, the 
first iterate u 1 (t) is obtained by using Eqs. (64) or (66) 
truncated at O(h 2); this gives 

u1(t)=exp( - fbUo(r)dr) 

x[u; +c fdt'exp f'bUo(r)dr] 

= exp[ - b (u;t + C t22)] 

[ it ( (t')2)] X U; + c 0 dt' exp b u;t' + c -2- , 

(67) 

which is identical to the expression of the first iterate of the 
fixed-point solution represented by Eq. (51). Comparing 
Eqs. (67) and (58) reveals clearly that Eq. (67), obtained 
from the generalized series expansions presented in Sec. VI, 
represents a vast improvement over the customary perturba
tion theory result, since all of the secular terms are now 
summed up into a bounded expression involving decaying 
exponentials. Furthermore, the (n + l)th iterate of the inte
gral, fixed-point solution given by our new formalism is 
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u n + 1 (t) = exp [ - f bUn (r) J 

X{U; +c f drexp [bUn(Y)dY}. (68) 

Equation (68) clearly shows that asymptotically, as t -+ 0() , 

these iterates give 

lim Un + 1 (t)u n (t) = c/b, for any n, 
t_ 00 

which is the exact asymptotic behavior ofthe exact solution 
u (t) of the Riccati equation; this fact can be readily seen 
from the analytical solution given in Eq. (43). 

To test our formalism, we have performed a numerical 
comparison between Eq. (68) and the form 

un + 1 (t) = f [c - bu~ (s) ]ds + U;, uo(t) = U;, 

(69) 

which is obtained by applying the customary Picard iter
ation method to the differential (Riccati) equation (41). 
Our preliminary results indicate that Eq. (68) is superior to 
Eq. (69) regarding convergence (for the same accuracy), 
stability, and CPU computer time. The detailed results of this 
comparison, and comparisons to other numerical methods, 
are expected to be published elsewhere. 20 

VIII. CONCLUSIONS 

We have presented in this paper a new and canonical 
formalism for finding solutions to equations involving non
linear (differential, multiplicative, integral) operators. This 
formalism is not limited, per se, to special boundary and/or 
initial conditions, or to a special structure (e.g., evolution) 
of the underlying nonlinear operators. Our method relies on 
the construction and exploitation of the dual operator, 
which has been shown to be the analog of the adjoint opera
tor in linear theory. This dual operator enables us to con
struct and use the advanced and retarded nonlinear propaga
tors; these propagators generalize the customary Green's 
functions in linear theory. Note that the construction of the 
dual operator requires the existence of the Gateaux deriva
tives of the nonlinear operators underlying the original prob
lem; thus the applicability of our formalism is limited by this 
regularity requirement. 

Although obtained from the variational operators 
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[N ' ( u) ] * and N ' (u) by a simple functional integration, the 
operators L * (u) and L (u) are the fundamental and natural 
operators for developing our formalism as the nonlinear ana
log to the Green's function method in linear theory. Also 
essential to developing our formalism is the observation that 
the relationship L(u)u =N(u) -N(O) is satisfied by 
L(u), but not by N'(u). Thus, as shown by Eq. (18), the 
forward and backward propagators G~ and Gu ' which are 
solutions of equations involving the operators L *(u) and 
L (u ), carry all the information needed to solve the original 
nonlinear equation. In this way, the propagators G ~ and G u 

generalize the customary Green's functions from linear the
ory; in particular, when the original problem is linear, G ~ 
and Gu reduce to the usual Green's functions. In this case, 
the dual operator N+(u) becomes the actual adjoint of 
N(u), L *(u) becomes the formal adjoint of N(u), and so 
forth. Furthermore, L, L *, N + become independent of u 
and, consequently, so do G * and G. 

We have shown that the advanced and retarded propa
gators G~ and Gu satisfy a reciprocity relationship analo
gous to that satisfied by the customary Green's functions. 
We have further shown that these propagators can be ob
tained as solutions of equations that are both nonlinear and 
integrodifferential-in general-but where the order of the 
highest derivative will always be lower than the order of the 
highest derivative appearing in the original nonlinear sys
tem. Note, though, that in many cases, including the 
Korteweg-de Vries equation, the integrodifferential equa
tion for one or both of the propagators reduces to a purely 
integral equation. 

We further noted that these integrodifferential (or inte
gral) equations for the propagators are exact, and their non
linear character reflects exactly the nonlinearities present in 
the original system. This is in contradistinction to nonlinear
ities that may appear in the expressions of the Green's func
tions in many-body and field theories, where such nonlinear
ities are not intrinsic to these theories but are introduced as a 
result of approximations needed to close the respective equa
tions. 

Using the advanced or retarded propagators, we have 
converted the solution of the original boundary/initial value 
problem into an integral form. In principle, such a conver
sion is always advantageous, even if the resulting integral 
form is nonlinear. This is both because (a) the contraction 
principle and/or fixed-point theorems could be applied to 
this integral form (but not to the original nonlinear bound
ary /initial value problem) to prove existence and unique
ness conditions, and (b) most numerical analysis and com
putational methods are comparatively more mature and less 
difficult to implement for integral equations than for differ
ential ones. Note, though, that because the nonlinearities of 
the original problem are inherently and exactly incorporated 
in the integral equations produced by our formalism, these 
integral equations may still be difficult to solve in practice. 

The formal character of the derivations underlying our 
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formalism is underscored by the fact that we have not ad
dressed rigorously the issues of existence, well posedness, 
and uniqueness; these issues will be addressed in detail else
where. Furthermore, a direct comparison between our for
malism and the few available methods for solving nonlinear 
equations (e.g., inverse scattering transform, similarity) is 
rendered difficult at this stage. This is because, in general, 
these methods directly yield, when applicable, the solution 
of the original problem, while our formalism-although 
clearly more general-yields the solution in terms ofthe ad
vanced or retarded propagator which, in tum, satisfies a 
nonlinear equation. Our current research is aimed both at 
performing such comparisons21 for the Korteweg-de Vries 
equation and at investigating several promising practical ap
plications of this formalism to solve nonlinear boundary/ 
initial value problems. 
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Among all possible singular (Lie) brackets in classical dynamics of discrete systems, the 
matrix of Dirac brackets between phase-space coordinates is uniquely characterized by having 
the symplectic (Lagrange) matrix as a generalized inverse. This result is used to prove an 
explicit representation of the Dirac bracket in terms of its singular functions. 

I. INTRODUCTION 

Since the pioneering work of Dirac, Bergmann, Ander
son, and others on constrained Hamiltonian systems in clas
sical mechanics and field theory, there has been continuous 
interest in the structure of the ensuing dynamical scheme. In 
particular, a number of papers I have been devoted to eluci
dating the structural features of the Dirac bracket which, as 
we know, emerges as the natural classical (Lie) bracket for 
dynamical systems with second class constraints. 

The Dirac bracket, however, seems to be only a particu
lar instance of a wide set of (singular) classical brackets one 
can think of.2 So the question naturally arises of how to dis
tinguish (uniquely, if possible) the Dirac bracket among the 
class of structures which share the following properties. 3 

(a) For any two dynamical variables A, B (functions of 
the phase-space coordinates S"', I" = I, ... ,R) the bracket is 
defined by 

{A,B }=/"''' a",A avB. (I) 

Here and in what follows a", =a las'" and the sum conven
tion is implied over repeated indices (Greek or otherwise) . 

The (non-necessarily constant) matrix/= (/"''') is (b) 
skew symmetric, (c) satisfies the Jacobi identity, and (d) is 
singular. Its rank, R - C say, is necessarily an even number. 

These properties confer to the space of dynamical vari
ables the structure of a function group in the sense of Lie. It is 
known that the singularity of/is completely accounted for 
by the existence of C independent functions ¢/, i = I, ... ,C, 
which are in involution with any dynamical variable; that is, 

(2) 

for all values of i and I" . These functions are called singular. 4 

For the Dirac bracket the singular functions are those which 
express the second class constraints. 

Equation (2) is equivalent to 

(3) 

which shows the set (a ,,¢/) as a null vector of/ labeled by the 
index i. The most general null vector is a combination of the 
form a j a",¢/ for some set of coefficients a j • Any of these 
combinations can only be 0 for alII" if a j = 0 for all i. 

II. DIRAC BRACKET 

We shall show below that the matrix of Dirac brackets 
can be uniquely characterized as that matrix (of order 
R = 2N) which satisfies, besides properties (a)-(d) above, 
the equation 

/E/=/ (4) 
Here E = (E aIJ ) is the symplectic (or Lagrange) matrix 

of order 2N. It is defined by 
N 

EaP = L (8a,N+m8 p.m - 8 a,m8p,N + m)' (5) 
m=l 

Equation (4) can be described as saying that the Lagrange 
matrix is a regular (skew symmetric) generalized inverse of 
the matrix of Dirac brackets. For a singular bracket that is 
the nearest we can get to the well-known fact that the La
grange matrix is the inverse ofthe matrix of Poisson brack
ets. In other words, both the matrices of Poisson and Dirac 
brackets share the matrix E as a common generalized inverse. 
This fact is a simple and compact characterization of Dirac 
brackets which shows neatly its conspicuous relation to 
Poisson brackets. 

Equation (4) can be freed from any specific system of 
coordinates in phase space. In fact, that equation remains 
invariant under regular transformations of coordinates if/ 
and E are, respectively, transformed as contravariant and 
covariant tensors. Under these transformations E loses its 
canonical form (5) and becomes, in general, a nonconstant 
matrix. It continues to be, however, a regular matrix that 
satisfies the Lagrange identity. These two features are all 
that we really need in Eq. (4). Lagrange and Jacobi identi
ties are, of course, closely connected. In fact, if relation ( 4 ) is 
granted the first identity implies the second. (See the Appen
dix.s) 

Define now the skew symmetric matrix t = (c;.v) 
through the identification 

t=E - E/E (6) 

This matrix, which cannot vanish identically, is annihilated 
by f, that is 

/t= /f= O. (7) 

But then t. must be a bilinear combination of the null vec-
"''' tors off, i.e., 

c;." = a,..t// cija,,(V (8) 

Here (Cij ) is also a skew symmetric matrix. Substituting Eq. 
(8) in Eq. (6),fcan be inverted as 

(9) 

where ~p is a general entry of the matrix of Poisson brack
ets. Equation (9) is already the standard form for the Dirac 
bracket. It remains only to show that the matrix (Cij ) inverts 
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the matrix of the Poisson brackets between the singular func
tions, that is, 

(10) , 

This, in fact, is a consequence ofthe independence of the null 
vectors off, because the relations 

o =jp,V avr/Jk = tr aar/Jj(8~ - Cij{r/Jj,r/Jk}p), 

valid for any p and k, imply the vanishing of the quantity 
inside round brackets. 

III. AN EXPLICIT REPRESENTATION 

The Dirac bracket in its standard form, Eq. (9), de
pends rather implicitly both on the structure of the Poisson 
bracket and on the functional form of the singular functions. 
We show in this section how these two features can be sepa
rated, giving to the Dirac bracket a completely explicit 
expression. 

Consider the equality 

jaP = (llo)j/3t7,u, ... uc au, r/JI au,r/J2 .. ·aucr/Jc. (11) 

Here 

j a{3d,u,."uc=.'YJ tt:./3t7,"·uce'v~,)., .. ·E).c-,).c (12a) 
'Ie I'vA..···Ac 

with 

'T]c = [2(C+2)/2(C+2)/2)!]-1, (12b) 

and 0 is a function to be determined. It will be shown below 
that Eq. ( 11 ) represents, in fact, the Dirac bracket. Equation 
(12a) contains the so-called generalized delta symbol de
fined as 

( 13) 

The sum on the right-hand side ofEq. (13) is over all permu
tations P of the lower indices ((J), where p is the parity of P 
with respect to the "natural" order of these indices. This is 
the one they have at the left-hand side. In fact, due to the 

obvious equality~':: :~" = tI:;:: :!" , there is complete symme-
JoIl f.ln 1 n 

try between upper and lower indices. Then the symbol van-
ishes unless both sets of indices coincide modulo a permuta
tion. It is also skew symmetric under the interchange of any 
two upper (lower) indices. Thus the numerical factor 'T] C in 
the right-hand side ofEq. (12a) reduces all equal terms that 
come from the interchange of indices within each factor E 

and from permutations between these factors. 
The symbol jaP",·· 'Uc is then completely skew symmet

ric with respect to the interchange of any two of its indices. 
This already givesjaP apr/Jj = 0, i = 1,2, ... ,C. [That the most 
general null vector ofjaP in Eq. (11) is of the form OJ apr/Jj 
can be easily proved from Eq. (15) below.] 

We now show that there exists a unique function 0 that 
makes jaP, as given in Eq. (11), fulfill Eq. (4). In fact, the 
contracted expression EuJaPu,,,.uc contains two types of 
terms. The first type occurs when Eua encounters a factor ~P 
(or E(Pa) ). This gives rise to ~. A moment of reflection 
shows that these terms add up to 

2( (C + 2)/2)'T]c ( 8;::::;:e"P,,· "Ec-'P,c)~. 
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The second type of term corresponds to contractions of the 

form EuaEau; = 8;, i = 1, ... ,C. It is seen then that choosing 

thejin Eq. (11) satisfies 

EuafaP = ~ - h r aur/Ji
, 

(14) 

(15) 

for some set of coefficients h f. This completes the proof 
because Eqs. (4) and (15) are equivalent. 

An alternative expression for 0 can be obtained as fol
lows. Contracting Eq. (15) with apr/Jj gives (hfapr/Jj 
- ~ )aur/Jj = 0 for all values of u. Then 

hfapr/Jj=8{. (16) 

Equations (15) and (16) lead now to 

Tr(Ej) = ~ - 8; = R - C. (17) 

Combining Eqs. (11) and (17) we finally get 

0= (R - C)-IEJPu''''ucau,r/JI· .. aucr/Jc. (18) 

An interesting feature of the representation (11), as re
gards the dynamical role of the Dirac bracket, is that the 
singular functions and the Hamiltonian will enter in an al
most identical way. The difference comes from the function 
o and disappears when it happens to be (or can be made) a 
constant.6 This suggests, as an alternative point of view of 
the Hamilton-Dirac equations, to treat both the singular 
functions and the Hamiltonian as the same type of math
ematical objects. The resulting dynamical scheme is formal
ly similar to the one advocated by Nambu a number of years 
ago.? 

We point out finally that an explicit representation in 
terms of its singular functions (which do not have to be al
ways constraints in the sense of Dirac) can be found for any 
singular classical bracket as defined in the Introduction. 

APPENDIX: LAGRANGE AND JACOBI IDENTITIES 

For skew symmetric matrices E and f, Lagrange and 
Jacobi identities are, respectively, equivalent to the vanish
ing of the differential expressions 

LaPr =.aaEPr + arEap + apEra, 
Ja{3r=.jap, ap/Pr + jrp, ap/aP + jPP, ap/ra, 

for any set of three distinct indices a, (J, r. These identities 
are dual structural features for matrices E and j related by 
Eq. (4), exactly as they are in the case of the Poisson bracket. 
In fact, one can prove directly the equality 

JaPr = jap,jPv.r).Lp,v).' (AI) 

so that the Lagrange identity for E implies the Jacobi identity 
forf As herej is singular the converse is not true in general. 
A proof of Eq. (AI) proceeds very much as in the Poisson 
bracket case; for brevity we omit the details. 

'The literature is abundant. The following is just a sample of it. P. A. M. 
Dirac, Can. J. Math. 2, 129 (1950); P. G. Bergmann and I. Goldberg, 
Phys. Rev. 98, 531 (1955); N. Mukundaand E. C. G. Sudarshan,J. Math. 
Phys. 9, 411 (1968); S. Shanmugadhasan, ibid. 14, 677 (1973). 
~her instances are some of the structures introduced by Y. Nambu, Phys. 
Rev. D 7,2405 (1973). In this respect see G. J. Ruggeri, Int. J. Theor. 
Phys. 12, 287 (1975). 
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3 Answers to this problem, distinct from ours, have been given (implicitly or 
explicitly) in the literature. See, for example, the papers ofP. G. Bergmann 
and I. Goldberg and N. Mukunda and E. C. G. Sudarshan in Ref. 1. 

4 Also called, sometimes, Casimir invariant functions. 
5Equation (4) admits also the transformations EafJ -EafJ = EafJ 

+ aag, afJ¢!' - afJg, aa¢!', for arbitrary g,. This preserves the Lagrange 
identity. It can be seen that this type of regauging is needed to make room 
for (Dirac's) canonical transformations. See also, G. J. Ruggeri, "A vari-
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ational principle for Hamiltonian triplets, Sect. II," submitted for publica
tion. 

"This occurs, for instance, when there are only two (second class) con
straints. In this case a = {¢!',I,t>2} p, which can always be made equal to 1 by 
choosing appropriately the form of the constraints. 

7y. Nambu in Ref. 2. 
8G. J. Ruggeri, "On general Hamiltonian dynamics for finite systems," sub
mitted for publication. 

G. J. Ruggeri 364 



                                                                                                                                    

Behavior of dynamic soliton solutions in nonintegrable extended Klein
Gordon systems by means of a state plane technique 

H. Tateno 
Electrotechnical Laboratory, 1-1-4 Umezono, Sakuramura, Niiharigun, Ibaraki, Japan 

(Received 16 July 1987; accepted for publication 23 September 1987) 

The dynamic behavior of soliton solutions in nonintegrable extended Klein-Gordon systems as 
a continuum containing a dissipation term and an external force term, expressed by 
t/Jxx - t/Jtt - F(t/J) Gt/J, - JB , is investigated geometrically in a state plane by transforming 
the equation into three basic equations, each of which is associated with the derivative with 
respect to x, t, and t/J, respectively. The initial and the boundary conditions are imposed so that 
the solution approaches asymptotically the stationary solitary-wave solution as Ixl and It I 
approach infinity. In the above treatment, the waves consisting of the pair of t/Jx and t/Jt are 
divided into two components, the traveling wave component, V(x,t), and the others. The state 
plane is then constructed by the coordinates consisting of V(x,t) and t/J. The traveling wave 
component is defined with t/JT by introducing nonlinear coordinates 
S(x,t) = X(x,t) - uT(x,t) instead of the linear coordinates S = x - ut, and travels with a 
constant velocity of u in the coordinates. Their properties are investigated for various cases of 
wave interactions. The method for analyzing soliton interactions is described in detaiL It is first 
shown that the solutions to the basic equations presented are in agreement with the well
known solutions for two soliton interactions in the pure sine-Gordon system. Next, as an 
example, the analytical method is applied to the extended sine-Gordon system, the behavior of 
the local distortions produced during the soliton-anti soliton interaction because of existence of 
the moving singularities is described, and details of the mechanism and properties of them are 
clarified. It is finally shown that the additional dissipation term proportional to t/Jxxt acts to 
smooth the distortions resulting from the disappearance of the moving singularities. 

I. INTRODUCTION tegrable systems using the corresponding finite difference 
equation usually brings some emission of radiation in dy
namical variations irrespective of whether we take account 
of G and J B or not.3,5-1O Such a simulation is useful for dis
crete systems, from which we may obtain the exact solution, 
although time discreteness is still included. However, strict
ly speaking, we cannot use this method as a means of obtain
ing exact solutions in the continuum system because there 
must exist at least at one position satisfying condition Eq. 
( 1.3) for the nonintegrable system, however small the mesh. 
A perturbation method1,2,12-14 is normally used for the con
tinuum system if the perturbation is small, but it is powerless 
for a large perturbation. Moreover, since the method is 
usually developed from a solution obtained under an integra
ble condition, and since there is no room to include the effect 
of the nonintegrability during the development of the pertur
bation process, the results naturally have no connection with 
the nonintegrability condition. It is also apparent that it 
would be useless to make an effort to transform Eq. (1.1) so 
as to be associated with a linear equation. Thus we under
stand that we cannot use any of above methods to see the 
exact behavior of solutions. It is also expected that there are 
new phenomena based upon nonintegrability that cannot be 
derived by the above methods if we take account of the non
integrability condition. Here, we intend to investigate the 
exact behavior of solutions for the systems as a continuum 
described by Eq. (1.1) under the condition that the solution 
approaches asymptotically stationary solitary-wave solu
tions as both Ixl and I t I approach infinity by using a method 
in which the nonintegrability condition is included. The geo-

The study of the dynamic behavior of solutions in non
linear Klein-Gordon systems has proved stimulating and 
useful in many area of physics. 1,2 The more general systems 
are the ones in which an external force term and a dissipation 
term are taken into consideration in the above systems, and 
the equation is then expressed for the continuum by 

t/Jxx -t/J" -F(t/J) =Gt/J, -JB , (Ll) 

where G is the dissipation coefficient, and JB is a uniformly 
applied external force. The equation for the discrete systems 
is expressed by the finite difference equation corresponding 
to Eq. (1.1). Then, an expression such as Eq. (1.1) has 
usually been applied at the continuum limit of the discrete 
systems. However, the difference equation has also been 
used for the analysis of continuum systems, especially when 
the equation is not integrable. 3-11 Such an application of the 
difference equation for nonintegrable continuum systems 
seems to be due to the lack of an appropriate theoretical way 
to treat them exactly at present. 

The integrability condition for Eq. (1.1) is given by 

t/Jx, =t/J,x' (1.2) 
On the contrary, if the equation is not integrable, there may 
exist at least one position (x,t) = (xc ,te ) not satisfying Eq. 
(1.2), i.e., 

t/Jxt =l=t/Jtx' (1.3) 

which suggests that there should exist a singularity there. 
It is shown that the computer simulation for such nonin-
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metrical method in a state plane (phase plane), which con
sists of the relation between ¢ and ¢t, is a useful means for 
the investigation of exact solutions on the stationary state to 
the extended sine-Gordon system.4

,15.16 It is shown that 
such a state plane technique can be extended to develop to 
the nonstationary state from the stationary state, and as a 
result it has been shown that the local distortion based upon 
the nonintegrability can exist in the extended sine-Gordon 
system. 17 The most typical feature of this treatment is that 
we can derive three basic equations, each of which is asso
ciated with the derivative with respect to x, t, and ¢, respec
tively, and is equivalent to Eq. (1.1). We are then effectively 
treating the ordinary differential equations instead of the 
partial differential equation. Thus we can construct the solu
tion starting at the stationary state, and continue to the non
stationary state with conventional analytical techniques for 
ordinary differential equations. 

In this paper we present a detailed version of the state 
plane technique for solving the equation on the extended 
Klein-Gordon systems as a continuum expressed by Eq. 
( 1.1) under the condition that there exists a stationary soli
tary-wave solution as x and t approach infinity, and we also 
present some results for the application to the extended sine
Gordon system. The plan of this paper is as follows: In Sec. 
II, we derive three basic equations equivalent to Eq. (1.1), 
each of which is associated with the derivative with respect 
to x, t, and ¢, respectively. In Sec. III, the expression for ¢t 
and ¢x is divided into the traveling wave component and 
other wave components with introduction of nonlinear co
ordinates. In Sec. IV, the equation describing the traveling 
wave component is derived in association with the state 
plane, and the properties of the solution in the stationary 
state are clarified. In Sec. V, the functions for describing the 
nonlinear coordinates are introduced and their properties 
are discussed, and in Sec. VI, the nature of the nonlinear 
coordinates is clarified. In Sec. VII, the soliton-antisoliton 
and the soliton-soliton interaction solutions are derived 
from our basic equations for the pure sine-Gordon system to 
confirm that our theory is appropriate. In Sec. VIII, the soli
ton-antisoliton and the soliton-soliton interaction solutions 
are constructed qualitatively on the state plane based upon 
the traveling wave component. In Sec. IX, an analytical 
method for the soliton-antisoliton interaction is developed. 
In Sec. X, the analytical method is applied to the extended 
sine-Gordon system, and the behavior ofthe solution is dis
cussed in detail, where we investigate the local distortions of 
waves produced by moving singularities. In Sec. XI, the 
mechanism of the local distortions is clarified, and the solu
tion is compared with the solution for the system having an 
additional dissipation term proportional to ¢xx,' In Sec. XII, 
we summarize our results. 

II. EQUATION ON STATE PLANE 

We can consider two kinds of phase planes for Eq. (1.1) 
consisting of (¢, ¢, ) and (¢, ¢x ), respectively, since we are 
treating two-dimensional problems consisting of x and t. 
However, since ¢, and ¢x are not independent of each other, 
it is convenient to define a state plane common to these 
planes. For this purpose we express the solution in terms of 

366 J. Math. Phys., Vol. 29, No.2. February 1988 

¢, and ¢x instead of ¢ as 

¢, = V(x,t)g(x,t), 

¢x = - V(x,t)h(x,t)/u, 

(2.1 ) 

(2.2) 

where V(x,t) is a state variable, and g(x,t) and h(x,t) are 
other variables. From Eqs. (2.1) and (2.2), we can con
struct a state plane consisting of the relation between V(x,t) 
and¢. 

In Eqs. (2.1) and (2.2), ifg(x,t) and h(x,t) are unity 
and not dependent upon the values of x and t, ¢, and ¢x 
construct a stationary solution in Eq. (1.1) that describes 
the waves traveling with a constant velocity of u, since they 
satisfy 

¢, + u¢x = O. (2.3) 

In this special case, the state plane is identical to the phase 
plane consisting of (¢, ¢,). 

The solution ¢ to Eq. (1.1) is determined by designating 
x and t. We can then consider that ¢x and ¢, are determined 
through ¢ by designating x and t, if we keep phase planes of 
(¢, ¢x ) and (¢, ¢,) in mind. Then ¢xx and ¢tt are expressed 
by 

a¢x a¢, 
¢xx = ¢x a¢ , ¢tt = ¢, a¢ . 

Integrating Eq. (1.1) with respect to ¢ and using the above 
relations, we obtain 

f ¢x d(¢x) - f ¢, d(¢,) 

= f [F(¢) +G¢, -JB]d¢. (2.4) 

For convenience, we assume throughout this paper that 
J B ;;'0, and that F( ¢) repeats exactly same shape with a cer
tain period of ¢. The extended sine-Gordon system, the ex
tended multiple sine-Gordon system, and so on satisfy the 
latter condition. 

We may regard Eq. (1.1) as an equation on the trans
mission line for electromagnetic waves.2

,4 Then, the first 
term and the second term on the left in Eq. (2.4) denote the 
magnetic energy per unit length supplied to the transmission 
line by waves and the electric energy per unit length stored in 
it, respectively. The first term on the right denotes the energy 
stored per unit length in the distributed nonlinear nondissi
pative element F( ¢ ), the second term energy dissipation per 
unit length due to G, and the last term the energy per unit 
length supplied to the waves by the distributed direct current 

JB · 
DifferentiatingEq. (2.1) with respect tox andEq. (2.2) 

with respect to t, and equating them, i.e., using the integrabi
lity condition Eq. (1.2), we obtain 

[~;l = [~;L + h(x,t~(X,t) (gx + :), (2.5) 

where 

(2.6) 

(2.7) 
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If we integrate Eq. (2.6), keeping f constant, and integrate 
Eq. (2.7), keeping x constant with respect to tP, respectively, 
we obtain V(x,f) for either case. Thus we can set 

[~;l = [~;L = ~;. (2.8) 

Inserting Eq. (2.8) into (2.5), we obtain the conservative 
relation 

gx +h,lu =0. (2.9) 

In Eq. (2.9), the nonintegrability condition is not included 
ing(x,f) andh(x,f) inEq. (2.9). This results from use ofEq. 
( 1.2). 

We insert in part Eqs. (2.1) and (2.2) into Eq. (2.4), 
taking account ofEqs. (2.6)-(2.8). As a result, we obtain 
the following equation on the state plane: 

P( X,f) V(X,f) av - ;(x,f) V(x,f) = "'(tP), (2.10) 
atP 

where 

P(x,t) = h 2(x,t)lu2 - g2(X,t), 

;(x,t) = (lIu)hx +gt + Gg(x,f), 

"'(tP) = F(tP) - JB • 

Since the relation in Eq. (2.8) is derived irrespective of the 
integrability condition (1.2), Eq. (2.10) may satisfy condi
tion (2.3 ). Actually, if (3(x,t) becomes zero at certain ranges 
ofx and fin Eq. (2.10), it is possible for singularity to exist 
there. Thus it is understood that the nonintegrability condi
tion is normally included in Eq. (2.10). 

From Eqs. (2.1), (2.2), and (2.6)-(2.8), we obtain the 
following two relations necessary to transform Eq. (2.10) 
into the expressions for real space: 

av u
2 

[ 1 ] 
V(X,f) atP = h 2(X,t) tPxx - h(X,f) hxtPx (2.11) 

= g2(~,t) [tPtt - g(~,t) gttPt] . (2.12) 

By using Eqs. (2.1) and (2.2) for V(x,t) and by using Eqs. 
(2.11) and (2.12) for V(x,t)av latP, respectively, Eq. (2.10) 
is transformed into the following expressions on real space: 

", +X (x f)'" = h 2(X,t) ",(tP) (2.13) 
'Yxx l' 'Yx 2 ( )' u x,f 

,.2 "'(tP) tPtt - X2(X,t)tPt =15 (x,t) ---, 
P(x,t) 

(2.14 ) 

where 

Xl(X,t) = h(x,t) ;(x,t) _~, 
u P(X,f) h(x,t) 

h(x,t) =g(X,f) ;(x,t) + _g_t _. 
P( x,t) g(x,t) 

We can regard Eqs. (2.13) and (2.14) as ordinary differ
ential equations consisting of derivatives with respect to x 
and f, respectively, each of which is exactly equivalent to Eq. 
(Ll), if the functional forms of g(x,t) and h(X,f) are 
known. Then, we can first calculate, for instance, the solu
tion for tP from either Eq. (2.13) or Eq. (2.14) using any of 
the conventional analytical techniques for an ordinary dif-
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ferential equation, and then we can calculate V(x,f) from 
either Eq. (2.1) or Eq. (2.2). Equation (2.13) can be used to 
obtain the solution with changing x, where f is fixed, and Eq. 
(2.14) can be used to obtain the solution with changing t, 
where x is fixed. 

III. WAVE COMPONENT 

In order to see the meaning of V(X,f) , we divide tPt and 
tPx, not tP, into two components as follows: 

tPt = (tPt)(t) + (tPt)(r), 

tPx = (tPx)(t) + (tPx)(r), 

(3.1 ) 

(3.2) 

where it is noted that each component on the right-hand side 
of the above expressions does not mean the derivative with 
respect to the SUbscript, f or x, but expresses the quantity as 
defined by 

(tPyt) = V(x,t), 

(tPt)(r) = [g(x,t) - l](tPt)(t), 

(tPx )(t) = - V(x,t)lu, 

each of which belongs to the same state of tP. It is also noted 
that (tPx) (t) and (tPt) (t) satisfy 

(3.3 ) 

From the analogy between Eqs. (3.3) and (2.3), we can 
expect (tPx) (t) and (tPt) (t) to construct a traveIing wave com
ponent. However, since they interact with (tPx) (r) and 
( tP t ) (r), they change their shape as either x or t is changed, 
insofar as we treat the nonstationary state. That is, the con
servation relation on the (X,f) coordinates such as Eq. (2.3) 
is not satisfied in Eq. (3.3). 

We introduce nonlinear coordinates X(x,t) and T(x,t) 
so as to satisfy a conservative relation between (tPx )(t) and 
(tPt) (t) in that coordinate system as follows: 

(3.4) 

Such a state as Eq. (3.4) in Eq. (3.3) is realized if there is a 
way to change T(x,t) without changing X(x,t) and also if 
there is a way to changeX(x,f) without changing T(X,f) by 
changing appropriately the values of x and f. Since the func
tional form of T(x,t) is apparently different from X(x,t) 
throughout the whole range of x and f, the state as in Eq. 
(3.4) naturally exists. From Eqs. (2.1), (2.2), and (3.4), 
the relationships among T(x,t) , g(x,t), and tPt> and among 
X(X,t) , h(x,t), and tPx are then given by 

aT 1 
-=--tPt = g(X,t) , (3.5) 
at V(x,t) 

ax u 
-=--tPx =h(x,f). (3.6) 
ax V(x,t) 

Integrating Eq. (3.5) with respect to t and Eq. (3.6) with 
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respect to x, we obtain 

T(x,t) = It a¢ dt' 
V(x,t') at' 

= r g(x,t')dt' + To(x), (3.7) 

X(X,t) = _ IX u a¢ dx' 
V(x',t) ax' 

= IX h(x',t)dx' + Xo(t) , (3.8) 

where To(x) and Xo(t) are arbitrary functions of x and t, 
respectively. We shall see in Sec. V thatXo(t) and To(t) are 
associated with singularities in the state plane. We also intro
duce a E (x,t) coordinate having a framework moving with a 
constant velocity u in X(x,t) space, which is defined by 

r d¢' 
E(x,t) = - u --= X(x,t) - uT(x,t). (3.9) 

V(x,t) 

By using Eq. (3.9), Eq. (3.4) is also rewritten as 

( "" )(t)= -u a¢ (",,')(t)= a¢, 
'l't a'S,' 'f'x as (3.10) 

where we have used the relation 

[!:L = [!:L = !:' 
which is derived in the same way as the relation in Eq. (2.8). 
Equation (3.10) indicatesthat¢(x,t) and V(x,t) are a func
tion of E(x,t). Thus we can replace them by ¢(E) and 
V( E), respectively. If the solution approaches the stationary 
state, T(x,t) will approach t and X(x,t) will approach x, 
because bothg(x,t) and h(x,t) should approach unity. As a 
result, E(x,t) will approach S = x - ut. Thus we anticipate 
that T(x,t), X(x,t) , and E(x,t) will be the extensions oft, x, 
and S, respectively. It will be shown in Sec. VI that these 
anticipations come true. 

Throughout this paper, we assume that the solution ap
proaches an asymptotically stationary solitary-wave solu
tion as both Ixl and It I approach infinity. We refer to the 
components having (t) and (r) in the superscript as the (t) 
component and the (r) component of the waves, respective
ly. Then, the (r) component must disappear as both Ixl and 
It I approach infinity from the expression of its definition so 
that¢t and¢x maysatisfyEq. (2.3). This indicates that the 
(r) component is substantially confined in a restricted re
gion in real space. Thus we expect that the (r) component 
will construct a standing wave and/or a decaying radiation. 

IV. TRAVELING WAVE COMPONENT 

We can rewrite Eq. (1.1) using the E(x,t) coordinates 
as 

Vs; = - u[F'(E) + GV(E) -JB ]/0- u2
), (4.1) 

where 

F'(E) = F(¢(E») + F(r)(E), 

F(r)(E) = - (¢x)~r) + (¢t)~r) + (Ex -l)Vs;/u 

+ (Et + u) V=: + G(¢t )(r), 

and Fr) (E) is the contribution from the (r) component. 

368 J. Math. Phys., Vol. 29, No.2, February 1988 

Since there is an infinite number of combinations of x and t 
for a given value of either X(x,t) or T(x,t) in E(x,t) coordi
nates, which are, from their definition, different than S co
ordinates, the state of the system is not determined by desig
nating only the value of E (x,t) that is determined by a pair of 
certain values of X(x,t) and T(x,t), and it is also needed to 
designate both the values of x and t. This means that V( E) 
and ¢(E) are in general not single-valued functions of the 
value of E(x,t). 

The equation on the state plane can be written, from 
Eqs. (3.10) and (4.1), as 

av u2 r(E) + GV(E) - JB 

a¢ = 1 - u2 V(a) 
(4.2) 

Equation (4.2) isanotherexpressionofEq. (2.10) using the 
coordinate system of E(x,t), and is compared with the 
expression for stationary solitary waves in the extended 
sine-Gordon system. 15.16 We understand that the solution to 
Eq. (4.2) has singular points if the denominator and the 
numerator vanish simultaneously. Then, the singular points 
correspond to IE(x,t) I- 00, where VeE) -0. 

In Eq. (4.2), we treat the first-order differential equa
tion instead of the original second-order partial differential 
equation on real plane. As a result, the stationary solution is 
limited to a certain area connecting two singular points in 
the state plane, 2.15.16 although the solution expands infinitely 
in the conventional treatment on real space. From the above 
facts, we can investigate geometrically the exact solution in 
the state plane easier than doing this in real space. That is, 
once we know the field of directions in the state plane on Eq. 
(4.2), which is the direction solutions move with increasing 
(x,t), we can visually clarify the properties of solutions in 
the plane qualitatively almost with a freehand drawing, and 
can easily calculate the necessary solution quantitative
ly.15.16 The other feature is that the initial and boundary 
conditions are imposed at the slopes av /a¢ of the singular 
points. Thus it enables us to set initially the well-defined 
exact stationary solitary wave solution in a finite area on the 
state plane, developing to the nonstationary state at the finite 
values of x and t, where the entire solutions still remain in a 
certain area in the state plane not so different from the solu
tion for the original stationary state. 

In Eq. (4.1) if both Ix I and I ut I are much larger than 
unity, the (r) component may be disregarded, since the situ
ation is regarded as the stationary state. It is confirmed in 
Sec. VI thatXo(t) and To(x) become constants under these 
circumstances. Thus Eq. (4.1) is rewritten as 

0- u2 )¢ss + uG¢s = - u[F(¢) -JB ]. (4.3) 

Equation (4.3) is in agreement with the result derived di
rectly by using S in Eq. (1.1). Then, Eq. (4.2) is rewritten as 
follows: 

aVes) u2 F(¢) + GV(S)(s) -JB 

~= 1- u2 V(S)(s) 
(4.4) 

where (s) means the stationary state. The solution to Eq. 
(4.4) has a singular point as well as Eq. (4.2), ifthedenomi
nator and the numerator vanish simultaneously. The singu
lar point corresponds to the state at Is I = 00 in Eq. (4.2), 
where V's) (s) = o. 
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The singularity is detennined from the linearized equa
tion of Eq. (4.2), that is, 

(l-u2 )",ss +uG",s = dFI "', (4.5) 
d¢ ~ 

where", = ¢ - ¢o, and ¢o is ¢ at the singular point. The 
solution to Eq. (4.5) can be written as 

'" = "'0. ± exp( ko• ± 5'), ( 4.6) 

where "'0, ± are constants, and 

ko.± = ± 0o.± lu, 

0o.± = d1 d2, 

d 1 = ~ [C UGU2Y + 1 ~U2 ~:I\J, (4.7) 

d2 = (u2/2)[GIO- u2
)]. (4.8) 

If u < 0 we replace u by - u throughout this paper. As a 
result, 0 0• ± is replaced by - 0 0• 'f' ' and then k o. ± by - k 'f' • 

Thus 0 0• ± is chosen so as to be always positive. The d i 
corresponds to the discriminant of Eq. (4.5). First, we as
sume u2 < 1. If (dF Id¢) It/JO > 0 in Eq. (4.7), the singularity 
is a saddle point, and if (dF 1 d¢ ) I t/JO < 0, the singularity is a 
node or a spiral point depending upon whether the sum of 
two tenns in the square root in Eq. (4.7) is positive or nega
tive. Next, weassumeu2 > 1. If(dF Id¢}lt/JO >OinEq. (4.7), 
the singularity is a node or a spiral point depending upon 
whether the sum of two tenns in the square root in Eq. (4.7) 
is positive or negative. The typical patterns of solution 
curves around the singular points are qualitatively depicted 
in Fig. 1 for (dF Id¢)lt/JO >0 and Fig. 2 for (dF /d¢)lt/JO <0. 
The patterns of solution curves around the singular points 
are characterized by the properties of the field of directions 
as follows. 

(i) The solution curves are perpendicular to the ¢ axis, 
that is, the line for 

V(S)(5') = 0 (4.9) 

when the solution curves cross the line, because aY<S) / a¢ is 
then infinity there from Eq. (4.4). 

(ii) The solution curves are parallel to the ¢ axis when 
they cross the curve for 

(4.10) 

because a v<s) 1 a¢ is then zero from Eq. (4.4). 
(iii) The curves for Eqs. (4.9) and (4.10) divide the 

state plane into four areas with different sign combinations 
for y<S) (5') and ¢ as depicted in Figs. 1 and 2. 

(iv) The ¢ component of the field of directions increases 
monotonically as the solution curves leave the ¢ axis as seen 
from the first expression in Eq. (3.10) for the stationary 
state, in which (¢t )(t) and E(x,t) are replaced by V<s) (5') 

and 5', respectively. 
(v) The v<.) (5') component of the field of directions 

increases monotonically as the solution curves leave the 
curves described by Eq. (4.10) as seen from the following 
expression 

VtS) = - u[F(¢) + GV(S)(5') -Js ]/0- u2
), 

(4.3') 

which is obtained from Eq. (4.3). 
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FIG. 1. The patterns of solution curves around singular points on the sta· 
tionary solitary wave when dF / d~ > O. The patterns of solution curves are 
classified by hatched curves .......... . The dot denotes the singular point and 
the arrowhead on the curve denotes the field of directions: (a) a saddle 
point, (b) a node, (c) a spiral point. 

(vi) The solution curves have a certain slope (J ex
pressed by 

(J = tan- 1[u2/{l- u2
) lG, 

at infinitely large absolute values of V. 
(vii) Since F( ¢) is a periodic function, (dF 1 d¢ ) I t/JO is 

changed alternatively from plus to minus with increasing ¢o' 
Accordingly, the saddle point and the node or the spiral 
point appear alternatively in a certain range of J B • 

(viii) If JB is larger than the maximum value of IF( ¢) I, 
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(b) 

v V=i-Us-F(<jJ)] 

d<jJ <0 \' d<jJ<O d.;-

dV<O d.;-
d.;- dV>O 

d';-
<jJ 

d<jJ>O 
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d<jJ>Q 
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dV <0 
d';-

dV>O 
d';-

FIG. 2. The patterns of solution curves around singular points on the sta
tionary solitary wave when dF /d~<O. The patterns of solution curves are 
classified by hatched curves ............. The dot denotes the singular point and 
the arrowhead on the curve denotes the field of directions: (a) a saddle 
point. (b) a node. (c) a spiral point. 

there exists no stationary solitary-wave solution, since every 
singular point disappears. 

Throughout this paper, we also assume that (dF / d¢ ) t/JO 

at 15 I = 00 is positive, and that u2 < 1 since the solution for 
u2 > 1 does not construct the stable stationary wave solution 
as far asJB #0 and G #0. EvenifJB = G=O, the solution 
for u2 > 1 is outside our interest on account of periodic radi-

370 J. Math. Phys .• Vol. 29. No.2. February 1988 

~-------~rI--__ • <jJ(';-) 
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V(Sl(.;-) 
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FIG. 3. Stationary solitary-wave solution: (a) solution in state plane, (b) 
VIS) (5) vs ~, (c) ~(5) vs 5. 

ation solutions. Here ¢o is distinguished by whether it is con
cerned with an even or odd singular point counted from the 
origin, i.e., ¢o = ¢O,2n or ¢O,2n _ 1 , where n is an integer de
noting the position of the singular point. Here, we can 
choose the stable singUlar point (¢,V<S) (5» (¢O,2n,0) to 
be a saddle point that corresponds to the vacuum state. The 
point (¢O,2n _ 1 ,0) is naturally a spiral point or a node (if 
G = J B 0, the singularity is a vortex). Thus the stationary 
solitary wave solution can be constructed by finding a solu
tion that starts at a saddle point, ending at another saddle 
point by making reference to Fig. 1 ( a), for instance, as 
depicted in Fig. 3(a). The slopes at the saddle point, 
(av<s) /a¢) l.po, are significant since they are concerned with 
initial and boundary conditions, and are written as 

aVeS) I =ao aveS) I = -ao,+' (4,11) 
a¢ <P0.2. _ 2 ' - , a¢ <P0.2. 

if the solution is in the region between (¢O,2n _ 2 ,0) and 
(¢o,2n ,0). The arrowhead on the curve in Fig. 3(a) denotes 
the field of directions, where we assume u > 0, which means 
the forward wave, If u < 0, which means the backward wave, 
it is a straightforward matter to show from Eqs. (3.10) and 
(4.3') that the arrowhead points in the opposite direction to 
Fig. 3 (a). The effects of x and f on the field of directions are 
understood through 5 = x - uf, Accordingly, if we observe 
the forward wave, increasing x has the same effect as de
creasing t, and if we observe the backward wave, increasing x 
has the same effect as increasing t. From Fig, 3(a), we un
derstand that if we observe the forward wave solution in the 
state plane, the solution leaves the saddle point 
(¢, V<s) (5») = (¢O,2n ,0) toward the upper left with increas
ing 5 from - 00, and finally reaches the saddle point 
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( ;O,2n _ 2 ,0) from the upper right at t..... + 00, The relation 
between v<s) (t) andtis depicted in Fig, 3(b), and the rela
tion between; (t) and t is depicted in Fig. 3 (c), respective
ly. 

Consider the more generalized extended Klein-Gordon 
system in the (X(x,t), T(x,/») coordinates described by 

;xx -;rr - F'(X,T) = G;T - JB • (4.12) 

It is understood that Eq. (4.1) is in agreement with the 
expression for traveling waves in Eq. (4.12). Accordingly, it 
may be considered that (;,) (,) constructs the traveling 
wave having a constant velocity u in an extended Klein
Gordon system withF' (E) in the E (X,/) coordinates instead 
of F(;) in the t coordinates. 

v. PROPERTIES OF g(x,t) AND h(x,t) 

If there is no cause to disturb a solitary wave anywhere, 
the wave keeps the stationary state, where 
g(x,/) = h(x,/) = 1. Given the proper causal conditions, 
the wave is changed from the stationary state when ap
proaching its source, and there appears an (r) component, 
so that both g(x,/) and h(x,t) deviate from unity. Accord
ingly, we may regard their deviation as a measure of the 
disturbance of the wave. The above wave constructs an in
coming wave toward the disturbance source. On the other 
hand, an outgoing wave from the source may exist, ap
proaching asymptotically the stationary state while losing 
the (r) component. 

We expand g(x,t) using arbitrary functions gl (x) and 
g2(t), and expand h(x,/) using arbitrary functions hl(x) 
and h2 (t) as 

g(X,t) = Ib}l)[gl(x)r+ I bY) [g2(t)]i 
; j 

+ I I bij[gl(X) ng2(t)]i, (5.1) 
i j 

h(x,t) = Id}l)[h l (x)]i+ IdY)[h2(t)]i 
i j 

+ I Idij[h l (x)]i[h2(t)]i, (5.2) 
i j 

where i and)' are integers and b (I) b (2) b· d (I) d (2) and 
, J' J ' ii' , , j , 

dij are constants. The derivatives ofEq. (5.1) with respect to 
x and of Eq. (5.2) with respect to t are expressed by 

gx = ~{i{b}1) + ~bij[g2(t)]i}[gl(X)]i-l} "::' 
(5.3) 

h, = ~V{dY) + ~dij[hl(X)]}h2(t)]i-I} ~2, 
(5.4) 

respectively. It is seen from Eqs. (5.3) and (5.4) thatgx and 
h, are proportional to dg II dx and dh21 dt, respectively. Since 
Ixi and It I approach infinity at the same time, g(x,1) and 
h(x,t) also approach unity, respectively. If only x ap
proaches infinity, both g(x,t) and h(x,1) should become at 
most only a function of t, and if only t approaches infinity, 
they should become at most only a function of x. That is, 
dgl/dx ..... O and dh1/dx ..... 0 as Ixl ..... 00, and dg2ldt ..... 0 and 
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dh2/dt ..... 0 as It I ..... 00. We set then for convenience 

gl(lxl)=hl(lxl)=l (Ixl ..... oo), 

g2(ltl) =h2(ltl) = 1 (It 1""'00). 

Thus if Ixl approaches infinity, while t is kept to a certain 
value, gx approaches zero from Eq. (5.3). We see then that 
h, should also approach zero from Eq. (2.9). This means 
from Eq. (5.4) that at an arbitrary value of t, we obtain the 
condition 

dh2 = 0 (5.5) 
dt ' 

or 

(5.6) 

However, we cannot adopt Eq. (5.6) because tmust be fixed 
at a particular value then. Since Eq. (5.5) is adopted for any 
value of x, h (x,t) must be only a function of x, i.e., 

h(x,t) = hex). (5.7) 

Iflt I approachesinfinity,h, approaches zero from Eq. (5.4). 
From Eq. (2.9), gx should also approach zero at an arbitrary 
value ofx. From Eq. (5.3), we obtain 

dg1 = O. (5.8) 
dx 

Since Eq. (5.8) is adopted for any value of tin Eq. (5.1), 
g(x,t) must be only a function of t, i.e., 

g(x,t) = g(t). (5.9) 

We assume that the effect of the disturbance on the wave 
is most dominant at the origin, i.e., (x,t) = (0,0). Then, the 
disturbance keeps weakening with increasing Ixl and It I at 
the same time so that the wave tends toward the pure travel
ing wave. This indicates that the (r) component should be 
confined effectively in a restricted region around the origin. 
Next, with increasing only Ixl (or It I) more than a certain 
value, the (r) component keeps decreasing toward zero 
whatever the value of I t I (or Ix I ). Thus at the infinitely large 
value of Ixl (or It I) the (r) component may be disregarded 
compared with the traveling wave component in Eq. (4.1). 
In this situation, F'(E) is replaced by F(;) in Eq. (4.2), 
which is rewritten as 

Vx = -u[F(;)+GV(E)-JB ]/(l-u2) (lxl>1), 

(5.10) 

VT = u2
[ F(;) + GV(E) - JB ]/0 - u2) (Iut I> 1), 

(5.11 ) 
where we have used the relation between Eqs. (3.4) and 
(3.10). However, it is noted that the state at Ix I > 1 or at 
I ut I > 1 is generally different from the stationary state in Eq. 
(4.1), because even if Ixl approaches infinity, the state 
should be influenced by get) andXo(t), and even if lut I ap
proaches infinity, the state should be influenced by h (x) and 
To(x). That is, we cannot simply replace E(x,t) by t in this 
situation. Thus we expect that our approach will present us 
with more extensive information than the conventional the
ory even in the limit of small amplitude of the wave. Under 
such a condition, we can eliminate F' (E) = F(; ) from Eqs. 
(2.10) and (4.2). As a result, we obtain the following equa-
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tions for determining the functional forms ofg(t) and h(x): 

[g2(t) - 1] aVI - G [g(t) - 1] + dg = 0 
at/J "'0 dt 

(Ixl--+ 00), (5.12) 

- [h (x) -1] - --=0 (Iutl--+oo). 1 2 aVI dh 
u at/J",o dx 

(5.13 ) 

Here we note that if a sign of u is selected in Eq. (4.2) it is 
impossible to choose the region in which the forward wave 
and the backward wave component can coexist, because 
V(E) then represents only a kind oftraveling wave compo
nent determined by the sign of u there. Accordingly, if we 
wish to treat two components with different signs, we must 
set them in separate regions respective to the signs. We first 
direct our attention only to the forward wave, i.e., u > O. We 
can then set such a region either for t < 0 and x < 0 or for t > 0 
and x> 0 in physical reality. Since (av<S) lat/J) It/>O is inde
pendent of both x and t from Eq. (4.11), (aV lat/J) It/>O 
should only approach a function of t as Ix I --+ 00 . Thus we can 
set (aVlat/J)lt/>O in Eq. (5.12) by introducing ro± (t) to 
(4.11) as 

aVI aA. = ± a) ± (t)ao.=t= (Ixl--+ 00), 
'I' "'0 

(5.14) 

where a) ± (t) are positive, and the upper and the lower signs 
mean that the values of t are positive and negative, respec
tively. On the other hand, since (aV lat/J) It/>O should be at 
most only a function of x since It 1--+ 00, we can also set 
(I5Vlat/J)lt/>O in Eq. (5.13) by introducing r± (x) to Eq. 
(4.11) as 

aVI at'- = =+=r± (x)ao.± (Iutl--+oo), 
'I' "'0 

(5.15 ) 

where r ± (x) are positive, and the upper and the lower signs 
mean that t is positive and negative, respectively. 

As It I approaches infinity in Eq. (5.14), a) ± (t) ap
proaches unity, since we always observe the far side of the 
wave measured from the origin in this process since the con
dition Ixl ~ lut I is always preserved, that is, the situation 
should be in a stationary state. For convenience, we assume 
that a) ± (t) are equal to unity irrespective of the value of t as 
an ideal case, though we will see later that such an assump
tion does not satisfy the condition at t = 0 in the strict sense 
ofthe word. The g(t) for t> 0 and t < 0, g ± (t), can then be 
solved from Eq. (5.10) as 

g ± (t) = { 
± [B± tanh(B±ao.=t=t) -A±], (5.16) 

± [B± coth(B±ao.=t=t) -A±], (5.17) 

respectively, where A ± = G 12ao.=t= andB ± = 1 ± A ± . We 
will see in Sec. IX that Eq. (5.17) is significant since it can be 
used as a means to obtain the exact solution for the soliton
antisoliton interaction by means of a suitable coordinate 
transformation. 

Notice that if B _..;0 in Eq. (5.16) or Eq. (5.17), g _ (I) 

does not satisfy the initial condition so that g _ (t) may not 
converge to unity with decreasing t to minus infinity. Thus 
we may consider that the coexistence region of solutions is 
limited so as to satisfy the condition where O..;A _ < 1. 

On the other hand, even if Ixl approaches infinity in Eq. 
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(5.15), we cannot say that r ± (x) approaches unity, since 
we always observe the origin side ofthe wave in this process 
becauseoflut I ~ Ixl inEq. (5.13),and the wave continues to 
be influenced by disturbances around x = O. The h(x) for 
t> 0 and t < 0, h ± (x), can be solved without any assump
tion in Eq. (5.13), and are written as 

h± (x) = {(±)tanh[ao~± LXr±(x')dx')' (5.18) 

(± )Coth[ao~± LX r± (X')dX'], (5.19) 

where the ( ± ) signs are applied to x > 0 and x < 0, respec
tively, and the other ± signs are applied to t> 0 and t < 0, 
respectively. 

Finally, if we only observe the backward wave, we can 
set u < 0 for the region t < 0 and x> 0 and for the region t> 0 
and x < O. Then, we still obtain the same expressions as Eqs. 
(5.16)-(5.19) by replacing u by - u in Eqs. (5.12) and 
(5.13). Thus the phenomenon on the backward wave be
comes identical to the one on the forward wave. 

VI. NONLINEAR COORDINATES ON SINGULAR POINTS 

At this stage, Eqs. (3.7) and (3.8) can be rewritten as 

T(x,1) = r g(t')dt' + To(x), (6.1) 

X(x,t) = IX h(x')dx' +Xo(t). (6.2) 

However, the functional forms of To(x) and Xo(t) are not 
yet known. The solution to Eq. (4.2) has singular points at 
Ixl = 00 and It I = 00. From Eq. (3.7), we can define the 
following quantity at It 1--+ 00: 

ft 1 aA. 
T. (x) = 'T lim 'I' dt'. 
~ 'T V( ')a' t_ ± 00 ± 00 x,t t 

(6.3 ) 

Since V(x,1) converges to zero as t --+ ± 00, Eq. (6.3) can be 
developed as 

To (x) = lim at/J = =+= 1 (6.4) 
.r t-±oo av r± (x)ao.± 

which is the reciprocal of the slope at the singular point at 
t--+ ± 00. Next, from Eq. (3.8), we can define the following 
quantity at Ixl--+ 00: 

Xo", (t) = + u lim fX 1 at/J dx'. (6.5) 
• - x- ± 00 ± V(x',t) ax' 

Equation (6.5) can be developed as 

Xo",(t) = - lim u at/J = + u (6.6) 
• x- ± 00 av a) ± (t)ao.=t= 

which is proportional to the reciprocal of the slope at the 
singularpointatx--+ ± 00. We finally define Eo. 00 (x,t) from 
Eqs. (3.9), (6.4), and (6.6) as 

Eo 00 (x,t) = ± u [ 1 _ 1 ] . 
· r ± (x)ao.± ro± (t)ao.=t= 

(6.7) 

Since T o.r (x) and X 0.", (t) are derived from the definition of 
T(x,t) and X(x,t), respectively, To.r(x), Xo.",(t), and 
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So,oo (x,t) can be included in To(x), Xo(t) , and S(x,t), re
spectively. 

If we need to choose the function form of g ± (t) as the 
same kind of expression as Eq. (5.17), we see that 
g ± (t) -+ (XJ as t -+ ± (XJ, and then we obtain T(x,t) -+ + (XJ, 

because of 

lim T(x,t) = ± lim (lnlt 1)/ao,'F -+ 4= (XJ, (6.8) 
t-±O t_±O 

that is, the state at t = 0 describes a singular point in Eq. 
(4.2). On the other hand, if we need to choose Eq. (5.19) for 
h ± (x), we see that h ± (x) -+ (XJ as X-+ ± 0, and then we 
obtainX(x,t) -+ 4= (XJ. The state atx = 0 describes a singular 
point. Thus we can also define expressions such as Eqs. 
(6.4), (6.6), and (6.7) for the state at t = ± Oandx = ± 0 
as follows: 

Too(x) = ± lim Jt 1 at/> dt' 
, t-±O ±o V(X,t') at' 

= lim at/> 
t-±Oav' 

(6.9) 

which is the reciprocal of the slope at the singular point at 
t = ± O. At x = 0, 

Xoo(t)=+ulimJ
x 

1 at/>dx' 
, x_ ±o ±o V(x',/) ax' 

=_ limuat/>, 
x-±O av 

(6.10) 

which is proportional to the reciprocal of the slope at the 
singular point atx = ± O. We can also define So,o (x,t) from 
Eqs. (3.9), (6.9), and (6.10) as follows: 

So,o (x,t) = Xo,o (t) - uTo,o (x), (6.11 ) 

Equations (6.9)-(6.11) can be also included in To(x), 

Xo(t), and S(x,t), respectively. There is another kind of 
singular point at the position satisfying [3(x,t} = 0 as de
scribed in detail in Sec. XI, the effect of which can be includ
ed in To(x) andXo(t) as well. 

Ifwe take such effects as To(x) andXo(t} into consider
ation in Eqs. (6.1) and (6.2), respectively, we see that V(S) 

is in general not a single-valued function of t/> on account of 
their variation. However, in the stationary state, To(x) and 
Xo(t) become constants since r ± (x) andw ± (t) should ap
proach constants as Ix 1-+ (XJ and I t I- (XJ, respectively. More
over, [3(x,t) also approaches lIu2 - 1, being a constant. 
Thus S (x,t) is replaced by 5' Then V(5) becomes the single
valued function of 5, i.e., of t/>. As a result, V( S) is written as 
V(S) = v<S) (5). 

VII. CONSTRUCTION OF V(S) 

A. Sol/ton-antlsoliton Interaction 

If we refer to the kink solution of t/> decreasing with 
increasing x as the soliton as described, for instance, in Fig. 
3 (c), the antisoliton naturally becomes the kink solution of 
t/> increasing with increasing x. 

Consider the properties of V( S) around a singular point 
in adopting Eq. (5.18) for X(x,t} in Eq. (6.2) and Eq. 
(5.17) for T(x,t} in Eq. (6.1). As t approaches plus (or 
minus) infinity, T(x,t) approaches plus (or minus) infinity 
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FIG. 4. Relationship between V(x,t) and ~ in the two soliton interaction, 
where the field of directions are denoted by the arrowhead on the curve: (a) 
combination of the forward wave for t < 0 and the backward wave for t> 0, 
(b) combination of the backward wave for t < 0 and forward wave for t > O. 

and then the solution to Eq. (4.2) approaches a singular 
point, that is, zero. On the other hand, it is seen from Eq. 
(6.8) that as t approaches zero from the side of t < 0, T(x,t) 

approaches + (XJ, and as t approaches zero from the side of 
t>O, T(x,t) approaches - (XJ. Then, the solution to Eq. 
(4.2) again approaches a singular point. Moreover, since 
g ± (t) -+ (XJ and V(S) -+0 as t- ± 0, t/>t in Eq. (2.1) can 
keep a finite value at t = 0, where we choose the value of t/> as 
t/>0,2n . From the above facts and from analogy with the sta
tionary solution in Fig. 3(a), the relations between V(S) 

and t/> can be depicted qualitatively in Fig. 4, if V( S) is cho
sen so as to connect the singular points, (t/>0,2n _ 2 ,0) and 
(t/>0,2n + 2 ,0), in the state plane. Then, we have to treat two 
soliton solutions: the one is constructed in the region be
tween t/>0,2n _ 2 and t/>0,2n , and the other in the region between 
t/>0,2n and t/>0,2n + 2 • For convenience, insofar as we do not give 
a special notice, we assume that the singular points at 
I T(x,t) I = (XJ are saddle points. From the analogy of the 
stationary solution v<S) (5), we understand that V( S) is 
positive everywhere, as shown in Fig. 4. If there exist a for
ward wave for t < 0 and a backward wave for t> 0, as depict
ed in Fig. 4(a), then t/>x <0 for t<O, t/>x = 0 at t = 0, and 
t/>x >0 for t>O from Eq. (2.2). On the other hand, if there 
exist a backward wave for t < 0 and a forward wave for t> 0, 
as depicted in Fig. 4(b), then t/>x > 0 for t < 0, t/>x = 0 for 
t = 0, and t/>x <0 for t>O from Eq. (2.2). Note that t/>x at 
x = 0 is always zero since h ± (0) = 0 there. Existence of the 
respective regions of t/>x < 0 and t/>x > 0 means that we treat 
both the soliton and the antisoliton. In this case, the singular 
point at IT ± (x,t) I = (XJ which is the node and spiral point 
can also be considered [see Eq. (11.2)]. If the-singular point 
is a spiral point, the above explanation for t/>x is amended to 
include the radiation component around the singular points 
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as suspected from the characteristics in Figs. 1 ( c) and 2 ( c ) . 
If the singular points are nodes, then there exist two cases: 
one is where no radiation component exists as in the case for 
the saddle points and the other is where extremely attenuat
ed radiation associated with a region of the opposite sign of 
t/J, close to the singular points exists. Thus it is understood 
that the forward wave and the backward wave are associated 
with the soliton and the antisoliton, respectively, irrespec
tive of whether the radiation component is included or not. 

In Fig. 4, the direction the solution moves with increas
ing x or t is determined based upon the field of directions 
denoted by the arrowhead on the solution curves associated 
with the increasing direction of a(x,t). Then, the direction 
the solution moves with increasingX(x,t) or T(x,t) is deter
mined based upon the following expression: 

a(x,t) =X(x,t) =F luIT(x,t), (7.1) 

where the upper sign is used for the forward wave and the 
lower sign for the backward wave. The field of directions 
may be expressed by the slope in the relation between V( a) 
and t/J. The following expressions exist according to whether 
we use the (X(x,t),T(x,t») coordinates or the (x,t) coordi
nates: 

av (at/J)-I or av (at/J)-I 
aT aT at at 

and 

av (at/J) -lor av (at/J) - 1 
ax ax ax ax 

Using the relations between T(x,t) and t in Eq. (3.5) and 
between X(x,t) and x in Eq. (3.6), we obtain the following 
relations: 

av(at/J)-I = av(at/J)-I = av, 
aT aT at atat/J 
av (at/J)-I = av (at/J)-I = av. 
ax ax ax ax at/J 

Thus we understand that the field of directions associated 
with the a (x,t) coordinate is in agreement with the one asso
ciated with the S coordinate. Therefore, we can use the sign 
combinations used for the stationary solution as depicted in 
Fig. 1 (a) in determining the field of directions even for such 
a nonstationary state. Accordingly, it can be said in Fig. 4 
that, for instance, increasing t from - 00 V( a) leaves the 
singular point (t/JO,2n _ 2 ,0) toward the upper right, ap
proaching the singular point (t/JO,2n ,0) from the upper left as 
t approaches - 0, and that V(a) leaves the singular point 
(t/JO,2n ,0) toward the upper right by increasing t from + 0, 
and finally reaching the singular point (t/JO,2n + 2 ,0) from the 
upper left at t = + 00. From the above process, it can be 
seen that the direction the solution moves with increasing t 
does not depend upon whether we are observing the forward 
wave or the backward wave. 

Consider a situation where t is negative and is fixed at a 
value. If x is negative, V( a) constructs the forward wave in 
Fig. 4(a), That is, it leaves the singUlar point (t/JO,2n ,0) to
ward the upper left with increasing x from - 00, and reach
ing the position corresponding to x = 0, where the value of t/J 
shows a minimum before reaching t/JO,2n _ 2' If x is positive, 
then we treat the backward wave in Fig. 4(b). Increasing x 
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from zero, the solution keeps moving toward the right, final
ly reaching the point (t/JO.2n ,0) at x = + 00 from the upper 
left. Thus the state at x = + 00 becomes the same as the 
state at x = - 00. Next, consider the situation where t is 
positive and fixed at a value. If x is negative, V( a) constructs 
a backward wave in Fig. 4(a). That is, it leaves the singular 
point (t/JO,2n ,0) at x = - 00 toward the upper right with 
increasing x from - 00, finally reaching the position corre
sponding to x = 0, where the value of t/J exhibits a maximum 
before reaching the value being t/JO,2n + 2' If x is positive, we 
are to treat the forward wave in Fig. 4(b). With increasing x 
from zero, V( a) moves toward the left, approaching the 
singular point (t/Jo,2n ,0) from the upper right, and finally 
reaching it at x = + 00. In the above processes, the maxi
mum or the minimum value of at x = 0 depends upon the 
value oft, that is, when ut-< - 1, the minimum value of t/J is 
very close to t/JO,2n _ 2 , moving toward the right with increas
ing t. When t» 1, the maximum value of t/J is very close to 
t/JO,2n + 2, moving toward the left with decreasing t. When 
t = 0, the value of t/J becomes t/JO,2n irrespective of the value of 
x. 

In Fig. 4(a), combining the forward wave that evolves 
from t/JO,2n _ 2 to t/JO,2n for t<O with the backward wave at 
t = 0 that evolves from t/JO,2n to t/JO,2n + 2 for t>O at a certain 
value of x, we observe the situation at the position that the 
solitary forward wave coming from x -< - 1 is reflected at 
the open end of the semi-infinitely long system, where x = 0, 
coming back to x -< - 1. This is because the phase velocity 
w(x,t), which is defined by 

dx t/J, 
w(x,t) =Tt= - Tx' (7.2) 

and which also corresponds to the line impedance in the 
equivalent transmission line of the system, is infinity at x = 0 
irrespective of the value of t, where it is noted in the equiva
lent transmission line that t/J, and - t/Jx denote the voltage 
between the line and the current along the line, respectively. 
In Fig. 4(b), combining the backward wave solution evolv
ing from t/JO,2n _ 2 to t/JO,2n for t<O with the forward wave one 
developed from t/JO,2n to t/JO,2n + 2 for t>O at a position, we 
observe the wave at a position in the semi-infinitely long 
system where the solitary backward wave coming from x» 1 
is reflected at x = 0, coming back to x» 1. Next, our atten
tion is directed to the combination of Figs. 4(a) and 4(b). 
Combining the state between t/JO,2n _ 2 and t/JO,2n for t<O in 
Fig. 4(a) with the one between t/JO,2n and t/JO,2n + 2 for t>O in 
Fig. 4(b), we construct the forward wave component in a 
soliton-antisoliton interaction. In this case, at t < 0 we ob
serve the forward wave only in the region of x < 0, and at 
t> 0 we observe the forward wave only in the region of x > O. 
We can also construct the backward wave component in the 
soliton-antisoliton interaction by combining the solution be
tween t/JO,2n _ 2 and t/JO,2n in Fig. 4(b) for t<O with the one 
between t/JO,2n and t/JO,2n + 2 in Fig. 4(a) for t>O. In this case, 
at t < 0 we observe the backward wave only in the region of 
x> 0, and at t> 0 we observe the backward wave only in the 
region of x < O. From the above explanations, we understand 
that the soliton-antisoliton interaction is equivalent to the 
state of the reflection at the open end of the semi-infinitely 
long system. Combining the state between t/Jo,2n _ 2 and t/JO,2n 
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in Fig. 4(a) with the state between ;0,2" _ 2 and ;0,2" in Fig. 
4(b), the situation exhibits a spatial qistribution in the soli
ton-antisoliton interaction at a value of t being negative, 
where the soliton and the antisoliton are coming near to each 
other. Combining the state between ;0,2" and ;0,2" + 2 in Fig. 
4 (a) with the state between ;0,2" and ;O,2n+ 2 in Fig. 4 (b), 
the situation exhibits a spatial distribution in the soliton
antisoliton interaction at a value of t being positive, where 
the soliton and the antisoliton are going away to each other. 

Ifwe direct our attention to;x, its'polarity in the region 
between ;0,2" _ 2 and ;0,2" is opposite to the polarity in the 
region between ;0,2" and ;0,2" + 2 for a given value of x, be
cause the sign of u in the former region is opposite to the sign 
in the latter one in Eq. (2.2). 

B. Soliton-soliton Interaction 

Here, we take account ofEq. (5.19) for X(x,t) and of 
Eq. (5.16) for T(x,t). We define I(E) as 

I(E) = - V(E)lu 

inEq. (2.1), and then - I(E) represents the traveling wave 
component of the current along the equivalent transmission 
line. Equations (2.2) and (2.1) are rewritten as 

;x =/(E)h(x), (7.3) 

;/ = - ul(E)g(t). (7.4) 

Since Eqs. (5.19) for h± (x) and (5.16) for g± (t) have 
functionally the same properties as Eqs. (5.17) for g ± (t) 
and (5.18) for h± (x), respectively, that is, I(E) in Eqs. 
(7.3) and (7.4) plays the same role as VeE) for the soliton
antisoliton interaction. Accordingly, the roles of x and tin 
Fig. 4 are also exchanged. Thus we understand that the po
larity of V( E) between ;0,2" _ 2 and ;0,2" becomes opposite 
to the one between ;0,2" and ;0,2" + 2 , although the polarity 
of I (E) between ;0,2" _ 2 and ;0,2" is same as the one be
tween ;0,2" and ;0,2" + 2' and moreover that the state of 
; = ;0,2" is always realized at x = a this time. This indicates 
that the kink solution of ; for these waves is either an in
creasing or a decreasing function of x from ;0,2" _ 2 to 
;0,2" + 2' Thus we understand that such a soliton represents 
the soliton-soliton interaction. In this case, we may regard 
the position x = a as the short end in the semi-infinitely long 
system, because of w(a,t) = a in Eq. (7.2). We also under
stand that the soliton-soliton interaction is equivalent to the 
state of the reflection at the short end in the semi-infinite 
system. It is noted, however, as far as dissipation and exter
nal forces are taken into consideration, the soliton-soliton 
interaction as described above does not take place under the 
initial conditions and the boundary condition imposed here 
insofar as we take account of G and J B' This is because in the 
infinitely long system the soliton at x> 1 must travel in the 
same direction with the soliton at x -< - 1 with the same 
speed because of the existence of the uniformly applied exter
nal force and the dissipation. 

In the above, we only discuss the traveling wave compo
nent of the solution. The (r) component is obtained, for in
stance, by subtracting the traveling wave component from 
the net solution of;t obtained from Eq. (2.13) or (2.14). 
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The analytical method for the net solution will be developed 
in Sec. IX for the soliton-antisoliton interaction. 

VIII. PURE SINE~ORDON SYSTEM 

The properties of the pure sine-Gordon system are well 
known. Therefore we first apply our basic equations to the 
pure sine-Gordon system to verify the certainty of our the
ory. In this case, we can set G = JB = a and F(;) = sin;. 
Then, ao, ± are rewritten as 

- 1(1 2)1/2 ao,± =ao-u -u . 

We assume that 

F'(E) = sin; (8.1 ) 

in Eq. (4.2). This assumption means that Eq. (4.2) is in 
agreement with Eq. (4.4), that is, the expression of the trav
eling wave component in the state plane is not influenced by 
the existence of the (r) component. However, it is again 
noted that the form of V( E) is quite different from that of 
v<s) (5) in real space. Under such an assumption, Eq. (4.2) 
reduces to 

av a~ sin; 
-=---
a; VeE) 

(8.2) 

The solution to Eq. (8.2) is given by 

VeE) = ± 2ao sin(;/2), (8.3 ) 

which means that VeE) is the single-valued function of;. 
Thus we can rewrite VeE) as V(;). 

On the other hand, Eq. (2.10) reduces to 

av __ 1_ [Sin; +~ dh + dg ] 
a; - P(x,t) V(;) u dx dt' 

(8.4) 

We see from Eqs. (8.2) and (8.3) that (aVla;)I~ be-
comes independent of both x and t as either I T I or IX I ap
proaches infinity. This means that we do not need to take 
account of the effect of r ± (x) nor that of (l) ± (t), that is, 
r ± (x) = (l) ± (t) = 1 in Eqs. (5.14) and (5.15). As a result, 
(aV la;) I~ is equal to ± ao, which is its value in the station
ary state. Accordingly, we can use Eqs. (5.16) or (5.17) for 
g ± (t) as an exact solution to Eq. (5.12). 

Equations (5.16)-(5.19) are then rewritten as 

{ 
± tanh(aot), 

get) = ± coth(aot), 

{ 
± tanh(aoXlu), 

hex) = ± coth(aoXlu). 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

We eliminate sin; from Eqs. (8.2) and (8.4). Then, we 
obtain 

av A 2 (x,t) - 1 
a; = ao A2 (x,t) + 1 ' 

where, if we adopt Eqs. (8.6) and (8.7), 

A(x,t) = [sinh(aot} ]I[u cosh(aoXlu)], 

and if we adopt Eqs. (8.5) and (8.8), 

A(x,t) = [cosh (aot) ]I[u sinh(aoXlu)]. 

(8.9) 

(8.10) 

( 8.11) 

We eliminate V(;) from Eqs. (8.3) and (8.9). Then, we 
obtain the well-known expressions 

;= ±4tanh-1 [A(x,t)] (8.12) 
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for two soliton interactions. 18 Thus we understand that the 
combination of Eqs. (8.10) and (8.12) is in agreement with 
the soliton-antisoliton interaction, and that of Eqs. (8.11) 
and (8.12) is in agreement with the soliton-soliton interac
tions. The assumption in Eq. (8.1) is correct for the pure 
sine-Gordon system. The breather solution is also obtained 
if u is a pure imaginary number in Eq. (8.10). 

However, for other well-known nonlinear Klein-Gor
don systems such as the t/J4 equation, the mUltiple sine-Gor
don equations, and so on, we cannot obtain the correct solu
tion using an assumption, such as F' (E) = F( t/J ), that is 
different from the pure sine-Gordon system. If V(E) is 
weakened or strengthened in the state plane during the inter
action, the equation is deformed from 

av o~F(t/J) 
at/J = V(E) , 

(8.13 ) 

which is obtained by replacing sin t/J by F(t/J) in Eq. (8.2). 
This is the situation for the above nonlinear Klein-Gordon 
systems that are not integrable. Accordingly, we may regard 
Eq. (8.13) as a condition of the firm solidity of the wave in a 
pure nonlinear Klein-Gordon system. 

IX. ANALYTICAL METHOD FOR SOlITON
ANTISOLITON INTERACTION 

A. Energy flow and Its related quantities 

Before entering into the main issue, we need to describe 
the energy flow during the soliton-antisoliton interaction 
and quantities concerned with it. Consider the equivalent 
transmission line of an extended Klein-Gordon systems.2

,4 

The sum of the energy flow of the soliton and the antisoliton 
€(t) is obtained by integrating the instantaneous power flow 
p(t) (E) passing through a position Xo along the equivalent 
transmission line defined byl9 

p(t)(E) = _ (t/J,,)(t)(t/Jt)(t) , 

= ~ V(E) at/J , (9.1) 
u aT 

with respect to t from - CXJ to + CXJ through T(xo,t) , i.e., 

€(t) =J+oo P(t)(E) aT dt 
- 00 at 

1 [0.2.+ 2 _ 

= - V(.:.) dt/J. (9.2) 
U 4>0.2. _ 2 

We integrate Eq. (4.2) with respectto t from - CXJ to + CXJ 

through T(xo,t) by noticing that V( E) = 0 there, where we 
do not take account of the directionality. Then, we obtain 

[0.2.+2 V(E) dt/J = VB (t/Jo,2n - t/JO,2n - 2) , 

"'0.2.-2 G 
(9.3) 

where we have used the following relations: r·2n+2 F'(E) dt/J = [0.2.+2 F(t/J) dt/J = 0, 
tPO.211 - 2 tPO.2n - 2 (9.4) 

t/JO,2n - t/JO,2n - 2 = t/JO,2n + 2 - t/JO,2n . 

Equation (9.4) means that there is no energy stored in the 
nonlinear element [either F' ( E) or F( t/J )] after the whole 
process is complete. It is straightforward to see that the phy-
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sica1ly significant systems such as the sine-Gordon, the mul
tiple sine-Gordon, and so on, irrespective of whether they 
have the dissipation term and the external force term, satisfy 
the condition for the middle expression in Eq. (9.4). The 
condition on the left-hand side in Eq. (9.4) is also simply 
derived from the fact that F' ( E) is regarded as F( t/J) just 
around the singular point. Inserting Eq. (9.3) into Eq. 
(9.2), we obtain the following expression: 

(9.5) 

In the limit to the stationary state, (t/J t ) (t) is replaced by 
V(S)(S), (t/J" )(t) by - V(S)(S)lu, X(x,t) by x, and T(x,t) 
by t. Accordingly, we again obtain Eq. (9.3) for the station
ary state if we put two stationary waves between t/JO,2n _ 2 and 
t/JO,2n + 2' Thus we understand that €(t) is twice the energy of 
the stationary solitary wave. In the case of the extended sine
Gordon system, €(t) is 

€(t) = 41rJ
B

I(uG) . 

We differentiate Eq. (9.1) with respect to t/J. Then, we 
obtain 

ap(t) 2 av 

at/J =-;; aT' 
(9.6) 

WeintegrateEq. (9.6) withrespecttot from - CXJ to + CXJ 

through T(x,t) like Eq. (9.2). The result shows zero because 
of V( E) = 0 at t = ± CXJ, and is also in agreement with the 
one for the limit at the stationary state. From the above two 
facts, we may add the condition that the integration of 
a 2p (t)/at/J2 with respect to t from - CXJ to + CXJ through 
T(x,t) should also be in agreement with the one for the sta
tionary state. Thus we obtain the following relation between 
the slopes at t = ± CXJ: 

r+(x)oo,+ +r_(x)oo,_ =00,+ +00._ =2dI · 

(9.7) 

B. Coordinate transformation 

Here, we choose the combination ofEq. (5.17) forg(t) 
and Eq. (5.18) for h(x). However, on account of the as
sumption liJ± (t) = 1 we will see that Eq. (5.17) does not 
express the correct value of g ( t) as clarified later insofar as 
we take account of the dissipation and the external force. 
However, we can derive the exact solution by taking advan
tage ofEq. (5.17) as described below. We replaceg ± (t) in 
Eq. (5.17) withg'± (t) to distinguish it from the exact value. 
We transform the t coordinate into newly introduced T ± 
coordinates so as to satisfy g'± (t) = g ± (T ± ). In this case, 
we also need to transform the x coordinate into X ± coordi
nates so that we make the states in the (X ± ,T ± ) coordi
nates identical to the state of the exact solution in the (x,t) 
coordinates. Then, we can also impose the following identity 
condition for the phase velocity w (x,t): 

dx dX± 
-=-- (9.8) 
dt dT± 

Then, the following relation should hold at t = T ± =0: 

dx dX+ dX_ 
--;;; = dT + = dT _ . 

(9.8') 
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The transformation from the x coordinate into the X ± 
coordinates is made as follows: 

ao.± r ± (x) = d) 4=d2a± (X ± ), (9.9) 

by introducing a ± (X ± ). SinceEq. (9.9) should satisfy Eq. 
(9.7), we can set 

a+(X+) =a_(X_) =a(x). (9.10) 

If we integrate Eq. (9.9), we obtain 

LX ao. ± r ± (x') dx' 

= LX± dJ[I4=~:a± (X'± )]dX'± (9.11 ) 

By using Eq. (9.11), h ± (x) is transformed into the follow
ing value in X ± coordinates: 

h ± (x) = tanh(L
X 

± d) [ 1 4= ~: a ± (X'± ) ] dX'± ) . 

(9.12) 

c. Solution at 1=0 

We can rewrite Eq. (2.13) or Eq. (2.14) as 

a;t h± (x) (1 dh± dg± )". -+ ---+--+Gg± (t) 'l't 
ax up ± (x,t) u dx dt 

(9.13) 

where 

p ± (x,t) = h 2± (x)/u2 
- g2± (t) . 

From the analogy of the exact valueg ± (t) withg'± (t), we 
can impose the conditions just around t = 0 that 
g2± (t) >h 2± (x) and 

, dg ± ,> G Ig ± (t) 1 > ,1.- dh ± ,. 
dt u dx 

Then, Eq. (9.13) reduces to 

a;t _ h± (x) _1_ dg± ;t =0. 
ax u g2± (t) dt 

(9.14) 

Since it is seen from Eq. (5.12) thatthe form of g ± (t) must 
be the same as that of g'± (t) around t = 0 except that the 
effects of w ± (t) are included in g ± (t). Thus g ± (t) and 
[l/g2± ]dg±/dt around t=O in Eq. (9.14) can be ex
pressed from the analogy with Eq. (5.17) by 

g ± (t) == ± B'± coth[ B'± w ± (O)ao.=F t] 

== ± l![w± (O)ao.=F t] , (9.15) 

1 dg± I 
,.2 (t) ~ = 4= w ± (O)ao. ± ' 
IS ± t_ ±o 

(9.15') 

where 

B'± =1±A±/w±(O). 

We insert Eqs. (9.15) and (9.15') into (9.14), and take ac
count of the following continuity condition at t = ± 0: 

;tlt_+o =;tlt_-o =;tlt=o' 

As a result, we obtain 
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(9.16) 

w+(O)ao._ =w_(O)ao.+ . 

Moreover, w± (0)00."1' can be chosen to be equal to the 
arithmetic mean of ao. + and 0 0• _ as clarified later, i.e., 

(9.17) 

Taking Eqs. (9.16) and (9.17) into consideration in Eq. 
(9.14), we obtain 

(9.18 ) 

Equation (9.18) indicates that the form of h ± (x) is irre
spective of whether t is positive or not. Taking Eqs. (5.18) 
and (9.7) into consideration with Eq. (9.18), we obtain 

r± (x)ao.± =dJ • (9.19) 

Thus we see that r ± (x) are constants. Since u > 0 in either 
state for t>Oandx>Oor for t <0 and x <0, and since u <0 
in either state for t> 0 and x < 0 or for t < 0 and x> 0, Eq. 
(9.14) is finally expressed by 

a;t' ( ± ) d) h(x);t I = 0, (9.20) 
ax t=O U t=O 

where ( ± ) is used for the regions in x> 0 and x < 0, respec
tively, and u is always positive as a result of replacement of u 
by - u if u < O. The solution to Eq. (9.20) is given by 

;t It=o = ;t.o exp( ( 4=) LX ~J hex') dx'), (9.21) 

where ;t.o is a constant. 
The relation between x and X ± is then expressed from 

Eqs. (9.11) and (9.19) by 

x =X ± 4= d2 (X± a ± (X'± ) dX'± . (9.22) 
d)o 

Next, we useg'± (t) instead of g ± (t) in Eq. (9.14) and 
try to derive an exact solution by transforming the (x,t) 
coordinate into the (X ± ,r ± ) coordinates. At t = 0, Eq. 
(9.14) is rewritten as 

d;l ±) I ( ± ) h (x) 0
0

• "I' ;~ ± ) I = 0 , 
ax t_ ± 0 U t_ ± 0 

(9.23) 

where the superscripts ( ± ) on ;t denote the states being 
t>O and t<O, respectively. The solutions to Eq. (9.23) are 
expressed by 

;~ ± )It- ±o = ;t.o exp( (4=) LX aO~=F hex') dX') . 

(9.24) 

It is apparent that Eq. (9.24) does not satisfy the continuity 
condition, i.e., 

"'(+)1 -4."'(-)1 'l't t_+or'l't t __ O (9.25) 

since ao. _ #ao. + ,except for the case G = JB = O. This indi
cates that Eq. (9.24) is changed with a step at t = 0 without 
satisfying Eq. (9.16). So it is natural to consider that the 
functional form of w ± (t) in the exact solution should be 
adjusted so as to remove the step at t = 0 expressed by Eq. 
(9.25), that is, so as to satisfy the continuity condition [Eq. 
(9.16) ]. Accordingly, it is also natural to consider that the 
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values of {U ± (1)00• =F included in Eq. (9.14) are adjusted at 
t = 0 so as to become the arithmetic mean of 0 0• + and 0 0• _ , 

i.e., satisfying Eq. (9.17), so that the value of t/Jt It=o is ad
justed to be the geometric mean of t/J~ + )It- +0 and 
.1.( -) I 
'l't t_ -0' 

Consider the above adjustment in more detail. From Eq. 
(9.24) t/J~+)lt_+o is equal to t/J~-)It--o at x=O, and 
t/J~ + ) I t_ + 0 becomes smaller than t/J~ - ) I t- _ 0 at any value of 
Ix I :;;6 0 since 0 0• _ > 0 0• + . Therefore the relation between 
t/J~ + )It_ +0 and t/J~ - )It- -0 at an arbitrary value of lxi, ex
cept for x = 0, can be shown by states 1 and l' in Fig. 5, 
respectively. Thus we see that none of these states can be 
identical to each other because of G and J B' As a first step, 
we transform the x coordinates into X ± coordinates using 

~ 
2' 
3' , , , 

"-, 
5' 

X_ 

cf;(- ) 
t 

r 

\,4 
5 , , , 

~, , , 
cf;(+) 

, 
3 

1 I 

t 2 , 
I 
I 
I 
I 
I .. X 

X. 
Eq. (9.22). Equation (9.14), in which g ± (I) is replaced by FIG. S. Relationship between ~~ + llh +0 and ~~ - ll,_ -0' 

g'± (t), that is, another expression ofEq. (9.23), is rewritten 
as 

at/J~±) I - h(x) _1_ dg'± ~t/J(±}I 
ax± t-±O U g'~ (I) dt dX± t t_±O 

= 0, (9.26) 

and then the positions of t/J~ ± ) I t- ± 0 are moved from state 1 
to 2 and from state l' to 2' as shown in Fig. 5, respectively. In 
this process the x coordinates are moved up to X ± coordi
nates, while t coordinate is kept unchanged. We next trans
form the t coordinates into the T ± coordinates using the 
relation g'± (t) = g ± (T ± ) so as to satisfy Eq. (9.8) by 
keeping X ± coordinates unchanged, so that the state at the 
point (x,1) = (x, ± 0) may be identical to the state at the 
point (X ± ,T ± ) = (X ± ,0). However, we cannot say that 
(dX+ldT +) IT+ -0 isequalto (dX_IdT _) IT- _0 yet. Tak
ing account ofEq. (9.8), we can rewrite Eq. (9.26) as 

at/J~±) I 
ax± T±-O 

h(X ±) 

U 
1 dg ± t/J~ ± ) I = O. (9.27) 

i'± (T ± ) dT ± T ±_o 

In this stage, the positions representing t/J~ ±) are moved 
from state 2 to 3 and from state 2' to 3', respectively. We 
consider the process by which the T ± coordinates approach 
the t coordinates and the X ± coordinates approach the x 
coordinates in Eq. (9.27). In this process the solution moves 
along the dashed curve, reaching state 4. As a result, since 
X ± and T ± in Eq. (9.27) are replaced by x and t, respec
tively, state 4 describes the exact solution in the (x,1) coordi
nates, i.e., Eq. (9.20). However, since we are looking for the 
states for the X ± coordinates, the states have to move from 
state 3 to 5 and from state 3' to 5', respectively. Consider the 
relationship between t/J~ ±) and t/JT± ' expressed by 

t/J(±)=dT± t/J (9.28) 
t dt T±' 

In order that the states at T ± may be identical to the state at 
t, it is necessary that t/J~ ±) = t/JT± = t/J" i.e., t- T ± . It is 
also necessary to move the x coordinates to the X ± coordi
nates from Eq. (9.8'). Such a process has already been taken 
in the movement from state 1 (1') to 2 (2'). At the limit 
t - T ± ' the results are in agreement with the results ob-
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tained by replacing t by T ± and x by X ± in Eq. (9.20). 
Thus the states at 5 and 5' can be written as 

at/Jt I - h(X ± ) 1 dg ± t/J I - 0 
ax ± T ± _0 U i'± (T ± ) dT ± t T ± -0 - . 

(9.27') 

It is also possible to rewrite the state in a form exhibiting the 
relation between x and X ± by inserting Eq. (9.8') into Eq. 
(9.20): 

at/Jt I 
ax ± T±-O 

_ hex) _1_ dg± ~t/Jtl =0. (9.29) 
U i'± (t) dt dX ± T ±_o 

The solution to Eq. (9.29) is expressed by 

( 
(x± d 

t/Jt IT± -0 = t/Jt.o exp (=+=) Jo -; h(x) 

X ( 1 =+= ~: a ± (X'± ») dX'± ), 

= LX

- a_(X'_ ) dX'_ 

= LX a(x') dx' , 

because of the identity of each state. 

D. Net solution 

If we insert Eq. (9.31) in Eq. (9.22), we obtain 

(9.30) 

(9.31 ) 

x = (X+ +X_)/2. (9.32) 

SinceEq. (9.22) is independent oft, we can apply Eq. (9.32) 
at any value of t. The time difference for traveling between x 
and X ±' r(x,t), is expressed by 

r(x,t) = i(x)lw(x,t) , 

where l(x) is the distance between x and X ± and is given by 

l(x) = --1. a(x') dx' . d l" 
d1 0 
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By dividing Eq. (9.22) by w(x,t), the relation between t and 
T ± can be written as 

t = T ± =+= r(x,t) . (9.33) 

It is noted that r(x,O) = r(O,t) = 0 since 
Iw(x,O) I = Iw(O,t) I = 00. 

In numerical calculations, it is more convenient to use 
Eq. (2.14) than Eq. (2.13), sincetft is the increasing function 
of t between tfto,2n _ 2 and tftO,2n + 2 in the soliton-antisoliton 
interaction, except for the region around the singular point 
at IX ± I or IT ± 1-+ 00 ifit is a node or a spiral point. Consid
er the following expression, in which g ± (t) is replaced by 
g'± (t) in Eq. (2.14): 

tft~t±) - xi (x,t)tft~ ±) = g'~ (t)1J(tft)/P'± (x,t) , (9.34) 

xi (X,t) = g ± - --±-+ --±-+ Gg'± (t) 
, (t) (1 dh dg' ) 

P'± (x,t) U dx dt 

1 dg'± +------, 
g'± (t) dt 

(9.35) 

P'± (x,t) = h 2± (x)/u2 - g'~ (t) . (9.36) 

We transform the x coordinates into the X ± coordinates 
using Eq. (9.22), and then the state is moved into 1 (1') into 
2 (2') in Fig. 5. Next, we transform the t coordinates into 
T ± coordinates using the relation g'± (t) = g ± (T ± ), and 
then the state is moved from 2 (2') to 3 (3') in Fig. 5 so as to 
satisfy the identity condition [Eq. (9.8)]. The result shows 

atft~ ±) (g ± (T ± ) 

aT± P'± (X± ,t) 

x(~ dh± + dg± + Gg(T± )~) 
u dX± dT ± dT ± 

+ 1 dg± )tft(±) 
g'2± (T±) dT± t 

g'2± (T ± )1J(tft) dt 

P'± (X ± ,t) dT ± 
(9.37) 

At the limit t-+T ± [from 3 (3') into 5 (5') in Fig. 5], we 
can rewrite Eq. (9.37) as 

atftt (X T )'" _..2 (T) 1J(tft) 
~ - X2 ±' ± 'l't - 5 ± ± P (X T ) 

± ± ±' ± 

(9.38 ) 

Ifwe replace T ± by t and X ± by x in Eq. (9,38), we obtain 
Eq. (2.14). Thus we understand that the solution to Eq. 
(9.38) is in agreement with the solution in Eq. (2.14). It is 
also understood from the above process that finding the solu
tion satisfying the continuity condition at t = T ± = 0 in Eq. 
(9.34) by regarding the value ofx asX _ and the value oft as 
T _, ift<O, and thevalueofx asX+ and thevalueoftas T +, 

if t > 0, is equivalent to solving Eq. (9.38), thus satisfying the 
same continuity condition as the above at T ± = t = O. Thus 
the waveforms of tftt in the (X ± ,T ± ) coordinates are calcu
lated by starting first at the point in the state plane 
(tft,tftt) = (tfto.2n-2'0) with increasing T_, ending at the 
point (tftO.2n,tftt IT- -0)' and, next, starting the calculation at 
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the point (tftO.2n+2'0) with decreasing T+, ending at the 
point (t/J0.2n,tftt I T+ -0) so as to betftt I T+ -0 = tftt IT- _0' The 
waveforms in the (x,t) coordinates are obtained by using 
Eqs. (9.32) and (9.33) from the result in the (X ± ,T ± ) 

coordinates. 

X. APPLICATION TO EXTENDED SINE-GORDON 
SYSTEM 

The coexistence region of a soliton and an antisoliton for 
the extended sine--Gordon system is determined to satisfy 
O..:A_ < 1 in Eq. (5.17), and is depicted in Fig. 6 with the 
unshaded region in the relation between G and J B' The 
dashed curve shows the boundary between the destructive 
and the nondestructive collision calculated by Mclaughin et 
01.13 using a perturbation technique. The circle and the trian
gle also show the boundary in a long cavity having open ends 
obtained using a computer simulation technique by Erne et 
01.9 The circle shows the boundary for JB below which the 
solution decays into either a radiation or a static soliton after 
the soliton collides with the open end, which is equivalent to 
the soliton-antisoliton interaction, and the triangle shows 
the boundary for JB above which the solution switches to a 
radiation. Since our region represents coexistence of the soli
ton and the antisoliton at the limits where Ix 1-+ 00 and 
t -+ - 00, it includes the above boundary. It should be noted 
that the coexistence region disappears for G larger than 0.85. 

The numerical integration on Eq. (9.38) is made by us
ing the Runge-Kutta method, except for a narrow region 
around the position satisfying the conditionp(x,t) = 0, be
cause the result due to the Runge-Kutta method sometimes 
diverges there. Accordingly, we use Euler's method in the 
narrow region. As a result, we always obtain satisfactory 
results with it. 

The one example of solution curves for G = J B = 0, i.e., 
for the pure sine--Gordon system calculated by the method 

0.7 
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c.') destructiv~/ 

0.3 0/ / 
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/ 
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0.2 
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I 
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I 
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nondestructive 0.15 I 
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I 
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I 

0.1 I 

0 0.2 0.4 0.6 0.8 
JS 

FIG. 6. Coexistence region ofthe soliton and the antisoliton in the extended 
sine-Gordon system. The dashed curve shows the boundary between the 
destructive and nondestructive collision and the circle and the triangle show 
the boundary between the destructive collision by McLaughlin et al. using a 
perturbation technique,I3 and nondestructive collision of the soliton with 
the open ends of a long cavity obtained by Erne et al.9 with computer simu
lation. The coexistence region includes the destructive and nondestructive 
collision boundary. 
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described in D in Sec. IV, is depicted in Fig. 7(a) in the 
relation between ¢t and ¢(t) as changing parameters x, 
where u = 0.998 45 for later reference. For Ixl > 1, the solu
tions are completely separated into two isolated states ex
pressing existence of the stationary soliton and the station
ary antisoliton. With decreasing Ix I, the coupling of the 
soliton and the antisoliton increases and brings completely 
the one state at t = O. The solution curves in Fig. 7 (a) are 
divided into the traveling wave component (¢t) (t) and the 
(r) component (¢t )(r) as depicted in Figs. 7(b) and 7(c), 
respectively. It is seen that (¢t) (I) is independent of the value 
ofx in the (¢,¢t) plane, that is, the single-valued function of 
¢ as expected. The net waveforms in real space are depicted 
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FIG. 7. Soliton-antisoliton interaction in the state plane to the pure sine
Gordon system, where u = 0.998 45 and G = JB = 0: (a) net solution, (b) 
traveling wave component, (c) standing wave component. 

in Fig. 8 (a), and are in agreement with those calculated 
from Eqs. (8.10) and (8.12). The traveling wave component 
and the (r) component are depicted in Figs. 8(b) and 8(c), 
respectively. The (r) component constructs a standing wave 
without radiation. As the soliton and the antisoliton come 
near each other, the traveling wave component decays to be 
transformed into the standing wave component. At x = 0 
and t = 0, it is completely replaced by (¢ t ) (r) • 

Solutions for the extended sine-Gordon system are nu
merically analyzed for G = 0.018 throughout this paper. 
The relations between ¢t IT ± -0 and IX ± I are depicted with 
solid curves in Fig. 9 for JB = 0.4. The dashed curve shows 
the relation between ¢,It=o and Ixl calculated from Eq. 
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FIG. 8. Waveforms of the solution in Fig. 7; (a) net waveforms. (b) travel
ing wave component. (c) standing wave component. 

(9.21), and is in agreement with the one calculated from Eq. 
(9.32) by using the solid curves. The solution curves in the 
relation between ¢>, and ¢> and the waveforms for JB = 0.4 
are depicted in Figs. 10 and 11, respectively. While the soli
ton and the anti soliton are far from the origin of each other, 
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FIG. 9. Relationship between t,6,I,_o and IX± I, where 0=0.018 and 
JB = 0.4. The dashed curve is the exact solution obtained by 
x = (X + + X _ )12. and is in agreement with the analytical solution ex
pressed by Eq. (9.21). 

they travel almost with a constant velocity. Once they come 
near to a certain extent, a wedge-shaped distortion is genera
ted in each wave at the same time at the position satisfying 
{J(x,t) = O. The distortion moves to the direction opposing 
the corresponding soliton movement. As they come closer to 
each other, the distortion disappears, so that there can be no 
position satisfying the condition {J(x,t) O. After the 
centers of the waves pass through each other, a thorn-shaped 
distortion is generated at the position satisfying {J(x,t) = O. 
The distortion moves in the direction opposing the corre
sponding soliton movement, and disappears when it arrives 
around the center of the wave. As the waves go to each other, 
they approach the stationary state. Since u = 0.998 45 in this 
case, the waveform can be directly compared with the one 
for G = JB = 0 in Fig. 8. It is noted that (¢>,) (') no longer 
becomes a single-valued function of ¢> because of the effects 
of m ± (t) and of the local distortions around {J(x,t) = O. We 
also notice from Figs. 7(c) and lO(c) that a(¢>, )(r) fa¢> ap
proaches zero as I t I approaches infinity whatever the value 
of x is, which means the disappearance of the (r) compo
nent. 

In the above calculation, the time step Dt is chosen to be 
5 X 10-3• To examine the influence of the time step, it is also 
changed with several steps from 5 X 10-3 to 5 X 10-4

• The 
results are depicted in Fig. 12, and do not depend upon the 
values of them. 

The numerical analyses are also performed for J B = 0.1 
and 0.6, respectively. For JB = 0.1, the solution is almost in 
agreement with the solution for the pure sine--Gordon sys
tem with same value of u except that the weaker distortions 
appear at the position satisfying the condition /J(x,t) = O. 
For JB = 0.6, the solution is more strongly distorted than for 
JB = 0.4 around the position satisfyingp(x,t) = O. As a re
sult, the traveling wave component is appreciably weakened 
in a region where t < 0 and is appreciably strengthened in a 
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region where t> 0, both of which are mainly in a region ofx 
around x = 0 not satisfying the condition P(x,t) = O. 

The conventional computer simulation, by taking ad
vantage of the corresponding finite difference equation, 
usually brings some emission of radiation when the system is 
disturbed as in the cases of a soliton-soliton interaction in 
the extended sine-Gordon system,20 and of the soliton-anti
soliton interaction in the tfJ4 system,5.6 in the double sine
Gordon system,3,5 and even in the pure sine-Gordon sys
tem.3 Moreover, some analyses have been made of the trans
mission of a soliton at a microshort put at a position in the 
extended sine-Gordon system by using a perturbation tech-
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FIG. 10. Soliton-antisoliton interaction in the state plane to the extended 
sine--Gordon system. where G = 0.018 andJB = 0.4: (a) net solution, (b) 
traveling wave component. (c) standing wave component. 

nique12•13,21 and computer simulation.21 Although in the 
perturbation technique no radiation is observed, in the com
puter simulation some radiation is observed. In our case, for 
the extended sine-Gordon system, no radiation takes place 
but local distortions. 

XI. LOCAL DISTORTION IN EXTENDED SINE-GORDON 
SYSTEM 

We linearize Eq. (2.14) around a singular point at 
I t I = 00 for the extended sine-Gordon system. The result 
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FIG. 11. Waveforms of the solution in Fig. 10: (a) net waveforms, (b) trav
eling wave component, (c) standing wave component. 

(11.1 ) 
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FIG. 12. Effect of the time step 6t on the soliton-antisoliton interaction in 
the extended sine-Gordon system, where G = 0.018 and JB = 0.4. 

The discriminantD(x) ofEq. (11.1) becomes 

D(x) = ( 2 U 2)2( dh + UG)2 
h (x) - U dx 

4u2 

+ 2 2 (cos ~o)' 
h (x) - U 

(11.2) 

If Ix I is smaller than a certain value, say IxcO I, where XcO 

satisfies h 2(XcO ) = u2, the singular point at It I ..... 00 is a node 
or a spiral point from Eq. (11.2), and the relation 
h 2(X) < u2g2(t) is always preserved, since h 2(X) is an in
creasing function of Ix I toward unity and since g2 (t) is a 
decreasing function of I t I toward unity. The former means 
that an arbitrary solution around the singular point can al
ways reach the singular point by increasing It I to infinity 
from the property of solution curves for the node or the spi
ral point, for instance, as seen from Fig. 1 (b) or Fig. 1 ( c ) , or 
Fig. 2(b) or Fig. 2(c). The latter means a state satisfying 
h 2(X) = u2g2(t) , i.e.,p(x,t) = 0, can never be realized with 
a change of t. Under this condition of lxi, we obtain a 
smoother solution curve starting at the point 
(~,~t) = (~O.2n-2'0) at t= - 00, passing ~O.2n at t=O 
with a certain value of ~" and ending at the point 
(~o.2n + 2,0) at t = + 00. The solution curves around x = 0 
in Figs. 8 and 11 correspond to this kind of solution. 

If Ixl is larger than IxcO I, hex) becomes larger than u. In 

cPt 
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0.218 --=-_/ 

0.216~ 0.214--
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Ixl=0.208 I I 

0.5 0.4 0.3 0.2 0.1 0 
t--

FIG. 13. Detailed growth process of the wedge-shaped distortion in the ex
tended sine--Gordon system. 
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this case, the singularity at It 1-- 00 is a saddle point from Eq. 
( 11.2). Then, we understand that almost every solution 
curve is repelled before reaching it, except four routes from 
the property of solution curves for the saddle point, for in
stance, as seen from Fig. 1 (a) or Fig. 2 (a). This suggests 
that the route connecting (JO.2n _ 2 and (JO,2n + 2 should be very 
limited. Moreover, with decreasing It I, the situation can al
ways be changed from h 2(X) > u2g2(t) to h 2(X) < u2g2(t) 

via the state 

(11.3 ) 

at t = te (x), where x = Xe (t). Equation (11.3) means that 
the position (xe,te ) is moving. Thus the moving singularity 
is established there. Around te (x), the solution in the state 
plane is characterized from Eq. (2.10) by 

[1J«(J) + t(x,t)V(x,t)]!P(x,t). (11.4) 

When t approaches te (x),P(x,t) approaches zero. Then, the 
numerator in Eq. (11.4) should also approach zero in order 
to exhibit a definite value of the solution at te (x). The meth
od of bringing the denominator to zero is generally different 
from the method of bringing the numerator to zero, and they 
depend upon the values of x, J B' and G. Thus the distortion is 
forced to be concentrated around te (x). It is rather excep
tional that no such distortions appear for the pure sine-Gor
don system. This results from the fact that V( E:) happens to 
become a single-valued function of (J. Thus in Eq. (11.4) for 
the pure sine-Gordon system the method of bringing the 
denominator to zero is always the same as the method of 
bringing the numerator to zero irrespective of the value of x, 
which, as well as Eq. (8.2), brings no existence of the moving 
singularity, and enables us to integrate Eq. (1.1). 

The detailed growth process of the wedge-shaped dis
tortion for G = 0.018 and JB = 0.4 is depicted in Fig. 13. 
Once Ixl exceeds IXeD I, a new peak appears on the left-hand 
side of the main peaks, and then the new peak and the valley 
between these peaks grow quickly as moving backward. 
Thus the discontinuity to produce the wedge-shaped distor
tion is established in a short time. We may also have the 
effect of this kind of singularities, that is, the moving singu
laritiesatxe(t) andte(x) includedinXo(t) and To(x). 

Finally, we add on the left-hand side of Eq. (1.1) the 
extra dissipation term expressed by (1/ R )(JXXl' where R is a 
positive constant. 4 That is, 

(11.5 ) 

The equation on the state plane corresponding to Eq. (11.5) 
is written as 

(11.6) 

Equation (11.6) can be used for the analysis ofthe fluxon
antiftuxon collision in the uniformly biased Josephson trans
mission line, along which the quasiparticle flow is taken into 
consideration. We assume that R is larger than a value, so 
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that the effect of the right-hand side of Eq. (11.6) may be 
neglected as the first-order approximation, if the value of tis 
much different from te' However, as t approaches te (x), the 
value of av / a(J may be changed appreciably. This brings the 
increase of the absolute value of a 2 v / a(J2. Thus the effect of 
the right-hand side in Eq. (11.6) becomes most remarkable 
just around te (x). In this case, the quantity concerned with 
the moving singularity is the coefficient on a 2 v / a(J2. How
ever, the coefficient never vanishes around te(x), that is, 
there appears no singularity around there. This indicates 
that the existence of R acts to smooth the local distortion. 

XII. SUMMARY 

Dynamic behavior of solutions in nonlinear Klein-Gor
don systems with a dissipation and an external force, re
ferred to as extended Klein-Gordon systems, is treated geo
metrically in a state plane by transforming the equation into 
three basic equations, each of which is associated with the 
derivative with respect to x, t, and (J, respectively. 

Instead of (J, the solution is treated with the forms of (J, 
and (Jx' They are divided into the sum of the traveling wave 
component expressed by V(x,t) and the other wave compo
nent, respectively. Thus V(x,t) is expressed by the form rep
resenting the stationary waves of a more generalized Klein
Gordon system consisting of nonlinear coordinates. 

The boundary and initial conditions are imposed on the 
slopes at singular points at infinity on the traveling wave 
component in the state plane under the conditions that there 
exists initially either a stationary soliton or an antisoliton at 
Ix I = 00, and that finally either the stationary soliton or the 
antisoliton is again established at Ixl = 00. From the initial 
condition in t -+ - 00, the coexistence condition of solutions 
is determined. The solution is treated by dividing the region 
oft (or x) into two, t (or x);;;.Oand t (or x) <0, because of the 
existence of the singularity for V(x,t) at t (or x) = o. 

It is shown from the properties of the field of directions 
that the soliton-antisoliton interaction is equivalent to the 
state of the reflection at the open end of the semi-infinite 
system, and the soliton-soliton interaction is equivalent to 
the state of the reflection at the short end of the equivalent 
semi-infinite transmission line to the system. However, as far 
as the external force and the dissipation are taken into consi
deration, the soliton-soliton interaction cannot be realized 
under the initial and the boundary conditions imposed here. 

To verify the appropriateness of our model, it is first 
applied to the soliton-antisoliton interaction and the soli
ton-soliton interaction in the pure sine-Gordon system, and 
the well-known expressions are derived for them. The analy
tical method is described in detail for the soliton-antisoliton 
interaction in extended Klein-Gordon systems. As an exam
ple for the application of the analytical method, the extended 
sine-Gordon system is treated. From the boundary condi
tions, a definite region is clarified that would make possible 
coexistence of the soliton and the antisoliton in the relation 
between the dissipation coefficient and the external force. It 
is also found that when the soliton approaches an antisoliton 
up to a certain distance a local wedge-shaped distortion is 
generated in the soliton and in the antisoliton at the same 
time. The distortion moves to the direction opposing the soli-
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ton movement, and disappears before the collision at the 
center takes place. When the soliton and the antisoliton re
cede from each other up to a certain distance, a thorn-shaped 
distortion is generated in front of each wave. When the dis
tortion reaches the vicinity of the center of the wave, it disap
pears. Such distortions appear around the position satisfying 
the condition P(x,t) = 0, where the moving singularities ap
pear, and the properties and the mechanisms of them are 
clarified in detail. It is shown that no such distortions appear 
in the pure sine-Gordon system on account of disappear
ance of the moving singularity, because V(x,t) becomes a 
single-valued function of 4>. The detailed mechanism of the 
distortion is clarified from the properties of the moving sin
gularity in our derived equations. 

It is finally proved that if the dissipation term propor
tional to 4>xxt is added to Eq. (1.1), the effect acts to smooth 
the distortions. 
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There is a modified SU(2) chiral model in 2 + 1 dimensions which is integrable. It admits 
multisoliton solutions, in which the solitons move at constant velocity, and pass through one 
another without scattering or changing shape. 

I. INTRODUCTION 

Most of the well-known examples of integrable systems 
admitting soliton solutions live in 1 + 1 dimensions. Some of 
these, such as the sine-Gordon equation and the chiral field 
equation, I are Lorentz invariant. That is to say, they are 
invariant under the action of SO ( 1,1) acting on space-time. 
In 2 + 1 dimensions, many examples of integrable systems 
are known (for example, the Kadomtsev-Petviashvili and 
Davey-Stewartson equations), but they are very far from 
being SO(2, 1) invariant. There do exist integrable rotation
ally invariant systems in more than one space dimension [for 
example, Bogomolny-Prasad-Sommerfield (BPS) mono
poles in three-space], but the "solitons" in these examples do 
not move (or to put it another way, the introduction of time 
dependence seems to destroy the integrability). There is no 
known example of a Lorentz-invariant system admitting 
genuine soliton solutions in more than one space dimension. 

This paper does not remedy that situation, but describes 
a system which, in a sense, comes close to doing so. It is a 
modification ofthe SU(2) chiral field equation 

(1) 

Here J is a map from R3 to SU (2), and should be thought of 
as a two-by-two unitary matrix of functions of the coordi
nates;xl' on R3. Greek indices range over the values 0, 1,2, 
and a I-' denotes the partial derivative with respect to;xl'. The 
Einstein summation convention applies throughout, to 
Greek indices only. The tensor rfv is the (inverse) Minkow
ski metric, given by rfv = diag( - 1,1,1). 

So Eq. (1) is Lorentz invariant in (2 + 1) -dimensional 
space-time. It does not seem to be integrable. But a modifica
tion is suggested by the observation that the self-dual Yang
Mills (sdYM) equations in four dimensions can be written 
in a form2 which resembles ( 1 ), and the sdYM equations are 
integrable. So one can take the SU(2) sdYM equations in 
2 + 2 dimensions (in 3 + 1 dimensions they are inconsis
tent), and reduce to 2 + 1 dimensions by requiring that the 
fields be independent of one of the coordinates. This yields 
the equation 

rfval-'(J-IaJ) + VaEaI-'Val-'(J-IaJ) =0, (2) 

where Ea",v is the alternating tensor (with E012 = 1), and Va 
is a constant unit vector. This equation is the subject of the 
paper. It is integrable, and as we shall see, it admits soliton 
solutions. 

II. CONSERVATION OF ENERGY 

In this section, it is shown that the system (2) admits an 
energy functional that is positive definite and conserved. But 
first, a couple of other remarks about (2) are in order. Equa
tions (2) are not Lorentz invariant, because of the vector Va 
[there is a residual symmetry group which is SO(2) or 
SO ( 1,1), depending on whether Va is timelike or spacelike]. 
The solutions of (2) behave relativistically in some ways, 
and nonrelativistically in others: this will be illustrated later. 
The equation has the form 

OJ = poly in J, J - I, and a", J, 

where 0 = rfval-' av is the wave operator; so one sees that it 
is hyperbolic and quasilinear, and its characteristics are the 
light cones. The leading (second-order) term in the equa
tion, namely OJ, is Lorentz invariant; the symmetry-break
ing term involving Va contains only first derivatives of J. 

The usual energy-momentum tensor relevant to the 
original equation (1) is 

T",v = (-8~lY?, +!7Jl-'v7JaP)tr(J-IJaJ-IJp), (3) 

where 8~ denotes the Kronecker delta, tr denotes trace, and 
J a denotes a aJ. Equation ( 1 ) implies that T",v is divergence
free. However, if we impose (2), then the divergence of T",v 
is 

al-'TI-'v = -!VvEaPYtr(J-IJaJ-IJpJ-IJy)' (4) 

So T",v is not conserved, and neither, in general, is the ener
gy-momentum vector PI-' = T",o' Clearly the divergence of 
PI-' vanishes if and only if Vo = O. 

Now it was mentioned above that VI-' can either be time
like (i.e., rfvV", Vv = - 1) or spacelike (i.e., 
rfvVI-' Vv = 1). When Eq. (2) was discussed by Manakov 
and Zakharov,3 they (in effect) chose VI-' to be timelike. But 
this choice is incompatible with Vo = O. It seems hard to find 
an energy functional in this case, and it may be that one does 
not exist. From now on, therefore, let us take VI-' to be space
like, with Vo = 0; to be specific, let V", have components 
(0,1,0). 

Consequently, we have a I-' PI-' = 0, and so the energy 

E = Lo Po dx l dx2
, 

which is the integral of the energy density Po over the space
like plane XO = const, is independent of xo: energy is con
served. [Something has to be said about boundary condi-
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tions: we require that J be everywhere smooth, and that 
J = K + O(r- I

) as r-+ 00, where K denotes a constant 
SU(2) matrix, and r= {(XI)2 + (X2)2}1/2 measures dis
tance in two-space.] It is worth emphasizing that E is a posi
tive-definite functional of the field J. 

The fact that the energy for solutions of (2) is the same 
as that for solutions of ( 1) is perhaps not surprising, since 
the additional term in (2) is analogous to a background 
magnetic field in classical mechanics,4 and so does not affect 
the energy. A magnetic field influences the motion of a 
charged particle, but does no work on it. 

III. THE ONE-SOLITON SOLUTION 

In this section we examine a one-soliton solution of (2) . 
Its shape is constant in time; all it does is move at constant 
velocity. It is given in terms of a complex parameter f-l 
(which determines the velocity) and an arbitrary rational 
function f of one complex variable (which determines the 
shape). The expression for the matrix J is fairly simple, and 
is given in Appendix A [Eq. (A8) ] . It suffices here to exhib
it the energy density Po, 

Po = AIf'12(1 + IfI 2)-2, (5) 

where A is the constant 

A = !1f-l1- 4 1f-l - ,iW(1 + 1f-l12)2, 

and wherefis a rational meromorphic function of 

w=x+!f-l(t+y) +!f-l-I(t-y). (6) 

[The space-time coordinates xl' are written as (t,x,y); and f' 
denotes the derivative of!] 

If f-l = ± i, the w = x ± iy, and the configuration is stat
ic. The energy, obtained by integrating (5), is E = 81rN, 
where N is the degree of the rational function! These solu
tions are, of course, well-known: they correspond to the "in
stantons" of the two-dimensional 0(3) (7 model (or Cpl 
model); or, in alternative language, they are the harmonic 
maps from S2 (compactified H2) into SU(2). Roughly 
speaking (and generically), the solution looks like N static 
lumps, at arbitrary positions in the xy plane. For values of f-l 
other than ± i, there is time dependence, and the lumps 
move. But they all move with the same velocity, and so it 
makes sense, in this case, to regard the whole multilump 
configuration as a single soliton. To keep things simple, let us 
takef(w) = w. Thus N = 1, i.e., there is just one peak in the 
energy density. From (5), we see that this lump is located at 
w = 0, and from (6) we can compute its velocity. What one 
obtains is the following. 

Write f-l = mei9
, and restrict sin (J to be nonzero (i.e., f-l 

to be nonreal). The velocity of the soliton in the xy plane is 

( ) _ ( 2m cos (J 1 - m2) v ,v - - -----
x y 1 + m 2 '1 + m 2 

(7) 

and its speed v is given by 

v2 = 1 - (4m 2 sin2 (J)/( 1 + m 2
)2. 

So v < 1: the lump can travel at any speed less than that of 
light. Let r denote the usual relativistic factor 
r = (1 - v2

) -1/2. From (5) one deduces that the lump has 
total energy E = 81rY sin2 (J, that its height is 8r sin4 (J, that 
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its width in the x direction is 1, and that its width in the y 
direction is (r sin2 (J) -I. 

Let us examine two special cases, namely motion in they 
direction and in the x direction. If (J = ±!1r (i.e., f-l is pure 
imaginary), then the lump moves in the y direction, and its 
behavior is relativistic: the total energy is 81rY (the rest-ener
gy 81r multiplied by r> 1), the x width is 1 (the same as at 
rest), and they width is y-I (Lorentz-Fitzgerald contrac
tion in the direction of motion). If, on the other hand, m = 1 
(i.e., f-l = ei9

), then the lump moves in the x direction with 
speed cos (J, and its behavior is not relativistic. Its energy is 
81rlsin (J I, which is less than the rest energy; its height 
8 sin2 (J decreases if its speed is increased. For motion in oth
er directions, the behavior is intermediate between these two 
cases. 

To sum up, in the one-soliton sector, one has soliton 
solutions whose shape depends on 4N + 4 real parameters 
(rational functions of degree N), and which move with any 
constant velocity (as long as the speed is less than that of 
light). The anisotropy ofEq. (2) shows up, in particular, in 
the way that the energy of the soliton depends on the direc
tion of its motion. 

IV. A TWO-SOLITON SOLUTION 

There is a good candidate for an n-soliton, namely the 
solution (A7) derived in Appendix A. (It has not been 
checked in general that this has all the desired properties, 
such as smoothness.) Let us examine the two-soliton solu
tion in more detail. 

The n = 2 solution depends on two complex constants 
f-ll and f-l2' and two holomorphic functionsfl andlz. Take 
these functions to be 

fk(Wk) =Wk +Ck' 

where CI and C2 are complex constants [cf.f(w) = w in the 
previous section] . One's first guess, from the analysis of the 
previous section, might be that the corresponding solution 
represents two lumps LI and L 2 , and that Lk travels at a 
velocity determined by f-lk according to Eq. (7). This is in
deed what happens. Moreover, Lk travels along a straight 
line determined by f-lk and Ck: the two lumps do not scatter 
off each other. There is no change of direction or "phase 
shift" when they pass each other. One can see this as follows. 

Fix a constant value of the time t, with I t I very large. 
Then I fk I will be very large, except near the point 5k in the 
xy plane at which w k + C k vanishes. It follows that the ener
gy density Po is small except near these two points 51 and 52' 
This can be made more precise by setting m! = (0,1), in the 
notation of Appendix A. (In effect, this amounts to taking 
the asymptotic limit It 1-+ 00 while keeping our eyes on the 
lump L 2, so that Ifll-+ 00 butlz remains finite.) In this limit, 
Po is given by the simple expression 

Po =B(A+11z12)-2, (8) 

where A and B are the positive constants 

A = I (f-ll - ii2)/(f-l1 - f-l2) 12, 

B = !A 1f-l21-4
( 1 + 1f-l212)21f-lz - ii212. 

One sees from (8) that Po has a local maximum at the point 
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FIG. 1. A two-soliton configuration at time t = - 10. The lump at the ori
gin (in the middle of the square) is stationary, and the other (taller) one is 
moving towards it along the y axis. 

52 where}; vanishes. By definition, the lump L2 is located at 
this point. 

Now as t varies, the point 52 moves along the straight 
line (referred to above) given by 

x + !IL2(t + y) + !IL2- 1(t - y) + C2 = o. 
So the lump L2 moves along this line at constant velocity, 
and does not scatter. Neither, of course, does L I • 

By way of example, let us look at the special case 
CI = C2 = 0, ILl = i, IL2 = 2i. The resulting expressions for J 
and for the energy density are given in Appendix B, in order 
to illustrate the sort of expressions that occur. The first lump 
L I remains stationary at the origin, while L2 moves along the 
y axis with speed~. At time t = 0 the two lumps coincide, and 
form a single peak. Figure 1 represents a snapshot of the 
solution at time t = - 10. 

v. CONCLUDING REMARKS 

It would be nice to have a Lorentz-invariant soliton sys
tem in 2 + 1 (or, even better, 3 + 1) dimensions, but no 
such system is known. The equation discussed in this paper 
is a modification of a Lorentz-invariant one. Its solitons 
maintain their shape and do not scatter off one another; this 
point was also emphasized by Manakov and Zakharov3 in 
their study of the related equation with Va timelike. Note 
that the localized solitons of the Kadomtsev-Petviashvili 
(KP) equation also do not scatter. 

It is worth pointing out that in the "unmodified" chiral 
equation (1), scattering does occur: this follows, for exam
ple, from a study of the closely related O( 3) umodel (or Cpl 
model) in 2 + 1 dimensions.5 

APPENDIX A: GENERAL SOLITON SOLUTIONS 

The method for generating soliton solutions is that of 
the "Riemann problem with zeros," developed by Zakharov 
and his co-workers. What follows is an adaptation of the 
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procedure as described by Forgacs et al.6 

Let t be a complex parameter, and (u,v,x) real variables 
(coordinates on R3

). LetA andBbe two-by-two anti-Hermi
tian trace-free matrices, depending on u, v, x but not on t. 
Consider the set of linear equations 

(t ax - au)'" = A"', 

(t av - ax)'" = B"', 

where '" = ",(u,v,x) is a two-by-two 
det '" = 1, and the reality condition 

",(u,v,x,;) * = ",(u,v,x,t) -I. 

(AI) 

matrix satisfying 

(A2) 

Here * denotes complex conjugate transpose. It is easily 
checked that (A2) is consistent with (AI): each equation in 
(AI) is in effect "real." But of course the system (AI) is 
overdetermined, and in order for a solution", to exist, A and 
B have to satisfy integrability conditions, which are 

Bx =Av, Ax -Bu - [A,B] =0. (A3) 

If we put J(u,v,x) = ",(u,v,X,O)-I, then Eq. (A3), and 
(Al) at t = 0, give 

ax(J-laxl) -av(J-laJ) =0. (A4) 

Now set u =!(t + y), v = ~(t - y): then (A4) becomes Eq. 
(2), with xl-' = (t,x,y), and with VI' = (0,1,0). Note also 
that J takes values in SU (2), by virtue of (A2). 

This means that we can generate solutions of (2) with 
the aid of the overdetermined linear system (A 1 ). To obtain 
the solutions that we want, we assume that "'(t) (the depen
dence on u, v, x is to be understood) has the form 

n 

"'ab (t) = 8ab + .L (t - ILk )-ln~mZ· (AS) 
k=1 

Here a, b range over 1, 2 and label the rows and columns of "'; 
ILI, ... ,ILn are complex constants; and n: , ... ,m: , ... are com
plex-valued functions of u, v, x (and not of t). 

First, let us impose the unitarity condition (A2). The 
product 

2 

.L '" ab (t) "'be (;) * 
b=1 

should equal 8ae , so its apparent poles at each of the iii 
should be removable. This is the case if and only if 

n 

n~ = - .L (r-l)klm~, 
1=1 

where r- I is the inverse of 

(A6) 

Then it is easily checked that this necessary condition for 
unitarity (A2) is also sufficient. 

Next, we impose (AI), the crucial point being that the 
matrices A and B defined by (A 1) should be independent of 
t. Again, requiring that apparent poles be removable gives 
equations (differential equations for the m~ ), and these are 
satisfied if m~ = m~ (Ct)k) depends on x, u, v only via the 
combination 

Ct)k = X + ILkU + ILk- IV 

(Le., m~ is a holomorphic function of Ct)k)' There is a homo-
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geneity property, namely that if we multiply m: = (m~ ,m~ ) 
by a function A k' then", does not change. So we may set m~ 
= 1, m~ =fk' 

The solution", therefore depends on n constants Itk and 
n holomorphic functions fk = fk (w k ). The latter are only 
"locally" holomorphic at the moment, i.e., not entire: we 
have not yet imposed the requirement of smoothness and the 
boundary condition. 

The above is not quite in its final form, since, as it stands, 
n ji 

a: = det '" = II _k ; 

k= I Itk 
but dividing by the square root of this constant a achieves 
det '" = 1 without disturbing (AI) or (A2). So finally we 
get an expression for (the inverse of) Jby evaluating "'(t) at 
t=O: 

(J-I)ab = a-1/2(8ab + Lltk-I(r-I)klm~m~). 
k,l 

(A7) 

By way of example, take the case n = 1, with ma 
= (1,f). Then r (a one-by-one matrix) is 

r = (1 + IfI2)/(ji -It) 

(It must be nonreal), and (A7) gives 

J = 1 [IL + jilfr (It - ji)f]. (A8) 
lit I (1 + If12) (It -ji)f ji +ltlfl2 

This expression is smooth everywhere, and satisfies the 
boundary condition at infinity, providedfis a rational func
tion of 

W = x + !It(t + y) + !It-I(t - y). 

To compute the energy density Po is just a matter of algebra: 
one gets 

Po = !11t - ji 12Iltl-4(1 + lit 12)21 !'12(1 + I f12) -2, 
(A9) 

where!, is the derivative off 
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APPENDIX B: A TWO·SOLITON SOLUTION 

In the formulas of Appendix A, put n = 2, Itl = i, 
1t2 = 2i. Then the unitary matrix J is given, in terms of the 
two holomorphic functionsfl andh, by 

J I1 = 6. -1{lflhI2 + 16fJ2 + 4flh 

- 91fl1 2 - 91hl 2 + l}, 

J21 = 66. -1{lfI1 2,h -711h1 2 + ~ - ,h}, 
J22 = J w J I2 = - J21 , 

where 

Takeh (WI) = WI andh(w2) = W 2• Since 6. is nowhere zero, 
J is smooth everywhere; and it satisfies the required bound
ary condition at spatial infinity. The energy density is 

Po = 96. -2 Re{25IwI14/2 + 81w214 - 18wilV~ 

+ 2wi + 2w~ - 3WI lV2 - 4w lw2 + 251wd 2 

(Bl) 

It is this function which is plotted in Fig. 1, attime t = - to. 
It is easy to see from (B 1) that for It I large, the energy den
sity is peaked at the two points (x,y) = (0,0) and 
(x,y) = (0, - 3t /5): one lump is stationary at the origin, 
and the other moves along the y axis at constant speed i. 

'v. E. Zakharov and A. V. MikaI1ov, SOY. Phys. JETP47, 1017 (1978). 
2K. Pohlmeyer, Commun. Math. Phys. 72, 37 (1980). 
3S. V. Manakov and V. E. Zakharov, Leu. Math. Phys. 5, 247 (1981). 
4y. S. Wu and A. Zee, Nucl. Phys. B 272,322 (1986). 
SR. S. Ward, Phys. Lett. B 158,424 (1985). 
6p. Forgacs, Z. Horvath, and L. Palla, Nucl. Phys. B 229,77 (1983). 
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The evolution of the solitary wave solution of the perturbed renormalized long wave equation 
Ut + 6uux - Uxxt = €U is considered using two timing and matched asymptotic expansions. As 
in the case of the perturbed KdV equation, it is found that behind the slowly varying solitary 
wave there are two distinct regions, a near tail and a far tail. The far tail is given by an 
exponentially decaying expression in contrast to the KdV far tail which is oscillatory. 

I. INTRODUCTION 

In recent years there has been considerable interest in 
the study of perturbed evolution equations. These equations 
govern physical phenomena such as wave propagation in a 
slowly varying medium, waves in a channel of varying cross 
section, and solitary waves moving along a sloping beach. 
Karpman J studied the perturbed KdV equation by using 
perturbations on the inverse scattering method, while Grim
shaw2 and Johnson3 used a series expansion to determine the 
evolution of the perturbed KdV equation. In the most recent 
work Smyth4 used two timing and matched asymptotic ex
pansions to determine the evolution of the perturbed KdV 
equation 

Ut + 6uu x + Uxxx = €U, (1) 

where € is a small parameter. He finds two distinct regions 
behind the slowly varying solitary wave: (i) a near tail that 
eventually breaks up into new solitary waves and that to
gether with the soliton conserves the KdV mass, and (ii) a 
far tail that makes no contribution, to O(€), to the mass 
conservation. 

Our aim in this paper is to examine the evolution of 
solitary waves of the perturbed renormalized long wave 
(RLW) equation (or the BBM equation after Benjamin et 
al.5

) 

Ut + 6uux - Uxxt = €U, (2) 

using the asymptotic expansion techniques introduced by 
Smyth.4 The RL W equation, with € = 0 in (2), is an alterna
tive model equation for long waves and derives from the 
Boussinesq equation following the same assumptions used to 
derive the KdV equation (in fact, one can use U t "" - CUx in 
the dispersive correction term, remaining within the approx
imation for long waves, to obtain the RL W equation; here c 
is the wave velocity). Recent interest in the RL W equation 
comes from the numerical experiments showing the inelastic 
scattering properties of its solitary waves. In fact, the RL W 
equation has only three nontrivial conservation laws de
pending smoothly on U and its derivatives whereas the KdV 
equation has an infinite number of conservation laws. How
ever, in certain theoretical investigations, the RL W equation 
is superior as a model for long waves (see Benjamin et al. 5 for 
a discussion of regularity properties of the RL W equation 
compared to the KdV equation for the same initial data). 

.) This paper was presented at the Seventh Canadian Symposium on Fluid 
Dynamics held in Sackville, New Brunswick, 2- 4 June 1986. 

Since the perturbed evolution equations are crucial in many 
physical phenomena, it is worth investigating how a differ
ent model equation (in this case the RLW instead of KdV) 
affects the system properties. In this paper we have chosen 
the form €U on the right of (2) simply for the sake of brevity . 
One could, for example, consider instead - €U if a small 
damping is present or - €Uxx in the presence of heat con
duction. For all these latter cases, however, the analysis is 
essentially the same. 

As in the case of the perturbed KdV equation it will be 
found that the slowly varying solitary wave solution of (2) 
does not conserve mass. It is then assumed that there is a 
"near tail" region just behind the solitary wave caused by a 
mass flux from it. Behind the "near tail" there will be an
other "far tail" region governed by the linearized form of 
(2). The essential difference between the present analysis of 
the perturbed RL W equation and the perturbed KdV equa
tion as given in Smyth4 will be in the far tail region. The far 
tail will be found to be exponentially decaying as x - 00 while 
for the perturbed KdV it is oscillatory, given by an Airy 
function. 

Both Grimshaw and Johnson also note that the slowly 
varying soliton expansion for the perturbed KdV equation is 
nonuniform as x - - 00. They then introduce a new expan
sion assumed to be valid in the entire region behind the soli
ton. Physically, two different regions behind the soliton are 
considered more favorable, since the near tail is due to mass 
flux from the soliton while the far tail results from initial 
conditions and does not contribute to mass conservation. 

II. THE SOLITARY WAVE 

We will assume that the solution of (2) consists of a 
main solitary wave with slowly varying parameters given by 
the expansion 

U = uO«(),T) + €uJ«(),T) + ... , (3) 

where 

T=€t, ()=x-C(T)/€, 

C T = (Uo(T) + ~(U2(T) + .... 
Substituting (3) in (2) the zeroth-order equation is 

- (Uou~ + 6uou~ - (Uou~oo = O. 

This has a solitary wave solution 

UO = 77(T)sech2 [!()] , 

where 

(4) 

(5) 

(6) 
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(7) 

It is worth observing that the solitary wave speed depends 
linearly on the amplitude unlike the KdV soliton for which 
(J)o(D = 4(71})· 

One can show by simple conservation arguments that 
the solitary wave (6) does not conserve mass. This is because 
the perturbed RLW equation (2) has the energy conserva
tion law 

J..!{,[fOO (u2+U~)dX] =Ef"" u2dx, (8) 
2 dt - "" - "" 

ifu-+Oasx ..... ± 00. 

Using (6) we have 

71T =i71 

or 

71 = 71oe(SI6) T, where 71o is a constant. (9) 

Equation (2) also has a mass conservation equation 

d f"" f"" - UdX=E udx. 
dt - "" - "" 

(10) 

But using (9) we have 

d f"" 10 - UdX=-E71, 
dt - co 3 

(11 ) 

E L"""" u dx = 4E71· (12) 

Thus we see that the slowly varying solitary wave (6) con
serves energy, but not mass. To make up for this it will be 
assumed that there is a tail region behind the solitary wave. 

We now take up a detailed formal asymptotic analysis, 
following Smyth.4 First it will be shown that the expansion 
(3) is not uniformly valid as x ..... - 00. The O( E) equation 
resulting from substituting (3) in (2) is 

{J)ou~ee + 6uou~ - {J)ou~ + 6U~UI - u~e + u'i = uo. 
(13) 

This has adjoint 

{J)OVe66 + 6uove - (J)oVe = O. (14) 

Multiplying (13) by v, (14) by uo, and adding, we get 

{J)o[ (veeul)e + (u~v)e - (veu~)e] 

+ 6(uou lv)e - {J)o(ulv)e = (uo - u'i + u'iee)v (15) 

and, integrating from - 00 to 00 w.r.t. 8, 

- {J)o[ ulv - ulvee - u~ev - u~ve] ~ "" 

= L"" "" (uo - u'i + u'iee)v d8. (16) 

We require that u I ..... 0 as 8 ..... 00 and that u I is bounded as 
8 ..... - 00. The bounded solutions of (14) are v = Uo and 
v = 1. When v = uo, from (16) we have 

0= J: "" (uo - u'i + u'iee )uo d8. 

Using (6) this gives 

71T =~71 

as previously found. 
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(17) 

(18) 

Now consider the solution v = 1. If we assume that 
u l 

..... Oas8 ..... - 00 wewouldhave,from (16), 

0= L"""" (uo - u'i + u~e )d8, (19) 

which would give an expression for 71 different from (18). 
We thus see that as 8 ..... - 00, u(1) does not tend to zero but 
tends to a constant value given by 

271UI = J: "" (uo - u'i + u'iee )d8 = ~71· (20) 

Thus as 8 ..... - 00, u(1) tends to a constant~, although UO ..... 0, 
and the expansion (3) is not uniformly valid. This will be 
rectified by matching the expansion (3) with an outer ex
pansion. 

III. THE NEAR TAIL 

The outer expansion for the near tail region just behind 
the soliton is assumed to depend on the slow scales X = EX, 
T = Et. Thus an expansion of the form 

is considered. 
From the perturbed RLW equation (2) we have 

(Vlh = VI' (22) 

hence 

(23) 

where A (X) is to be determined by matching with the inner 
solution. The matching has to be done with a moving solitary 
wave which has a speed 

(J)o = 271(D. (24) 

Hence we have, using (10), 

dX - = 271(D = 271oe(SI6)T. 
dT 

Integrating, we get 

EX = lj710(e(SI6)T - 1). 

Thus the solitary wave is at position X when 

T= ~ln[1 + fl xl71o] . 

Since u l ..... ! as 8 ..... - 00, the matching requires that 

! =A(X)eT
, 

when Tis given by (27). 
Thus we see that 

A(X) = 113[1 + ilXl710]6/S. 

(25) 

(26) 

(27) 

(28) 

(29) 

We notice that the near tail expansion cannot be valid for all 
times because of the exponential growth in time in (23). In 
the case of perturbed KdV equation the near tail breaks up 
eventually into new solitons and we expect the same behav
ior to take place here, too. We do not go into the details of the 
breakup since it has to be determined numerically. It can be 
checked at this stage that the near tail together with the 
solitary wave conserves the RLW mass to O(E). 
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u 

FAR TAIL 

FIG. 1. Perturbed RLW solitary wave. 

IV. THE FAR TAIL 

Since the solitary wave started at x = 0 we expect that 
the near tail will extend from x = 0 till x = x s' the position of 
the solitary wave. The region x < 0 will be called a far tail and 
it will be assumed to have an expansion of the form 

u = £U\ (x,t,T) + cU2 (x,t,T) + ... . (30) 

Using this in (2), we get the first-order equation 

(U\)t - (U\)xxt =0. (31) 

This has a similarity solution of the form 

U\ = B (t,T) eX . (32) 

The function B(t,T) may be determined by matching with 
the near tail solution at x = o. Using (23) and (29) we find 

!eT = B(t,T) , 

hence 

(33) 

This far tail expression differs significantly from the KdV far 
tail found in Smyth.4 There it is seen that 

U\ = ~ Ai(s)ds, (34) 
T fX1 (3t)'" 

31]0 - 00 

where Ai is the Airy function. 
Figure 1 is a schematic diagram of the perturbed RL W 

solitary wave. Figure 2 shows the perturbed KdV solitary 
wave (see Smyth4

). As we see, the significant difference oc
curs in the far tail-whereas the KdV far tail is oscillatory, 
the RL W far tail decays exponentially as x -+ - 00. 

So far we have only examined O( £) equations for the far 
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)( 

FIG. 2. Perturbed KdV solitary wave. 

tail. The long time evolution of the far tail is also undeter
mined at this stage. Nevertheless one can make certain ob
servations without going into greater detail. Using the ex
pansion (30) at the second order we get, for the perturbed 
KdV equation, 

(U2 )xx + (U2 )t + 6U\ (U\)x + (Ulh = U\ (35) 

and, for the RLW, 

- (U2 )txx + (U2 )t + 6U\(UI )x - (UI)Txx + (Ulh = UI· 
(36) 

Thus we see that the derivatives of U\ are involved at the 
second order. Because of the nature of the Airy function the 
expansion (30) leads to secularities at this order for the KdV 
equation. However, no such secularities arise for the RL W 
equation because of the exponential decay of the derivatives 
of (34) asx-+ - 00. 
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The Galilean symmetry of a free particle in one-dimensional space is examined under the scope 
of non-Abelian quantum kinematics. Within the Hilbert space that carries the regular ray 
representation of the Galilei group the Schrooinger operator appears as one of the three 
fundamental invariants of the extended kinematic algebra. By means of a superselection rule 
the physical Hilbert subspaces of the system are identified, in which a complementary ray 
representation of the Galilean transformation produces the time-dependent Schrooinger 
equation, and the Feynman space-time propagator. The quantization approach used in this 
paper is purely group theoretic and relativistic. 

I. INTRODUCTION 

This paper is a brief report of work in progress concern
ing the physical assessment of non-Abelian quantum kine
matics. I Continuing previous work, we devote this paper to 
the quantum kinematic theory of the Galilei group. In an
other papec2 belonging to this line of research the quantum 
kinematic formalism of non-Abelian Lie groups (i.e., Ref. 1) 
was applied successfully to the one-dimensional harmonic 
oscillator. In fact, it was shown in Ref. 2 that the usual quan
tum model of the harmonic oscillator can be obtained direct
ly from the exclusive kinematic consideration of its Newto
nian symmetries. 

It is the aim oftbis paper to repeat, step by step, the same 
kind of group-quantization process in the case of a scalar 
Newtonian free particle moving in one-dimensional space. 
Undoubtedly, the Galilei group (even if one keeps aside ro
tations3 and improper transformations) plays such an out
standing role in "nonrelativistic" quantum mechanics4 that 
the direct quantization of this group will help us to under
stand the phYllical possibilities of quantum kinematics, in 
general. (For the underlying physical motivation of the pres
ent paper, we refer the reader to our previous work. 1.2) 

The organization of tbis paper follows that of Ref. 2. In 
Sec. II we present a rather brief account of the (well-known) 
regular ray representations of the Galilei group. Next, the 
extended Lie algebra and the non-Abelian commutators 
(namely, the extended kinematic algebra) are also discussed 
in Sec. II. Section III introduces the superselection rules that 
permit the identification of the Hilbert subspace of physical 
significance. In Sec. IV we discuss the complementary space
time representation of the Galilei group, and we finish our 
group-theoretic analysis obtaining the time-dependent 
Schrooinger equation and the corresponding space-time 
propagator of a free particle in one-dimensional space. Sec
tion V contains some concluding remarks. 

II. REGULAR RAY REPRESENTATIONS AND 
KINEMATIC ALGEBRA OF THE GALl LEI GROUP IN 
ONE-DIMENSIONAL SPACE 

Let us introduce a two-dimensional space-time {(t,x)}, 
in which the "Galilei" group G I becomes realized as the fol
lowing transformation of variables: 

(2.1) 

Clearly, G I is the Newtonian relativity groupS of a free parti
cle (in one space dimension) and Eq. (2.1) entails the spe
cial Newtonian relativity theory ofthe system. 

Next, we shall quantize tbis system directly through its 
Galilean symmetries. Our first task is to settle the regular ray 
representations of G I' Since these are well known, we present 
this issue in a very sketchy fashion, at least in order to intro
duce our notation. The group manifold M( G I) is defined by 
- 00 < if < + 00, a = 1,2,3, and the group la~ is as fol-

lows: 

q"l =gl(q';q) =q,1 +ql, 

q"2 =g2(q';q) = q,2 + q2 _ q'lqI, 

q"l = gl(q';q) = q,l + q3. 

(2.2) 

Hence Lie's infinitesimal right operators in M(G I ) are 
given by 

XI = ai' X2 = a2, X3 = a3 - ql a2; (2.3) 

wherefrom one obtains the familiar Lie algebra 1 

[XI ,x2] = 0, [X2,x3] 0, [X3,xd X 2. (2.4) 

Since G I is unimodular one defines the Hilbert space 
2 ( G I)' which carries the ("true") regular representation 
of GI , as the set of all complex functions ,,(ql,q2,q3) defined 
on M( GI ), and such that8 

(,,1,,) =Po f f f dq l dq2dq3I,,(ql,q2,q3W<00, (2.5) 

where Po is an arbitrary normalization real constant. Within 
the rigged Hilbert space structure associated with 2 ( G I) 
let us introduce a complete orthogonal continuous basis 
{li,q2,q3)} (cf. Ref. 1): 

(q'l ,q'2,q,3Iql ,q2,q3) 

= Po- 1t5(q,l - ql )t5(q,2 _ q2)t5(q'3 _ q3), (2.6) 

Po f f f dql dq2dq3Iql,q2,q3)(ql,q2,q3
1 =1, (2.7) 

where I stands for the identity operator in 2(GI ). Plainly, 
one has ,,(ql,q2,q3) = (q\q2,q31,,), for every vector 
I,,)e 2( GI ). 

An admissible two-cocycle of G I is given by9.10 

rPk (q';q) = ~k [q'2q3 _ q'3(q2 + qlq3)], (2.8) 

which is well known indeed. Hence the right-exponent gen-
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erators9 associated with t/Jk (q';q) [namely, 

r~kl (q) = lim a ~t/Jk (q';q), a = 1,2,3] 
q'_O 

are given by 

r~kl (q) = 0, r~kl (q) = !kq3, 

r~kl(q) = _ !k(q2 + ql~). (2.9) 

In this manner, one is ready to introduce a set of unitary 
operators Uk (q), corresponding to the ray extensions of the 
regular representation carried by K(GI ). We define these 
operators as follows (cf. also Ref. 2): 

Uk (q't,q'2,q'3) Iqt,q2,q3) 

= eik /2 [q'2q3 _ q,3(q2 + q1q3l I 

X Iq,1 + ql,q,2 + q2 _ q,3ql,q,3 + q3), 

Uk (ql,q2,q3) 10,0,0) = Iql,q2,q2), 

(2.10) 

(2.11 ) 

wherefrom one gets a regular ray representation of G I' These 
operators are consistent with the representation ofthe iden
tity operator / stated in Eq. (2.11). Let us remark that the 
same Hilbert space K( G I)' which carries the regular vector 
representation of G I , carries all the ray extensions of this 
representation. (As a matter of fact, this theorem corre
sponds to a general property of all Lie groups.) We have now 
finished with the regular ray representations of G I' 

Now we come to one of the main points of non-Abelian 
quantum kinematics, since we are ready to consider the ex
tended Lie algebra and the generalized canonical commuta
tors of GI. First, let us consider the generators p~kl, 
a = 1,2,3, of the unitary ray operators Uk (q). These are de
fined in the usual manner, i.e., 

UdO + t5q) =/- (i/Ii)t5rtP~kl. (2.12) 

Then, by means of the general formula (cf. Ref. 2) 

P~kllq) = ili[Xa (q) + ir~kl(q)] Iq), (2.13) 

one gets the extended Lie algebra of GI> as follows ll : 

[P ~kl ,P ikl] = 0, [ P ~kl ,P ~kl] = ifiP ikl, 

[P ~k>,p ~kl] = ilf-k. 
(2.14) 

We next perform the complete quantization of the Gali
lei group G I defining the following spectral integrals (cf. 
Ref. I): 

Qa=JLof f f dq 1 dq2dq3Iqt,q2,q3)qa(qt,q2,q3I, 

a = 1,2,3. (2.15) 

Obviously, one has [Qa,Qb] = 0, Qa+ = Qa, and 
Q alql,q2,q3) = qalqt,q2,q3). Furthermore, it can be shown 
that these operators transform "covariantly" under the rep
resentative ray operators of GI ; i.e., one has 

U;: (q)Q IUk (q) = ql + Q I, 

U;: (q)Q 2Uk (q) = q2 + Q2 _ q3Q I, 

U k+ (q)Q 3Uk (q) = q3 + Q3, 

(2.16) 

[cf. Eqs. (2.2)] even if one considers a ray extension of the 
regular representation. (This fact is a consequence of the 
general functional properties of two-cocycles and is valid, in 
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general, for all Lie groups.) Hence it follows that the non
Abelian canonical commutators are given by the general for
mula (Ref. 1) 

[Qa,pikl ] =iliR.:(Q) =ililimab~(q;Q), (2.17) 
q_O 

which, in the present instance, yields 

[QI,P~kl] = iii, [Q2,P~kl] =0, 

[Q I,P~kl] = 0, [Q2,P~kl] = iii, 
[Q I,P~kl] = 0, [Q2,P~kl] = - ifiQ 1, 

[Q3,p\kl] = 0, 

[Q\Pikl] =0, 

[Q3,p~kl] = iii. 
(2.18) 

The set of commutators presented in Eqs. (2.14) and (2.18) 
define the extended kinematic algebra of G I' 

Let us derive some interesting results from this kinemat
ic algebra. First, it follows that K ( G I) contains three linear
ly independent operators that are invariant operators of GI 
(we omit the details of this calculation) , 

Sk =p\kl + (1/2fzk)[p~kl]2, (2.19) 

Ak = Pikl + fzkQ3, 

Bk = Q Ip~kl + pjkl _ fzkQ2. 

(2.20) 

(2.21) 

The reader can easily check these operators against their 
fundamental properties: [Sk,P~kl] = 0, [Ak,P~kl] = 0, 
[Bk,P~kl] =0 (a= 1,2,3). Furthermore, every other in-· 
variant operator of G I in K( G I) must be a function of S k' 

A k , and Bk , exclusively. 
Of course, the most interesting invariant operator is S k' 

because it contains the term P ~kl, which is the generator of 
time translation symmetry. Moreover, it must be borne in 
mind that Sk is the only invariant operator pertaining to the 
extended Lie algebra (2.14); namely, Skis the only Casimir 
operator of GI> in the usual sense of this notion. The invar
iant operators Ak and Bk are new, since they stem from the 
quantization of G 1 through Eq. (2.15). We refer to S k as the 
SchrfJdinger operator of the system (Ref. 2), and we write 

Hk = (2fzk)-I(Pikl)2, (2.22) 

to denote the familiar Hamiltonian. The SchrOdinger opera
tor is endowed with the fundamental property 

U;: (q)Sk Uk (q) = Sk' (2.23) 

which entails the Galilean invariance of the underlying 
quantum model. (Let us observe that neither the Hamilto
nian Hk nor p\kl are Galilean invariants.) It is clear that, 
since P ~kl is the generator of space translation symmetry, 
one interprets k as fzk = m, where m is the mass of the parti
cle. lI 

Finally, let us remark that for the other two invariant 
operators one has 

(2.24) 

III. SUPERSELECTION RULES 

In order to arrive at the physical interpretation of the 
quantum kinematic model of GI , we shall adopt the same 
postulate already used in Ref. 2; namely we consider K( G I ) 

as an incoherent Hilbert space, and introduce the following 
superselection rule: The allowable physical states of the sys-
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tem correspond to simultaneous eigenkets of the Schrodinger 
operator Sk and one of the other invariant operators (Ak or 
Bk ) previously found. The motivation for these superselec
tion rules is the same as in our previous work (Ref. 2). In this 
paper we shall not indulge on the physical meaning of A k and 
Bk • (We defer this interesting matter to another opportuni
ty.) Hence, for the sake of concreteness, in the sequel we will 
concentrate our attention on the compatible set {S k,A k} ex
clusively. In other words, in the present paper, the boost 

IE,p;tjI) = f: 00 dp2(P2) Ipi = E - ~!,p2,q3 = p -;/2) 

operator Q 3 will be used only in reducing the regular ray 
representation of GI via the postulated superselection rule 
connected withAk [cf. Eq. (2.20)] andSk. 

One solves rather easily the eigenvalue problems of Sk 
and Ak within the Hilbert space JY(GI ). Since 
{p \k),p ~ k),Q 3} is a complete set of commuting self-adjoint 
operators, after some simple manipulations, one calculates 
the general form of the simultaneous eigenkets of S k and A k • 

Thus one gets 

= f f (~~~;~2 exp [ ~ (Eql + ~ pq2)] f: 00 dP2 tjI(P2) exp [ - ~ (p;;1 - ~ P2q2)] Iql,q2,q3 = P :P2) , 

where we have adjustedJlo = (21Th) -I, and where the kets 
IPI,P2,q3) define a new basis in JY( GI ). These are plane
wave packets that belong in the Hilbert subspace 
JYEP cJY(GI ), and are such that 

Sk IE,p;tjI) = E IE,p;tjI), 

Ak IE,p;tjI) = pIE,p;tjI). 

(3.2) 

(3.3 ) 

Each physical Hilbert subspace JY Ep has just one degree of 
freedom; i.e., the tjI(P2)'S are arbitrary complex functions, 
provided they are consistent with the following scalar prod
uct: 

(E',p';tjlIE,p;t/J) = {)(E' - E){)(p' - p)(tjllt/J), (3.4) 

where, clearly, 

(3.5) 

IV. COMPLEMENTARY RAY REPRESENTATIONS OF G1 

IN NEWTONIAN SPACE-TIME 

It is our aim to obtain the ordinary wave mechanical 
description of the system. Therefore, we next introduce a 
space-time group-theoretic formalism that is well adapted to 
the Galilean relativity theory stated in Eqs. (2.1). Following 
the same idea used in Ref. 2, we introduce new kets 
It,x) E JY ( G I) (rigged), so that, by construction, one has 

Uk (ql,q2,r/) It,x) = eipk(ql,tf.tf;r.X)It + ql,x + q2 - q3t ), 

(4.1 ) 

wherepk is a real-valued phase function. If ItjI)eJY(GI ), 

one sets tjlCt,x) = (t,xltjl), and thus one gets 

(t,xl U:- (ql,q2,q3) ItjI) 

= e-ipk(ql.tf,tf;r,X)tjlCt + ql,x + ql - q3t ), (4.2) 

which entails a complementary ray representation of the 
group GI of space-time symmetry transformations stated in 
Eqs. (2.1). (A general method for the construction of an 
admissible phase functionpk will be discussed in a forthcom
ing paper. 12) It is immediate thatpk must be endowed with 
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(3.1 ) 

the following fundamental properties: 

Pk(O,O,O;t,x) =0, (4.3) 

Pk (ql,q2,q3;t,x) + Pk (q'l,q'2,q'3;t + ql,x + q2 - q3t) 

_ Pk (q'l + ql,q'2 + q2 _ q'3ql,q'3 + q3;t,x) 

= (m/2ft) [q'2q3 _ q'3(q2 + qlq3)] (4.4) 

in order to be consistent with the group property of the 
Uk(q)'s. (These two properties are enough for calculating 
an allowable phase function Pk associated with the two-co
cycle t/J k .) We will use the following phase function for G I: 

Pk(ql,q2,q3;t;X) = - (m/2ft)(2x+q2_ q3t )q3, (4.5) 

which the reader can check against Eqs. (4.3) and (4.4). A 
set of associated phase generators of the complementary ray 
representation l2 is defined as follows (cf. also Ref. 2): 

p~k) Ct,x) = lim aaPk (ql,q2,q3;t,x), (4.6) 
q~O 

with a = 1,2,3. So, in the present case, we get 

p\k)Ct,x) = 0, p~k)Ct,x) = 0, pik)Ct,x) = - (m/ft)x. 
(4.7) 

Now, it can be shown that a necessary and suffiCient 
condition for the kets It,x) to be endowed with the required 
property ( 4.1) is that they have the following general form 12 

(cf. Ref. 2): 

It,x) = f f f dql :::" dr/ 5 r Ct + ql,x + q2 - q3t) 

Xeipk(q'.;f,;f;r.x) Iq l,q2,q3), (4.8) 

where the q's denote the group-inversion formulas for the 
parameters; namely, 

ql= _ql, q2= _q2_ qlq3, q3= _q3. (4.9) 

(The reader can prove the sufficiency of condition (4.8) 
quite directly.) Thus far, the generating wave function 
5 k (t,x) is completely arbitrary and remains at our disposal. 

We observe that an infinitesimal transformation of the 
It,x)'s yields immediately the following space-time realiza-
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tions of the generators: 

Pjk)lt,x) =ilia,lt,x), Pik)lt,x) =iliaxlt,x), 

P~k)lt,x) = (-ilitax +mx)lt,x), 
(4.10) 

for whatever function Sk (t,x) one may use in (4.8). There
fore the Schrooinger operator acting on these kets becomes 
the familiar operator (cf. also Ref. 2) 

Sklt,x) = (ilia, - (~/2m)a;)lt,x). (4.11) 

Of course, the generating wave function S k (t,x) must be 
identified on physical ground. In this sense, it seems rather 
natural to demand that the space-time kets It,x) themselves 
correspond to physically realizable states (as we have done 
in Ref. 2). Thus, according to Eqs. (3.1) an (4.8), we look 
for kets that have simultaneously the following two general 
forms: 

It,x;EJJ) = f f f dql ~ dt/ 

XS~p(t_ql,(X_q2) +q3(t_ql)] 

xexp[ ~~ (2x _ q2 + q3(t _ ql) ]q3] Iql,q2,q3) 

= f f dql dq2 exp[~(Eql + pq2)] 
(21rli) 3/2 Ii 2 

X f_+ ","" dp2!/JEP2 (t,x) 

xexp [ _ ~ e;!1 _p~2)] 
X Iql,q2,q3 = p -:nP2 ); (4.12) 

i.e., we demand the fulfillment of Eq. (4.1), and, also, 

Sk It,x;E,p) = E It,x;E,p) , (4.13) 

Ak It,x;E,p) = plt,x;E,p). (4.14) 

The solution of this problem follows. 
It is clear that !/JEP2 has to satisfy 

(ilia, - (1i
2/2m)a;)!/JEP2 (t,x) = E!/JEp, (t,x), (4.15) 

whose elementary solutions are 

1/JEP2 (t,x) = exp[ ~ (E - ~!)r ] [a(P2) exp[ - ~p~] 

+P(P2) exp[ ~p~]]. (4.16) 

Substituting these plane waves into Eq. (4.12), and consid
ering the projection on the q basis, i.e., (ql,l,q3It,x;E,p)l, 
after some manipulations, one concludes that a must be a 
constant and P must be zero. Thus one gets the answer 

(4.17) 

where a is a normalization constant. 
So we obtain the physical space-time kets It,x;E,p) , 

which carry the complementary ray representations of the 
Galilei group GI , with K Ep C K( G I), in the following two 
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equivalent forms: 

It,x;EJJ) = ;:r f f f dql dq2 dq3 

xexp[ ~ i (E - f~)(t _ ql)] 

xexp[ ~ip[(X_q2)+q3(t ql)]] 

xexp[ ~~ [2x -l + t/(t - ql)]t/] Iql,l,q3) 

=a {"""" dPzexp[~[(E- ~!)t+p~]] 
X Ipi = E - p~ ,P2,q3 = P - Pz). 

2m m 
(4.18 ) 

In this fashion, for any given physical state IE,p;!/J)e K Ep 
[cf. Eq. (3.1)], one has 

(t,x;E',p'IE,p;1/J) = o(E' -E)o(P' -P)1/JE(t,x), (4.19) 

where the wave function 1/JE (t,x) is given by 

!/JE(t,x) = am exp( ~ Et) f-+ ","" dpZ!/J(P2) 

xexp[ ~ (~! t - p~)] , ( 4.20) 

as it should be. Therefore the time-dependent Schrodinger 
equation reads 

(t,x;E' ,p'ISk IE,p;!/J) 

=o(E' -E)o(p' -p) (-lia, - (1;2/2m )a;)1/JE(t,x) 

=o(E' -E)o(p' -P)E1/JE(t,x). (4.21) 

The "regularization" of the theory is automatic because of 
the delta functions, which come from the superselection 
rules. 

Finally, let us discuss briefly the space-time kernel of a 
Newtonian free particle in the context of quantum kinemat
ics. Setting t' = t, from Eq. (4.18) one gets 

(t,x';E ',p'lt,x;E,p) 

= (21rlima2)o(E' -E)o(p' -p)o(x' -x). (4.22) 

Hence we normalize a = (21rlim)-1/2. Obviously, since 

(t',x';E',p'ISk It,x;E,p) 

= (ilia, - (1;2/2m)a;)(t',x';E',p'lt,x;E,p) 

= E (t',x';E',p'lt,x;E,p), (4.23) 

the space-time Feynman propagator of the system is given 
simply by 

(t ',x';E',p'lt,x;E,p) 

= o(E' - E)o(p' - p)exp[~E(t' - t)] S"" dP2 
Ii - '" 21rli 

xexp[ - ~[~!(t'-t) -Pz(x' X)]], (4.24) 
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which yields immediately the familiar Green's function of 
the time-dependent Schrodinger equation of a free particle in 
one-dimensional space13 (suitably modulated by the delta 
functions, as a consequence of the superselection rules). 

As a matter of principle, it is interesting to observe that, 
according to Eq. (4.18), the kernel (4.24) can be calculated 
also by means of a triple integral that is manifestly a Hurwitz 
invariant integral over the group manifold. (In Ref. 2 we 
have discussed a tentative interpretation of this fundamental 
group-theoretic result.) 

V. CONCLUDING REMARKS 

In this paper we have discussed the main features of the 
group-quantization process of a scalar Newtonian free parti
cle through its Galilean symmetries. To be sure, the fact that 
one is able to deduce the correct form of the SchrOdinger 
equation from the assumed Newtonian symmetries of the 
system is not as striking in the case of a free particle as it was 
in the case of the simple harmonic oscillator. Nevertheless, it 
should be Qnderstood that the emphasis of this work has 
been on the kinematic method of group-theoretic quantiza
tion. Indeed, we would like to stress some facts concerning 
this issue. 

( 1) The Newtonian symmetry group of the harmonic 
oscillator and that ofa free particle (i.e., E2 and GI , respec
tively) are completely different Lie groups. 

(2) In both instances, one obtains the Schrodinger oper
ator, the time-dependent SchrOdinger equation, and the 
space-time kernel of the system, following exactly the same 
group-theoretic steps. 

( 3) The time-dependent Schrodinger equation corre
sponds precisely to the space-time realization of one of the 
fundamental invariants of the Newtonian point symmetry 
group of the system. 

( 4) The Feynman propagator is given by the space-time 
transition amplitUdes (t' ,x'lt,x), where the kets It,x) satisfy 
the superselection rule and carry an irreducible complemen
tary space-time representation of the relativity group of the 
system. (The quantum kinematic formalism is intrinsically 
relativistic indeed.) 

(5) The treatment of the problem of "quantization" in 
these examples is purely group theoretic, since only the as
sumed symmetries of the system participate in the construc
tion of the desired quantum model. 

(6) The "principle of correspondence" is not an indis
pensable conceptual device for the correct quantization 
(neither of a free particle nor of the harmonic oscillator). 
Instead, one uses a "symmetry principle," and calculates the 
correct form of the Hamiltonian. 
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How general is the meaning of these results, and how far 
can one push into physics the idea that quantum theory is 
essentially a mechanics of symmetries l4 remains to be seen. 
Needless to say, such an achievement would be of great in
terest in the realm of high energy physics. 
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Let xoy and x el y denote complex valued generalized mUltiplication and addition of complex 
numbers. If (a) multiplication is associative, (b) addition is associative and commutative, (c) 
there exists a complex number e satisfying x el e = x for all x, (d) multiplication is distributive 
with respect to addition, and (e) both operations are analytic functions in the two variables, 
then there exists a mapping x' ..... x such that (xoy)' = x"y' and (x elY)' = x' + y'. This result is 
used in the derivation of the multiplication and addition laws for quantum amplitudes. 

i. INTRODUCTION 

The purpose of this paper is to give a physicist's ap
proach to the solution of the following problem. We seek two 
complex valued functions/(xoY) andg(xoY) oftwo complex 
variables x and y such that (a) j(xoY) is associative, (b) 
g(xoY) is associative and commutative, (c) there exists a 
complex number e satisfying g(x,e) = x for all x, and (d) 
/(xoY) is distributive with respect to g(x,y). The two func
tions may be thought of as two operations, namely, 
j(xoY) = xoy (generalized multiplication) and g(xJl) = x el y 
(generalized addition). It is evident that regular multiplica
tion and addition of complex numbers, with e = 0, satisfy all 
the above. What is, perhaps, less evident is that conditions 
(a) - ( d) together with the assumption of analyticity in both 
variables x and y, (essentially) determine the functions 
/(xoY) andg(xoY). We shall show (at least locally) thatthese 
functions are equivalent (isomorphic) to regular multiplica
tion and addition. That is, there exists a one-to-one transfor
mation x' = H(x) such that both equations 

H[/(xoY)]=H(x)'H(y) or (xoy)'=x"y' (1a) 

and 

H [g(xJl)] = H(x) + H(y) or (x elY)' = x' + y' 
(1b) 

are satisfied. Although analyticity is sufficient to prove the 
result (1), it is not clear that it is necessary. That a strong 
condition on the functions / and g is required in order to 
fulfill (1) is demonstrated by the following example. Let 
x = xR + ixl' Then g(xJl) = x + y, e = 0, and j(XJl) 
= XRYR + ixlYI satisfy (a)-(d) but not (1). In the course of 
proving Eq. (1), we shall assume without further qualifica
tions that all the operations involved are valid, at least local
ly. Thus, for example, we shall assume that an equation of 
the form /(x) = y can always be (locally) inverted to find 
x =x(y). 

The motivation for the above theorem arose in the pro
cess of deriving! Feynman's laws for combining quantum 
mechanical amplitudes.2 Indeed, let /(x,y) denote the am
plitude for the process C ..... B ..... A with partial amplitudes 
(B Ie) = y and (A IB) = x [Fig. 1 (a)]. Then, by the associ-

a) Permanent address: Racah Institute of Physics, The Hebrew University 
of Jerusalem, Jerusalem 91904, Israel. 

ative law for combining processes in series [Fig. 1 (b)], 

j[x,/(y,z)] =/[/(x,y),z] . (2) 

Similarly, if g(xoY) denotes the amplitude for the process 
displayed in Fig. 2(a) then, clearly, 

g(x,y) =g(y,x), (3) 

and by the associative law for combining processes in paral
lel [Fig. 2(b)], 

g[x.g(y,z)] =g[g(x,y),z] . (4) 

Let e denote the amplitude for a blocked process. Then the 
amplitude for the process depicted in Fig. 2(a), with the 
lower branch blocked, must satisfy 

g(x,e) =X. (5) 

Consider now the process displayed in Fig. 3. Viewed as two 
processes in series [Fig. 3(a)], the amplitude is 
/ [g(xoY),A]. On the other hand, viewed as a process in par
allel [Fig. 3(b)], the amplitude isg[/(x,A),f(y,A)]. Hence 
the distributive law is 

/[g(x,y),A] =g[/(x,A),f(y,A)] . (6) 

In terms of the quantum mechanical amplitudes, Eq. (1) 
now reads as follows: (a) the amplitude for processes occur
ring in series is the product of the amplitudes for each part; 
(b) the amplitude for processes occurring in parallel is the 
sum of the amplitudes for the different alternatives. Of 
course, by choosing H (x) #x one can change the/orm of the 
laws but their content remains invariant. The situation is 
analogous to that prevailing in probability theory.3 One can 
choose (if one wishes) to work with }OgPi instead of Pi 
thereby changing the form of the laws for combining proba
bilities without changing their content. 

'Ol? 
c 

FIG. 1. Processses in series. 

(b) 

,XA (C 
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101 

FIG. 2. Processes in parallel. 

II. DERIVATION OF EQ. (1) 

Differentiating Eq. (4) with respect to x and y in turn 
and taking the ratio of the resulting equations, we have 

gl[X,g(y,z)] = gl(X,y) gl(Y,z) . (7) 
g2[X,g(y,z)] g2(X,y) 

Now sety = e = const in the equation above, replaceg(e,z) 
in the resulting equation by y and solve g(e,z) = y for z to 
obtain 

gl(X,y) = gl(x,e) gl(e,z(y»). 
g2(X,y) g2(x,e) 

(8) 

Let 

k(x) = (X gl(x,e) dx and l(y) = f:Y dy . 
J. g2(x,e) gl(e,z(Y») 

(9) 

Then Eq. (8) reads 

(ag/ax)(x,y) k'(x) 
(ag/iJy) (x,y) = --ny)' ( 10) 

The vanishing of the Jacobian a[g(x,y),k(x) + 1(y»)I 
a(x,y) means thatg(x,y) and [k(x) + I(y)] are functional
ly dependent. Thus4 

g(x,y) = h[k(x) + I(y)] . (11) 

We now apply commutativity [Eq. (3)] to Eq. (11) to ob
tain k(x) + I(y) = key) + I(x). Hence 

k(x) - I(x) = key) -/(y) = const, (12) 

and since l(y) is defined up to a constant [see Eq. (9)], we 
can choose the constant in Eq. (12) to be O. Thus 
k(x) = I(x) and 

g(x,y) =h[k(x) +k(y)]. (13) 

Inserting the result (13) into the associative law (4), we 
have 

h[k(x) +k(g(y,z»)] =h[k(g(x,y»)+k(z)]. (14) 

The substitution x = e now leads, by use ofEqs. (9) and (5), 
to the result 

k[g(y,z)] = k(y) + k(z) , (15) 

which is ofthe form (lb) (see the Note added in proof). 
Let x = k(x), g(x,y) = k[g(x,y)] = G(x,ji), and 

j(x,y) = k[f(x,y)] = F(x,ji). In terms of the new notation, 
Eqs. (15), (2), and (6) read, respectively, 

G(y,z) = y + z, (16) 

F[x,F(y,z)] =F[F(x,ji),z] , (17) 

and 

(18) 

We now turn to determine the function F(x,ji). Differentiat-
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FIG. 3. Combined processes. 

ing Eq. (18) with respect to x, we have 

Fl(x + Y'x) = FI(x,X) = ma). (19) 

Hence, with the aid of the relation F(O,X) = 0, which fol
lows from (18), we secure 

(20) 

Inserting this result into the associative law (17), we find 

x·m[F(Y,z)] =F(x,ji)'m(z) =x'm(j)'m(z) , (21) 

and hence 

m[F(j,z)] = m(y) 'm(z) . (22) 

Equation (22) is precisely Eq. (la) withH(x) = m[k(x)]. 
In order to show that Eq. (lb) is also fulfilled, we have 

to demonstrate that 

m[G(x,ji)] =m(x+y) =m(x) +m(j). (23) 

Indeed, by Eq. (22), F(x,ji) = F(j,i). Hence employing 
Eqs. (18) and (20), 

F(x+y,X) =Fa,i+y) =A'm(x+y) 

= Fa,i) + Fa,ji) =A'[m(x) +m(j)] , 

which proves (23). 
Note added in proof Condition (c), namely, the require

ment that a unit element e with respect to generalized addi
tion exists, is in fact superfluous. Indeed, from Eq. (14) we 
havek(g(y,z») - k(z) = k(g(x,y») - k(x) =e(y).Hence, 
by commutativity, k (g(xJ'» = k(x) + e(y) = k(y) + e(x). 
Thusk(x) -e(x) =k(y) -e(y) = const, and by adjust
ing the lower limit e in Eq. (9) the constant can be made to 
vanish. We therefore have c(x) = k(x) and Eq. (15) fol
lows. Substituting z = e in Eq. (15) and using Eq. (9) we get 
k (g(y,e») = key) + k(e) = key). Thusg(y,e) = y for anyy 
[Eq. (5)], and the existence and uniqueness of the unit ele
ment e is established. 
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The quantum three-wave interaction (3WI) model with two fermionic fields and one bosonic 
field is studied on the basis of quantum inverse scattering method (QISM). The Hamiltonian 
for this model is diagonalized and an infinite number of conserved quantities is obtained. 

I. INTRODUCTION 

Three-wave interaction (3WI) models play an impor
tant role in various physical applications. The classical 3WI 
models were extensively studied by many authors.I,2 The 
quantum cases were considered with the quantum inverse 
scattering method (QISM) in Ref. 3 and the Bethe ansatz in 
Ref. 4, respectively. In this paper, we quantize the compo
nents of the 3WI model as two fermionic fields and one bo
sonic field which is relevant to the Lee model in quantum 
field theory. This problem has been raised in Ref. 4. In the 
present paper, we show that this model is also completely 
integrable and the infinite number of conserved quantities 
can be obtained. Further, we diagonalize the Hamiltonian by 
finding the common eigenstates of all conserved quantities. 

Equations of motion for the 3WI model are expressed as 
follows: 

QIt + CtQlx = - igQ rQ2' 

Q2t + C2Q2x = - igQ3QiO 

Q3t + C3Q3x = - igQ TQz, 

(1.1 ) 

where the Qa's are the wave fields, Ca is group velocity of 
field Qa (a = 1,2,3), andg is a real constant. 

The Hamiltonian for this is 

( 1.2) 

The fields Qa 's satisfy the following commutation and anti
commutation relations: 

[Q3(X),Qa (y)] = 0, [Q3(X),Q:(Y>] = t5(x - y)t53a , 

{Qj(x),Q/(y)} = 0, {Qj (x),QT(Y)} = t5(x - y)t5ij' 
(1.3 ) 

where i,j = 1,2, Ql and Qz are the fermionic fields, and Q3 is 
the bosonic one. 

II. R MATRIX AND COMMUTATION RELATIONS 

The associated auxiliary linear equation for the 3WI 
model in the QISM takes the form 

a ax t,6(x,A.) = :.2"(X,A.)t,6(X,A.):, (2.1) 

where 

is a super operator matrix,s in which (ij), (33) are even 
elements and (3 j), (j 3) are odd elements, A. is, as usual, 
denoting the spectral parameter, and 

[ _ g g ig 
I - , lz = , 13 = . 

~P12 PI3 ~P12P23 ~P13 P23 

C3> C2 > C I • Paa' = Ca , - Ca = da - da,· 

The lattice form of Eq. (2.1) is 

t,6n + I (A.) = :L" (A.)t,6" (A.):, 

13Q3n 

1 + id;.a 
llQTn 

(2.2) 

where a is the lattice spacing, and Qan = Qa (xn )a. We 
impose the boundary conditions for the wave fields, 

lim Qa (x) = O. (2.3) 
Ixl~OQ 

The monodromy matrix is 

(2.4) 

As N a -+ 00, a -+ 0, we define 

(2.5) 

where 

o ] o . 
1 +id;,.a 

The solution for the Yang-Baxter equation 

R(A.,p,)L" (A.) ®Ln (p.) = L" (p.) ®L" (A.)R(A.,p,) (2.6) 
s 

is 

(2.7) 
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where ® denotes the super direct product defined in Ref. 5, and I is the 9 X 9 unit matrix. From Eq. (2.6), it follows that 
• 

A= 
ic 

B= 
A -p, r R(A,p,)TN(A) ® TN(p,) = TN(p,) ® TN(A)R(A,p,). 

A-p,+ic' A-p,+ic' 
c= , 

/312/313 /323 s 

1 0 0 0 0 0 0 0 0 (2.8) 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 By taking the limit N - co, 11-0 carefully, we obtain the 

0 0 0 0 0 0 0 0 following equation: 

p- O 0 0 0 1 0 0 0 0 R+(A,p,)T(A) ® T(p,) = T(p,) ® T(A)R_(A,p,), s-

O 0 0 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 0 (2.9) 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 -1 where 

a 0 0 0 0 0 0 0 0 

0 ±11 0 /3 0 0 0 0 0 

0 0 ±11 0 0 0 /3 0 0 

0 r 0 +11 0 0 0 0 0 

R± = 0 0 0 0 a 0 0 0 0 

0 0 0 0 0 ±11 0 /3 0 

0 0 r 0 0 0 +11 0 0 

0 0 0 0 0 r 0 +11 0 

0 0 0 0 0 0 0 0 S 

I /3= A-p,+ic , I 11 = i1T'6(A - p,), S = - (A - p, - iC)/(A - p,)(A - p, + ic). a=--, r= , 
A -p, (A -p, + iE)2 A-p,+ic 

If we write T(A) in the form 

[0.(,1) h3 (A) b,(.I) 1 
T(A) = C3 (A) a2(A) h1(A) , 

C2 (A) C1 (A) a3 (A) 

we can write some ofthe commutation relations explicitly from Eq. (2.9), 

[aa (A),aa' (A)] = 0, [a 1 (A),C1 (A)] = 0, a1 (A)C3 (p,) = [(A - p, - iC)/(A - P, - iE) ]c3 (p,)a 1 (A), 

a1 (A )c2(p,) = [(A - p, - iC)/(A - P, - iE) ]c2(p,)at (A), [a3 (A ),c3 (p,)] = 0, 

III. INFINITE NUMBER OF CONSERVED QUANTITIES, EIGENSTATES 

From the Neumann expansion for T(A), 

T(A) = I + ntl J :V(Zl) V(Z2)'" V(z" ):O(ZI > ... >z,,)dzt " 'dz", 
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we obtain the asymptotic expansions for 0, (A.), 03 (A.) when 0, (A.) 1 n "n2,n3,0) 

A.-+ 00, 

ic ic ic 
a,(A.) = I--N---P3---P2 

A. A. 2p'2 A. 2P'3 

ic V-J....~N(N-l) 
P'2P2~ 2 2 A. 2 

+ 0 (A.\). 

ic ic ic 
a3 (A.) = I--M---P2 ---P, 

A. A. 2P'3 A. 2P23 

ic V-J....~M(M-l) 
P13P2~ 2 2 A. 2 

+ o (A.\). 
where 

M= I (Q!Q2+QTQ,)dx, 

N= I (Q!Q2+QrQ3)dx, 

Pa = -iIQ! ~Qa dx, ax 
v =g I (QTQrQ2 + Q!Q3Q,)dx. 

We define the vacuum by Qa 10) = o. We have 

(3.2) 

balO) =0, aa(A.)IO) = 10). (3.3) 

In order to show that the aa 's are generating functionals of 
infinite conserved quantities, we define 

K,(A.) = C,P23a3(A.) + C3P12a,(A.), 

K2(A.) =P2303(A.) +P'20 ,(A.), 
(3.4) 

for which the coefficients of A. -2 give the Hamiltonian (1.2) 
and momentum, respectively. It is easy to show that from 
Eq. (2.9) 

[K,(A.),oa (Il)] = 0, [K,(A.),K2(1l)] = O. (3.5) 

Let M, N, H, and P = P, + P2 + P3 be four of the infinite 
conserved quantities. The state defined by 

In"n2,n3,0) = C, (A., )C, (A.2)·· 'C, (A.n, ) 

X C2(1l,)C2(1l2)" 'C2(lln, ) 

X C3(k,)C3(k2)" 'C3(kn,) 10) 

n l n2 nJ 

= IT C,(A. t ) IT C2(llj) IT C3 (kl )10), 
;=, j=' 1=' 

(3.6) 

is an eigenstate of the infinite conserved quantities, where 
the orders of noncommutative operators in products are ex
plicitly indicated. In fact, from (2.10), (2.11), and (3.3) we 
obtain 
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a3(A.) In"n2,n3,0) 

ft, A. - Ii.. - ic ft, A. -Il' - ic 
= III A. -.: A.; XI, A. ~ Ilj In"n2,n3,0), 

A. ¥=A.ollpkl. 

We can show that 

N In"n2,n3'0) = (n2 + n3) In"n2,n3,0), 

M In"n2,n3,0) = (n, + n2) In"n2,n3,0), 

H In"n2,n3'0) 

(3.7) 

= ( C~23 ttl A.; + C2 P'3 j~,llj + C3 P'2 It, kl) 

X In"n2,n3,0), (3.8) 

P In"n 2,n3,0) 

= 023 it, A.; + P13 j~,llj' + P'2 It, kl )In,,n2,n3,0). 

IV. CONCLUSION 

In conclusion, we will discuss degeneracy of the eigen
states and the problem of existence of boundstates for our 
model. From Eq. (2.11 ), we can see that the states 
C, (A.)C3(A.) 10) and C2(A.) 10) have the same eigenvalue for 
all the conserved quantities. In fact, we can define a ket state 

n 1 n2 - n 

In"n2,n3,n) = IT C,(A.;) IT C2(llj) 
;=, j=' 

X it C, (Ilm ) C3 (Ilm ) 
m=n2 -n+l 

X IT C3 (kl ) 10). (4.1 ) 
1=' 

It is an eigenstate of a, (A.), a3 (A.) with eigenvalue indepen
dent ofn. 

From (2.9), we see that 

Cj(A.)Cj(A.+ic) =0, j=I,2. (4.2) 

It leads to the conclusion of nonexistence of bound states for 
Q, and Q2 particles that is in agreement with the results of 
Ref. 4. The bound state of n - Q3 particles is given by 

ft 

IT C3 (k l ) 10), 
1=' 

kl = Il - i(21 - n - 1 )c, 1= 1,2, ... ,n. (4.3) 

But this bound state has no extra bound energy for Hamilto
nian (1.2). 
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Under the action of the Poincare group P( 1,3) the three-, four-, and five-dimensional vector 
spaces of formally self-adjoint first-order matrix differential operators commuting among 
themselves and with the Dirac operator are classified. This gives a complete classification of 
the maximal subspaces of the vector space of first-order formally self-adjoint matrix 
differential operators commuting with the Dirac operator, which form an Abelian Lie algebra 
under the commutator. 

I. INTRODUCTION 

While a considerable amount of work has gone into the 
formulation of a complete theory of separation of variables 
for scalar differential operators such as the Hamilton-Jacobi 
and Laplace-Beltrami operators on Riemannian mani
folds,l-3 the case of matrix differential operators has re
ceived much less attention. 

Of all the matrix differential operators of mathematical 
physics, it is the Dirac operator that has been studied most. 

Indeed, central to the analytic solution of the relativistic 
hydrogen atom problem stands the fact that in Minkowski 
space-time the Dirac equation is solvable by separation of 
variables when expressed in spherical coordinates and a 
fixed frame of reference (as opposed to a moving one). In 
this context, the separability property is underlied by the 
existence of a triple J = (Jx,Jy,Jz) of first-order matrix dif
ferential operators commuting with the Dirac operator, 
namely, the total angular momentum operator well known 
to Dirac himself.4 

The operators Jx, Jy , and Jz give the infinitesimal action 
of the subgroup SOC 3,R) of the group P(1,3) of geometrical 
symmetries of the Dirac equation on four-component spin
ors. [The operatorsJx.Jy ' andJz are the Lie derivatives with 
respect to the generators Lx, Ly ' and L z of so(3,R) in its 
standard vector field representation on a4

.] The separable 
solutions are eigenspinors of J with the separation constants 
as eigenvalues. 

In their analysis ofChandrasekhar'ss separation ofvari
abIes procedure for the Dirac equation in the Kerr solution 
of the Einstein field equation,1 Carter and McLenaghan6 re-

cognized that the commuting operators associated with the 
separability of the Dirac operator need not be Lie derivatives 
with respect to the generators of the underlying two-dimen
sional Abelian isometry group. 

Carter and McLenaghan6 indeed obtained an operator 
which is constructed from the irreducible valence-2 Killing
Yano tensor existing in the Kerr solution and which admits 
the separable solutions as eigenspinors; their construction 
has been extended to the case of the neutrino operator in a 
more general context.1 (The existence of such an operator 
was subsequently proved to be a sufficient condition for 
Dirac separability.8) 

These results enabled Kalnins, Miller, and Williams9 to 
analyze the separability in oblate spheroidal coordinates of 
the Dirac equation in Minkowski space-time by taking the 
flat limit of the Kerr solution. In contrast with the case of 
spherical coordinates, separability here requires a moving 
frame, which turns out to be adapted to the eigenvectors of 
the Killing-Yano tensor. 

We should also mention the work of Cook, 10 who gave a 
list of the known separable coordinate systems and frames 
and attempted to formulate a Stickel theory for the Dirac 
operator in Minkowski space-time in analogy with the case 
of the Hamilton-Jacobi and Laplace-Beltrami operators. 

Our purpose in this paper is to classify under the action 
ofthe Poincare group P(1,3) the maximal three- and four
dimensional vector spaces of first-order matrix differential 
operators commuting among themselves and with the Dirac 
operator. Here, "maximal" means a vector space that is not 
contained in a higher-dimensional vector space of first-order 
matrix differential operators commuting among themselves 
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and with the Dirac operator. This will lay the ground work 
for the classification of the separable coordinates and frames 
for the Dirac operator in Minkowski space-time, which will 
be given in a forthcoming paper. 

In Sec. II we recall some known results on first-order 
matrix differential operators commuting with the Dirac op
erator in Minkowski space-time and derive necessary and 
sufficient conditions for a set of such operators to span a 
three- or four-dimensional Abelian Lie algebra. In Sec. III 
we present our method for classifying these Lie algebras of 
matrix differential operators under the action of the Poin
care group P(1,3) and give an exhaustive list ofthe equiv
alence classes with a representative for each class. In the 
latter step, we use the results of Ref. 11, where the closed 
continuous subgroups of the Poincare group P( 1,3) are clas
sified in conjugacy classes. 

II. FIRST-ORDER OPERATORS COMMUTING WITH THE 
DIRAC OPERATOR 

On four-dimensional Minkowski space [M4 , 

g: = diag( 1, - 1, - 1, - 1)] we consider the Dirac opera
tor 

(2.1 ) 

where Va denotes the covariant differentiation operator on 
four-spinors and {y", a = 0, 1,2,3} is a set of Dirac matrices 
associated to the Minkowski metric g by the anticommuta
tion relations y"yP + yPy" = 2gaPI4. 

Let ~ be the vector space of formally self-adjoint first
order differential operators on the C 00 (M4 ) -module of C 00 

sections of the bundle associated via the D(!,O) E&D(O,!) 
representation of SL(2,C) to the spin bundle Y of (M4,g) 
and let .!if be the subspace of ~ consisting of first-order 
operators commuting with the Dirac operator. 

The following result of McLenaghan and Spindel12 de
scribes the elements of .!if. 

Proposition 1: The most general formally self-adjoint 
first-order operator K commuting with the Dirac operator 
HD is given by 

K= [i(k aI 4+ cy") +kafJysYp +kaPrY[pyrdVa +kI4 

- i*k;:' y s + !*k aP;a y P - {kP;r y[P yrJ, (2.2) 

where 

(2.3) 

k(a;IJ) = ka(P;rl = k afJ(r;8l = c,a = k,a = 0, (2.4) 

(2.5) 

where ~r8 denotes the volume element on M4 and 
ys: = ,p,EafJr8 y"yPyryS. 

We remark that (k a) is a Killing vector, (kap ) is a 
valence-2 Killing-Yano tensor (or a Penrose-Floyd 
tensor), and (kafJr ) is a valence-3 Killing-Yano tensor.13 
We thus have the following expressions in Cartesian coordi
nates: 
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(2.8) 

We observe that .!if has the following direct sum decomposi
tion: 

(2.9) 

where we have introduced the one-dimensional subspaces 
!l2: = span{HD } and/: = span{I4} of .!if. The elements of 
&' will be denoted by K(k,II,A), where we let 

k: = k a ~ , II: = ..!.. kafJ dxa 1\ dxP, axa 2 (2.10) 
A = !kaPr dxa 1\ dx P 1\ dxr. 

Our purpose is to classify under the action of the Poin
care group P(1,3) the three- and four-dimensional sub
spaces of &' that form an Abelian Lie algebra under the 
commutator and are maximal, i.e., not contained in a higher
dimensional subspace of &' that forms an Abelian Lie alge
bra under the commutator. 

The condition for two operators K(1) and K(2) in &' to 
commute is given by the following result, which immediately 
follows from the discussion of Sec. 5 in Ref. 12. 

Proposition 2: The commutator of two first-order opera
tors K.(1) and K.(2) in &' vanishes if and only if 

(2.11 ) 

(2.12) 

!£' 11(2) _ !£' 11(1) = 0, !£' A(2) - !£' A(I) = 0, 
k UJ k(21 kO) k(2) 

(2.13) 

where A. is a constant. 
From Proposition 2 and the expressions (2.6)-(2.8), 

we immediately obtain the following corollaries. 
Corollary 1: Every three-dimensional (respectively, 

four-dimensional) subspace of &' that forms an Abelian Lie 
algebra under the commutator admits a basis of the form 
(K,(a)(k (a),0,0),K.(3)(k(3),II,A»), where a = 1,2 [respective
ly, (K.(a)(k (a),0,0),K,(4)(k (4),II,A»), where a = 1,2,3,]. 

Corollary 2: Necessary and sufficient conditions for the 
basis elements K.(a l , where a = 1,2,3 (respectively, 
a = 1,2,3,4), to commute are 

R (ala R (blr _ R (bla R (alr - ° pap a-' 

where a,b = 1,2,3 (respectively, a,b = 1,2,3,4), and 

E D rT (alp + C R (alp + C R (alp = ° aPrp pfj a ap fj , 

D r(L' R (alp + R (alp + R (alp) - ° ~ afjrp 8 E pfjr8 a E apr8 fj - , 
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(2.14 ) 

(2.15) 

(2.16) 

(2.17) 
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BEafJrpT(a)p +A 8(Ep(3r8R (a)Pa 

- Epayt;R (a)p fJ + Epa/JBR (a)p r) = 0, 

wherea,b= 1,2 (respectively, a,b = 1,2,3). 

III. THE CLASSIFICATION 

(2.18) 

We first study the case of maximal three-dimensional 
subspaces & 3 of & which fonn an Abelian Lie algebra un
der the commutator. 

Let !/ 2: = span{k (l),k (2)} and !/ 3: = span{k (I), 
k(2),k(3)}. We have dim !/2 = 2 and dim !/3>2inorderfor 
& 3 to be three-dimensional and k (3)EC(!/ 2): = centrali
zer(!/2) in the Lie algebra p(1,3) of the Poincare group 
P(1,3). 

Using the adjoint action ofP( 1,3) on p( 1,3), we parti
tion the set of two-dimensional Abelian subalgebras !/ 2 of 
p(1,3) into orbits, as was done in Ref. 11. For each orbit 
representative!/ 2 = span{k (I),k (2l}, we apply Corollary 2 to 
obtain the valence-2 and valence-3 Killing-Yano tensors 
(kafJ ) and (kafJr) that ensure the commutation property. 

If dim !/ 3 = 2, there exists a basis for 9 3 of the fonn 
(K(ll(k (l),0,0),K(2)(k (2l,0,0),K(3)(0,II,A»). We use the second 
and third exterior powers of exp(N(!/ 2»)' where 
N(!/2):=nonnalizer(!/2) in p(1,3) to cast (kafJ ) and 
(kafJr ) in nonnal fonn. 

If dim!/ 3 = 3, we first use the adjoint action of 
exp(N ( !/ 2) ) to partition the set of one-dimensional subalge
bras of the (additive) quotient C ( !/ 2) f!/ 2 into orbits. 
[Note that the action of exp(N ( !/ 2») is well defined in the 
quotient C(!/2)f!/2 since Ad(expN(!/2») maps C(!/2) 
onto C(!/2) and!/2 onto!/ 2'] For each orbit representa
tive span ([ k (3l]), we check that the valence-2 and valence-3 
Killing-Yano tensors (kafJ) and (kafJr ) obtained above do 
not satisfy the commutation conditions (2.16)-(2.18) of 
Corollary 2, with a = 3. If these conditions were satisfied, 
the triple {K(I) ,K(2l,K(3)} would not span a maximal subspace 
fonning an Abelian Lie algebra under the commutator and 
thus would have to be rejected. If the commutation condi
tions are not satisfied, it remains to be verified that there is no 
element [k (4)] of C(!/ 2) f !/ 2 such that the quadruple 
{K(I),K(2l,K(3),K(4)(k(4),0,0)} spans a four-dimensional sub-
space that fonns an Abelian Lie algebra under the commuta
tor. Indeed, ifsuch a [k (4l] existed, the triple {K(I),K(2),K(3)} 
would again not span a maximal three-dimensional subspace 
fonning an Abelian Lie algebra under the commutator and 
thus would have to be rejected. If no such [k(4l] exists, the 
span is maximal and one uses the second and third exterior 
powers ofexp(N(!/ 2) nN(span{[k (3)]}») to cast (kafJ) and 
(kafJr ) in nonnal fonn. The result of this procedure is pre
sented in Table I, where we have used the action of the dis
crete subgroup {IdM., exp(1TL3 )} ofP(1,3) to put sharper 
restrictions on the range of the parameters labeling the 
equivalence classes. 

The case of four-dimensional subspaces 9 4 of 9 is 
treated following a procedure similar to the one just de
scribed for three-dimensional subspaces. The results are re
corded in Table II. 

In Tables I and II, we have used the following notation 
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for the generators of p ( 1,3) in its standard vector field repre
sentation on M4 : 

(3.1 ) 

where 

(3.2) 

where the indices i and a take the values 1,2,3 and 0,1,2,3, 
respectively. 

Finally, it should be mentioned that one can also classify 
under P ( 1,3) the maximal subspaces of dimension 5 of 9 
which fonn an Abelian Lie algebra under the commutator, 
using the above method. One obtains subspaces of the fonn 
span {K(ll(po,0,0),K(2)(PI,0,0),K(3)(P2,0,0),K(4l(P3,0,0), 
K(Sl(O,II,A)}, where 

and the parameters CafJ and A 8 take the values listed in Ap
pendix F. 

This exhausts the possible dimensions for maximal sub
spaces of 9 which fonn an Abelian Lie algebra under the 
commutator. 

IV. CONCLUSIONS 

We have classified under the action of the Poincare 
group P(1,3) the maximal vector spaces of fonnally self
adjoint first-order matrix differential operators commuting 
among themselves and with the Dirac operator. These vec
tor spaces will be crucial in the classification of the separable 
coordinate systems for the Dirac equation, as illustrated in 
the following example.9 

Consider four-dimensional Minkowski space M4 in ob
late spheroidal coordinates (t,r,a,f/J) defined as 

Xo = t, Xl = (r2 + a2)1/2 sin a cosf/J, 

x 2 = (r2 + a2)1/2 sin a sinf/J, x 3 = rcosa. 
(4.1 ) 

When expressed in the above coordinates and in an appro
priately chosen moving frame, the Dirac equation is solvable 
by separation of variables.s The separable solutions are ei
genspinors of the commuting operators K(I)(a fat,O,O), 
K(2l(a faf/J,O,O), and K(3) (O,! Dii dxi Adxi,O), where 

(

0 

. ° (Dj): = ~ 
-a) x 2 

I ' -x 

° 
(4.2) 

with the separation constants as eigenvalues. The frame re
quired for separation of variables is precisely (up to nonnal
izations) the frame of eigenvectors of (D ; ) corresponding to 
the eigenValues ± ir and ± ia cos 8. The complete set 
{K(l),K(2l,K(3l} corresponds to case 7 of Table I, with a = ° 
andCo3 =a. 
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~ 

g 
TABLE I. Three-dimensional subspaces span {K(I)(k(l),O,O),K(2)(k(2),O,O),K(3)(k(3),n,A)}. 

--
~ 

Case k(l) k(2) k(3) II A Parameters Values 

s:: 
cos ~ the° A dX' + sin ~ dxl A tJx2 iB£aI¥~ dx" AtJxI1 AdxY a L3 K3 0 B,~ BeR,O<;<1T 

~ 
-g 2 L3 K3 0 0 i£aI¥~ dx" A tJxI1 A dxY 
J 
'< 
!' 3 ~+KI L I -K2 cos 8(Po - P3) sin 8[sin ~(the° + dX') A the I i£aI¥~ dxa AtJxI1 Athey 8,; 0<8,~<1T 
< + cos tfJ(dxo + dX') A (x2 thel - Xl tJx2) ~ 
N + (~ + XJ)the l AtJx2)) 
!? 
z 4 L2+KI L I -K2 0 0 1£aI¥x6 dx" A tJxI1 A they 
!:l 
.!'> 5 L3 PO-P3 b(PO+P3) C03 tJxO AdX' + (xo + XJ)dxl AtJx2 (A 3 dxo _ A ° dXJ) Adxl Adx2 (C03,A 0,A ',b) See Appendix A 
"T1 + (the° + dXJ) A (x2 thel - Xl dx2) Q) 
r::r 
2 6 L3 P3 aPo C03 tJxO AdX' - ~ thel Adx2 (A' tJxO - A ° dX') A the I AtJx2 C03,A ° ,A ',a Co,,A ° ,A 3,aeR 
I» 

-< + the° A (Xl the2 - x2 dxl ) 
~ 

C03 dxo A dX' + XJ thel A the2 (A'dxo - A ° dX') Adxl AtJx2 C03,A 0,A 3,aeR co 7 L3 Po aP, C03,A ° ,A ',a CD 
CD + (Xl tJx2 - x2 dx l

) AdX' 

8 K3 PI aP2 CI2 thel AtJx2 + x 2 dxo AdX' (A 2 dxl -A I dx2) Adxo AdXJ C12,A I,A 2,a A I,A 2,aeR 
+ (xo dX' - x' the°) A dx2 C12>0 

9 L2+KI Po-P, a(L I -K2) (xo + X3)thel AtJx2 - the° Adxl AdX' a aeR 
+ (Xl tJx2 - x2 thel ) A (d~ + dx') 

10 L2+KI PO-P3 a(LI -K2) cos ~(dxo+ dx') Adxl - d~ A the I AdXJ a,~ aeR· 
+ sin ;(the° + dXJ) Adx2 0<;<21T 

11 L2+KI PO-P3 £(L I -K2) 0 - the° Adxl Adx' £ ~= 1 

12 L2+KI PO-P3 bP2 (xo +XJ)dxl Adx2 - dxo Adxl Athe3 b heR· 
+ (Xl tJx2 _ x 2 thel ) A (the° + dx') 

13 L2+KI PO-P3 P2 (xo + X3)thel Athe2 - A O(dxo + dXJ) Adxl Adx2 AO A°eR 
+ (Xl dx2 _ x 2 dx l ) A (the° + dx') 

14 L2+KI PO-P3 c(LI - K2 + £P2) (xo + x')thel Athe2 -A 2 dxo Adxl Adx' c,A 2,£ c>OorA 2>0 
+ (Xl dx2 - x2 thel ) A (dxo + dx') ~= 1 

15 L2+KI PO-P3 c(LI - K2 + £P2) (xo + XJ)dx l Adx2 -Ao(dxo + dXJ) A the I Adx2 c,A 0,£ c>O,A°eR 
+ (Xl tJx2 - x2 dx l

) A (the° + dXJ) ~= 1 

16 L2+KI PO-P3 c(LI - K2 + £P2) COl (dxo + dXJ) A the I - the° Adxl AdXJ c,COI ,C02'£ CoI ,C02eR 
+ Co2 (dxo + dXJ) Athe2 CER·,~= 1 

17 L2+KI P2 cos 8(Po - P,) sin 8 cos ;(the° + dXJ) Adx2 - sin 8 sin ~(dxO + the') 8,; 0<8,;<1T 
- Xl dxo Adx' - (XO dXJ - x 3 the°) Adxl Adxl Adx2 -A 2 dxo A the I Adx' A2 A 2eR 

" 18 L2+KI P2 0 - Xl dxo A dXJ - (xo dXJ - XJ dxo) A thel -A 2 dxoAdx l Adx' A2 A 2eR 
I» 
3 19 Po-P, PI c(L I -K2) !Ca.8 dx" A tJxI1 1£aI¥A 6 dx" AdJi3 AdxY Ca.8,A 6,C See Appendix B i» :;, 
<Il 20 Po-P, PI d(LI -K2 + PO+P3) !Ca.8 dx" A tJxI1 1£a.8Y6A 6 dx" AdxP AdxY Ca.8,A 8,d See Appendix C ... 
I\) ,... 

21 Po P3 aLl !C a.8 dxa A dJi3 i£a.8y8A 6 dx" A dJi3 A dxY Ca.8,A 8,a See Appendix D 

.". 
0 
(l) 
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TABLE I. (Continued.) 

Case 

22 

23 

24 

25 

26 

27 

28 

k(J) 

PI 

Ll+KI +PO+P3 

L2+KI +EP2 

L2+KI +EPl 

L 2+KI +EP2 

L2+KI +EPl 

Ll+KI +EPl 

k (2) 

P2 

PO -P3 

PO -P3 

PO -P3 

PO -P3 

PO -P3 

PO -P3 

k (3) n 

bK3 !Ca/l fix" 1\ cJxP 

aPl (xo + r)dxl l\dx2 - 2 dx21\dx3 

+ (Xl dr - Xl dxl ) 1\ (dJ!> + dr) 

dP2 (XO + x 3)dxl l\dx2 + EdxO I\tIxl 
+ (Xl tJx2 - X2 dxl ) 1\ (tJxO + tIxl) 

bPl (Xo + x 3)dxl l\tJx2 + Edx° I\dr 
+ (Xl dxl _ r dxl ) 1\ (dJ!> + tIxl) 

C(LI - Kl - EPI + aP2) (xo + x 3 )dxl l\tJx2 + EdJ!>l\tJx3 
+ (Xl dr - x 2 dx l ) 1\ (tJxO + dr) 

C(LI - K2 - EPI + aPl ) (xo + r)dxll\ tJx2 + E tJxO I\dx3 

+ (Xl tJx2 - Xl dxl ) 1\ (dxO + dx3 ) 

C(LI - Kl - EPI + aPl COl (dx° + tJx3) 1\ dx l 

+ Col(dx° + tIxl) 1\ dx l 

A Parameters Values 

1EaPy6A 6 dxa I\cJxP I\dxY Ca/l,A 6,b See Appendix E 

-A O(dJ!> + dr) I\dx l l\dx2 a,A 0,A 2 a,A 0,A 2eR 

_ A 1 dx° I\dxl l\tIxl 

- A 1 dxo I\dxl l\dr boA 2 A 2 >Oorb;;.O 
E ~= 1 

-A o(dxo + tIxl) I\dx l l\dxl boA 0 A °eR,b> 0 
E ~= 1 

_ A ldx° I\dxl l\dx3 a,c,A 2 aeR,A 2eR-
E c>O,~= 1 

- A o(dx° + dr) I\dx l l\dr a,c,A 0 a,A °eR 
E c>O,~ = 1 

- dx° I\dxl l\tIxl a,c,COI COl,Col,aeR 
C02,E CeR-,~= 1 
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TABLE II. Four-dimensional subspaces span {K(\)(k(\),O,O), K2(k(2),O.o>, K(')(k('),O,O), K(4)(O,II,A)}. 

Case k(l) k(2) k(') II 

L2+K, L,-K2 Po-P, (xo + x')dx' Adx2 

+ (x' dx2 - x2 dx') A (dxo + dx') 

2 L2+K, L,-K2 Po-P, (dx° + dx') Adx2 

3 L2+K, L,-K2 Po-P, (d~ + dx') Adr 

4 L2+K, L,-K2 Po-P, 0 

5 L, Po P, Co, dxo Adx' + C'2 dx' AtJx2 

6 L, Po P, Co, tJxO Adx' + C'2dx' Adx2 

7 L, Po P, sin ~ dx° Adx' + cos ~ dx' AtJx2 

8 L, Po P, 0 

9 L, Po P, sin ~tJxO Adx' + cos~dx' Adx2 

10 K, P, P2 Co, dxo Adx' + C'2dx' Adx2 

11 K, P, P2 sin; dx° Adx' + cos; dx' Adr 

12 L2+K, Po-P, P2 sin ;(dx° + dx') Adx' 
+ cos ;(dx° + dx') A dx2 

13 L2+K, Po-P, P2 0 

14 L2+K, Po-P, P2 sin 8 sin ;(tJxO + dx') Adx' 
+ sin 8 cos ;(dxO + dx') A dx2 

15 L2+K, Po-P, L, -K2 +P2 COI(d~ + dx') Adx' 
+ C02(d~ + dx') Adx2 

16 Po-P, P, L, -K2 +Po+P, COI(dx° + dx') Adx' 
+ Co2 (dxo + dx') Adx2 

17 Po-P, P, L, - K2 + Po + P, sin ;(dxo + dx') Adx' 
+ cos ;(dxo + dx') Adr 

18 Po-P, P, L, -K2 + Po +P, Co, (dxo + dx') Adx' 
+ CO2 (dxO + dx') Adr 

A Parameters Values 

- A o(dxo + dx') Adx' Adr A O A°eR 

- (dxo + dx') Adx' Adr 

0 

(dxo + dx') Adx' Adx2 

dx° A dx' A tJx2 CO"C'2 CO"C'2eR 

dx' Adx' Adx2 
CO"C'2 CO"C'2eR 

(Ed~ - dx') Adx' AtJx2 E,; 0<;<2"',~ = 1 

(E dx° - dx') Adx' AtJx2 E ~= 1 

0 ; 0<;<." 

dx' AtJxO Adx' CO"C'2 CO"C'2eR 

0 ; 0<;<2." 

- dx° Adx' Adx' ; 0<;<2." 

- dx° Adx' Adx' 

- cos 8(dxo + dx') Adx' Adx2 8,; 0<; < 2"',0<8<.,,/2 

(dx° + dx') Adx' Adx2 
Co "CO2 CO, ,COleR 

(dxo + dx') Adx' Adx2 COl ,C02 CO, ,COleR 

0 ; 0<;<2." 

dxo A dx2 A dx' Co "C02 CO"C02eR 
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APPENDIX A: VALUES OF (Cu ,AO,A3,b) FOR CASE 5 OF 
TABLE I 

The values taken by the parameters (C03,A ° ,A 3,b) for 
Case 5 of Table I are 

5.1. (C03,0,A 3,b) 

5.2. (C03,A o,O,b) 

5.3. (C03,E,E,b) 

5.4. (C03,A 0, -A,E) 

5.5. (E,A 0, - A °,0) 

5.6. (O,A 0, - A °,0) 

5.7. (C03,0,0,E) 

5.8. (E,O,O,O) 

5.9. (0,0,0,0); 

APPENDIX B: VALUES OF (Call)' (All), AND c FOR CASE 19 OF TABLE I 
The values taken by the parameters (COI,C02,Cn,C23,C03,CI2,A 0,A 1,A 2,A 3,e) for case 19 of Table I are 
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19.1. (O,O,I,C23,0,0,A 0,A 1,A 2,A 3,e); e,C23eR*, A 0,A 1,A 2eR, A 3>0. 
19.2. (1,C02'O,O,O,O,A 0,A 1,A 2,A 3,e); e,C02eR*, A 0,A 1,A 2eR, A 3>0. 

19.3 (1,C02,I,C02,O,O,O,A 1,A 2,A 3,e); e,C02eR*, A 1,A 2eR, A 3>0. 

19.4. (1,C02,I,C02,0,0,A 0,A 1,A 2,0,e); e,C02eR*, A 1,A 2eR, A °>0. 

19.5. (1,C02,I,C02,0,0,A o,cos ~,sin~,A o,e); e,C02eR*, A °>0, O<:.~ < 211'. 

19.6. (I,C02,I,C02,O,0,A 0,0,0,A o,E); C02eR*, A °>0, ~ = 1. 

19.7. (1,C02,I,C02,0,0,1,A 1,A 2, - l,e); ceR*, A 1,A 2eR. 

19.8. (0,I,C13,C23,0,0,A 0,A 1,A 2,A 3,e); e,CneR*, C23,A 1,A 2,A 3eR, A °>0. 

19.9. (1,C02'0,C23,0,0,A°,A 1,A2,A3,e); e,C23eR*, CO2,A 1,A2,A3eR, A °>0. 

19.10. (1,0,I,C23,0,0,A°,A 1,A2,A3,e); e,C23eR*, A 1,A2,A3eR, A °>0. 

19.11. (1,C02,1,0,0,0,A 0,A 1,A 2,A 3,e); e,C02eR*, A 1,A 2,A 3eR, A °>0. 

19.12. (0,0,0,1,0,0,A 0,A 1,A 2,A 3,e); ceR*, A 1,A 2,A 3eR, A °>0. 

19.13. (0,1,0,0,0,0,A 0,A 1,A 2,A 3,e); ceR*, A 1,A 2,A 3eR, A °>0. 

19.14. (0,1,0,1,0,0,0,A1,A2,A3,e); ceR*, AI,A 2eR, A 3 >0. 

19.15. (0,1,0,1,0,0,A 0,A 1,A 2,0,e); ceR*, A 1,A 2eR, A °>0. 

19.16. (O,I,O,I,O,O,A°,cos~,sin~,A°,e); ceR*, A °>0, 0<:'~<211'. 

19.17. (0, 1,0, 1,0,0,A 0,0,0,A o,E); A °>0, ~ = 1. 

19.18. (0,1,0,1,0,0,1,A 1,A 2, - l,e); ceR*, A 1,A 2eR. 

19.19. (1,0, - I,C23,0,0,A 0,A 1,A 2,A 3,e); e,C23eR*, A 1,A 2,A 3eR, A °>0. 

19.20. (1,C02' - 1,0,0,0,A 0,A 1,A 2,A 3,e); e,C02eR*, A 1,A 2,A 3eR, A °>0. 

19.21. (1,1, - 1,1,0,0,A 0,A 1,A 2,A 3,e); ceR*, A 1,A 2,A 3eR, A °>0. 

19.22. (1, - 1, - 1, - 1,0,0,A 0,A 1,A 2,A 3,e); ceR*, A 1,A 2,A 3eR, A °>0. 

19.23. (0,0,1,0,0,0,A°,A 1,A2,A3,e); ceR*, A 1,A2,A 3eR, A °>0. 

19.24. (1,0,0,0,0,0,A 0,A 1,A 2,A 3,e); ceR*, A 1,A 2,A 3eR, A °>0. 

19.25. (1,0,1,0,0,0,0,A 1,A 2,A 3,e); ceR*, A 1,A 2eR, A 3>0. 

19.26. (1,0,1,0,0,0,A 0,A 1,A 2,0,e); ceR*, A 1,A 2eR, A °>0. 

19.27. (l,0,1,0,0,0,A o,cos ~,sin~,A o,e); ceR*, O<:.~ < 211', A °>0. 

19.28. (l,0,1,0,0,0,A 0,0,0,A o,E); A °>0, ~ = 1. 

19.29. (1,0,1,0,0,0,1,A 1,A 2, - l,e); ceR*, A 1,A 2eR. 

19.30. (O,I,Cn , -1,0,0,A 0,A 1,A 2,A 3,e); e,C13eR*, A 1,A 2,A 3eR, A °>0. 

19.31. (Col,I,0,-1,0,0,A°,A1,A2,A3,e); e,ColeR*, AI,A2,A 3eR, A °>0. 
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19.32. (1,1,1,-1,0,0,A°,A1,A2,A3,e); eeR*, AI,A2,A3eR, A °>0. 

19.33. (1, - 1,1,1,0,0,A 0,A 1,A 2,A \e); ceR*, A 1,A 2,A 3eR, A °>0. 

19.34. (O,O,O,O,cos O,sin O,O,A 1,A 2,A 3,e); A 1,A 2eR, A 3eR*, 0<0<17', e>O. 

19.35. (O,O,O,O,cos O,sin O,A 0,A 1,A 2,0,e); A 1,A 2eR, A °eR*, 0<0<17', e>O. 

19.36. (O,O,O,O,cos O,sin O,E,A 1,A 2,E',e); A 1,A 2elR, 0<0<17', ,;2 = 1 = E,2. 

19.37. (O,O,O,O,cos O,sin O,O,A 1,A 2,0,1); A 1,A 2eR, 0<0<17'. 

19.38. (cos O,sin 0, - cos 0, - sin O,O,O,O,O,O,A 3,e); ceR*, 0<0<17', A 3>0. 

19.39. (cos O,sin 0, - cos 0, - sin O,O,O,A o,O,O,O,e); ceR*, 0<0 <17', A °>0. 

19.40. (cos O,sin 0, - cos 0, - sin O,O,O,l,O,O,l,e); celR*, 0<0<17'. 

19.41. (cosO,sinO,-cosO,-sinO,O,O,l,cos;,sin;,O,e); ceR*, 0<0<17', 0<;<217', ;"117'. 

19.42. (O,O,O,O,O,O,O,O,O,l,e); e>O. 

19.43. (O,O,O,O,O,O,l,O,O,O,e); e>O. 

19.44. (0,0,0,0,0,0,1,0,0,1,1). 

19.45. (O,O,O,O,O,O,O,cos ;,sin ;,0,1); ° <; < 217', ;"117'. 

APPENDIX C: VALUES OF (CaP)' (All), AND dFOR CASE 20 OF TABLE I 
The values taken by the parameters (COl,C02,C13,C23,C03,CI2,A 0,A 1,A 2,A 3,d) for case 20 of Table I are 

20.1. (cos;,C02,sin;,C23,0,C12,A°,A1,A2,A\d); delR*, C02,C23'CI2,AaeR, 0<;<217'. 

20.2. (COI'cos;, - Col,sin ;,C03,0,A 0,A 1,A 2,A 3 ,d); delR*, COI,C03,A aeR, 0<; < 217'. 

20.3. (0,C02'0, - CO2,1,C12,A 0,A 1,A 2,A \d); deR*, CO2,CI2,A aeR. 

20.4. (COI'O, - Col,O,O,l,A 0,A 1,A 2,A \d); deR*, COl,A aERo 

20.5. (COI,C02' - COl' - CO2,0,0,0,1,A 2,0,d); COl,C02eR, A 2, deR*. 

20.6. (COI,C02' - COl' - CO2'0,0,COS ;,O,A 2,sin ;,d); dell*, COI,C02,A 2eR, 0<; < 217'. 

20.7. (COl>C02' - COl' - CO2,0,0,A O,O,A 2, -A 0,1); A 2eR*, COl>C02,A GER. 

APPENDIX D: VALUES OF (Cap), (All), AND a FOR CASE 21 OF TABLE I 
The values taken by the parameters (COl,C02,CI3,C23,C03,CI2,A 0,A 1,A 2,A 3,a) for case 21 of Table I are 

21.1. (O,O,O,l,C03,C12,A°,A 1,A2,A3,a); C03,C12,AaeR, a>O. 

21.2. (0,1,0,0,C03'CI2,A°,A 1,A2,A3,a); C03'CI2,AaeR, a>O. 

21.3. (0,1,C13,0,C03,CI2,A°,A1,A2,A3,a); C13,C03'CI2,AaeR, a>O. 

21.4. (0,1,0,1,C03,CI2,0,A 1,A 2,A 3,a); C03,C12,A 1,A 2eR, A 3eR*, a>O. 

21.5. (0,1,0,1,C03,CI2,A°,A 1,A2,0,a); C03,CI2,A 1,A 2eR, AOeR*, a>O. 

21.6. (O,l,O,l,sin X sin ° cos ;,sinX sin ° sin;,A o,sin X cos O,cos x,A o,a); 

A °eR, 0<;<217', 0<0<17', 0<X<17', a>O. 

21.7. (0, 1,0, 1,0,0,A 0,0,0,A °,1); A GER. 

21.8. (0,1,0,1,C03,CI2,E,A 1,A 2, - E,a); C03,C12,A 1,A 2eR, ,;2 = 1, a>O. 

21.9. (0,0,0,0,C03,CI2,0,0,A 2,1,a); C03,C12eR, aeR*, A 2>0. 

21.10. (0,0,0,0,C03,CI2,1,0,A 2,0,a); C03,CI2eR, aeR*, A 2>0. 

21.11. (O,O,O,O,sin ° cos ;,sin ° sin ;,l,O,cos O,E,a); aeR*, 0<; <217', 0<0<17'/2. 

21.12. (0,0,0,0,C03,CI2,0,0,A 2,0,1); C03,C12eR, A 2>0. 

APPENDIX E: VALUES OF (CaP)' (All), ANDb FOR CASE 22 OF TABLE I 
The values taken by the parameters (COI,C02,C13,C23,C03,CI2,A 0,A 1,A 2,A 3,b) for case 22 of Table II are 

22.1. (0,0,0,1,C03,CI2,A°,A 1,A2,A3,b); C03,CI2,A/leR, b>O. 

22.2. (0,1,0,0,C03,CI2,A 0,A 1,A 2,A \b); C03,CI2,A /leR, b>O. 

22.3. (O,l,C13,O,C03,C12,A°,A 1,A2,A3,b); C13,C03,CI2,A/leR, b>O. 
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22.4. (O,1,O,1,C03,CI2,O,A I,A 2,A 3,b); C03,CI2,A I,A 2eR, A 3eR·, b>O. 

22.S. (O,1,O,1,C03,CI~ 0,A I,A 2,O,b); C03,CI2,A I,A 2eR, A °eR·, b>O. 

22.6. (O,l,O,l,sinX sin (J cos t,6,sinx sin (J sin t,6,A o,sinX cos (J,cos X,A o,b); 

0<t,6<21f, 0<(J<1f, O<X<1f, A °eR, b>O. 

22.7. (0,1,0,1,0,0,A 0,0,0,A °,1); A °eR. 

22.8. (0,1,0,1,C03,CI2,1,A I,A 2, - 1,b); heR·, C03,CI2,A loA 2eR. 

22.9. (0,0,0,0,C03,CI2,0,0,A 2,1,b); heR·, C03,CJ2eR, A 2>0. 

22.10. (0,0,0,0,C03,CJ2,1,0,A 2,0,b); heR·, C03,CI2eR, A 2>0. 

22.11. (O,O,O,O,sin (J cos t,6,sin (J sin t,6,l,O,cos (J,E,b); beR·, 0<t,6 < 21f, 0<(J<1f/2, ~ = 1. 

22.12. (O,O,O,O,O,O,l,O,O,l,E); ~ = 1. 

APPENDIX F: VALUES OF (CaP) AND (A6) FOR THE FIVE-DIMENSIONAL SUBSPACES OF f/J 
The values taken by the parameters (COI,C02,C13,C23,C03,CJ2,A 0,A 1,A 2,A 3) for the equivalence classes offive-dimensional 

( d) subspaces of f!Jl are 

Sd.1. (O,O,O,O,sin t,6,cos t,6,0,0,A 2,A 3); A 3eR·, A 2>0. 

Sd.2. (O,O,O,O,sin t,6,cos t,6,A 0,0,A 2,0); A °eR·, A 2;>0. 

Sd.3. (O,O,O,O,sin t,6,cos t,6,E,O,A 2,E'); A 2>0, ~ = 1 = E,2. 

Sd.4. (O,O,O,O,sin t,6,cos t,6,0,0,A 2,0); A 2;>0. 

Sd.S. (1,0, - 1,0,0,0,0,0,0,A 3); A 3>0. 

Sd.6. (1,0, - 1,0,0,0,1,0,0,1). 

Sd.7. (1,0, - 1,0,0,0,0,sin t,6,cos t,6,0); 0<t,6 < 21f. 

Sd.8. (1,0, - 1,0,0,0,A °,0,0, -A 0); A °>0. 

Sd.9. (0,0,0,0,0,0,0,0,0,1). 

Sd.lO. (0,0,0,0,0,0, I ,0,0,0). 

Sd.ll. (0,0,0,0,0,0, 1,0,0, I). 
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The semiclassical limit of quantum dynamics. I. Time evolution 
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The 11-+0 limit ofthe quantum dynamics determined by the Hamiltonian H(Il) 
= - (if 12m) 11 + Von L 2 (Rn) is studied for a large class of potentials. By convolving with 

certain Gaussian states, classically determined asymptotic behavior of the quantum evolution 
of states of compact support is obtained. For initial states of class C ~ the error terms are 
shown to have L 2 norms of order 11112 - E for arbitrarily small positive E. 

I. INTRODUCTION 

Since the origin of quantum mechanics more than 60 
years ago there has been much effort applied to the under
standing of the relationship between the theory and its classi
cal counterpart. Not only is such an understanding impor
tant from a purely theoretical viewpoint, but the 
mathematical techniques developed in order to study this 
question have provided physicists and chemists with useful 
and powerful computational tools. In this paper we study the 
relation between the classical and quantal descriptions of the 
dynamical evolution in the so-called semiclassical limit. We 
obtain results for the semiclassical time evolution, which, 
although basically being known from the work of Maslov! 
and Maslov-Fedoriuk,2 are proved by new methods that we 
extend in a forthcoming paper3 to the scattering theory. Our 
proofs rely heavily on the results of Hagedorn4-6 concerning 
the semiclassical behavior of certain Gaussian initial states. 

We now introduce the assumptions on the potential V 
and state our main result. Our main theorem is concerned 
with the quantum evolution of certain initial states of com
pact support. 

Assumption 1.1: We assume that VEC I + 2 (Rn,R) for 
some integer I> 1 + n12 and that there exist positive con
stants m! and m2 such that! Vex) !..;;;em,lxl' and Vex»~ m2 
for all xERn. 

Under this assumption the quantum Hamiltonian 
H(Il) = - (if/2m)11 + Vis essentially self-adjoint on the 
infinitely differentiable functions of compact support in 
L 2(Rn). The corresponding classical Hamiltonian is given 
by the function HcI (a,ll) = (l/2m) \71\2 + V(a)onR2n.For 
any initial condition (ao,71o) in R2

n the system 

.E.. a(t) = ~ 71U), (l.la) 
at m 

.E.. 71 (t) = - VV(a(t») (1.lb) 
at 

has a unique solution (a(ao,71o,t), 71 (ao,71oot) ) such that 

(a(O),71(O») = (a (ao,710,0),71(ao,71o,O») = (ao,71o)' 

The solution (a (ao,71o,t),71(ao,71o,t)) is bounded for all 

.) Present address: Department of Mathematical Sciences. University of 
North Carolina. Wilmington. North Carolina 28403. 

IE [ 0, T] for any finite 1>-0 and is of class C I + ! in the initial 
condition (ao,71o) (see. e.g., Chaps. I and II of Lefschetz7

). 

Theorem 1.2: Suppose V satisfies Assumption 1.1. Let 
SoEC 3(Rn,R), /EC~ (Rn,C), and "tE(O.!>. Define Q( ',/): 
Rnt--+Rn by 

Q(qo,t) = a(qo,VSo(qo),t) 

and assume that t>O is fixed and such that det[ (aQ I 
aqo)(X,t)] #0 for all XESUpp(/). Then there exists 8>0 
and a constant C independent of II such that 

Ile-itH(Ii}/Ii(eis,,;~) 

_ ~ ei
(l'j+Sjlli} I det [~~ (xj,t) ] 1- 112/(Xj ) II <Cft, 

for all 11<8. For fixed x, the summation is over allj such that 
Q(xj,t) = x and hence is necessarily finite. Here Sj(x) de
notes the action 

i t [ 1 2 S(xj ) = So(xj ) + -171(Xj ,VSo(Xj ),1')1 
o 2m 

- V(a(xj,VSo(xj ),1'» ] d1', 

and ILj is an integer multiple of 1T 12 defined explicitly in the 
proof. 

Remarks: (1) The constants C and 8 are, in general, 
time dependent. The dependence of the rightmost function 
inside the norm [which is, of course, the norm of 
L 2(Rn,d nx)] onx is given implicitly by x Q(xj,t). 

(2) The number ILj is related to the Keller-Maslov in
dex1

•
8 of the path 

{(a(xj,VSo(xj ),1'),71(Xj ,VSo(xj ),1'»: O<1'..;;;t} 

and arises naturally in our proof in connection with the 
branch of the square root of det[ (aQ laqo) (X,f)] . 

(3) The theorem is not a new result. Indeed, one can 
view our theorem as a slight generalization of the leading
order term in Theorem 12.3 of Maslov-Fedoriuk.2 How
ever, we prove our theorem by a different method and our 
proof extends to the scattering theory. 

II. NOTATION AND DEFINITIONS 

Throughout this paper n denotes the space dimension, 
and L 2(Rn) is the Hilbert space of square integrable com-
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plex valued functions on Rn with inner product (.,.) and 
norm 11'11 is given by 

(/,g) = il(X)g(X)dnx, II/II = ([,/)1/2. 

For n an open subset of Rn, E = R or C, and K a non-nega
tive integer, Ck(n,lE) denotes the linear space of k-times 
continuously differentiable functions mapping n into E. 
Here C ~ ( n,lE) is the subspace of functions in C k ( n,E) with 
support compact and contained in n. We will denote the 
support of a function/by supp( /). The quantum mechani
cal Hamiltonian H( II) is the operator - (~/2m) a + Von 
L 2(Rn). Here, a is the n-dimensional Laplacian operator, 

a = (~)2 + ... + (~)2 , 
aXI aXn 

II is a small positive parameter (a dimensionless multiple of 
Planck's constant), m is a positive constant, and Vis a real 
valued function on Rn viewed here as a multiplication opera
tor on L 2(Rn). For potentials V satisfying Assumption 1.1 
the operator H(II) is essentially self-adjoint on the domain 
CO"(Rn,C). 

A multi-index a is an ordered n-tuple (a l ,a2, ... ,an ) of 
non-negative integers. The order of a multi-index a is given 
by lal = ~7= I a i and the factorial of a by 

n 

a! = II (a i !)· 
i=1 

For x = (X I ,x2, ... ,xn )ERn the symbol x a is defined by 
n 

X = Xi'. a II a· 

;=1 

Here D a stands for the partial differential operator 

(
a )a alai 

D
a

= ax = (ax l )a'(aX2)a' .. ·(axn)an • 

ForxERnorCn, Ixi denotes the Euclidean norm ofx. We 
denote the usual inner product on Rn or Cn by 

n 

(u,v) = L UiVi 
i= 1 

and let {eJ7= I be the standard basis for Rn or cn. If 
/EC I (Rn,lE), where lE is Rn or cn, a/ lax is the matrix 
(a/;/axj ). For/EC I(Rn,R) we will usually write/(I) instead 
ofV/ to denote the gradient of/and if/EC 2(Rn,R) we will 
write/(2) to denote the Hessian matrix (a 2//ax i axj ). We 
will not distinguish row and column vectors in Rn or c n in 
our formulas and hence matrix products must be interpreted 
in context. The symbol 1 will stand for the n X n identity 
matrix. For an n X n complex matrix A we will use the sym
bollA I to denote the matrix (AA *) 112, where A * is the ad
joint (complex conjugate transpose) of A. The symbol ~ A 

will denote the unique unitary matrix guaranteed by the po
lar decomposition theorem such that A = IA I ~ A' 
IA I = (AA *)1/2. 

Following Hagedom6 we define generalized Hermite 
polynomials on Rn recursively as follows: We set Ko(x) = 1 
andKI(v;x) = 2(v,x), wherevis an arbitrary nonzerovec
tor in cn. For VI'''''Vm arbitrary nonzero vectors in c n we set 
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Km (VI, .. ·,Vm;X) 

= 2(vm,x)Km_ 1 (vl, .. ·,Vm_I;X) 
m-I 

- 2 L (vm,vi ) 
i=1 

XKm_ 2 (VI,,,,,Vi_l>Vi_2,,,,,vm_1 ;X). 

The polynomials JY m are independent of the ordering of the 
vectors VI'''''Vm , Given a complex invertible n X n matrix A 
and a multi-index a we define the polynomial 

JYa(A;x) =Klal(~Ael'''''~Ael' 

~ Ae2'''''~ Aen;x), 

where the vector ~ A ei appears a i times in the list of vari
ables of K lal . 

We will find it useful to consider complex n X n matrices 
A and B satisfying the following conditions: 

A and B are invertible, 

BA -I is symmetric, 

Re(BA -I) is strictly positive definite, 

(Re(BA -1»)-1 =AA *. 

(2.1a) 

(2.lb) 

(2.1c) 

(2.ld) 

[Here, symmetric means (real symmetric) + t'(real sym
metric).] 

For complex n X n matrices A and B satisfying condi
tions (2.1 ), vectors a and l1ERn, multi-indices a, and positive 
II we define 

¢Ja (A,B,II,a,l1,x) 

= (1rli) - n/4(2Iala!) -1/2[ det(A)] -1/2 

xJYa (A;II- 1/2 IA I-I(x - a») 

Xexp{ - (11211) «x - a),BA -I(X - a» 

+ (tlll)(l1,(x-a»}. 

Here IA I is the matrix (AA *) 1/2 and the branch of the square 
root of det (A) will be specified in the context in which the 
functions ¢Ja are used. Whenever we write ¢Ja (A,B,li,a,l1,x) 
we are assuming that the matrices A and B satisfy conditions 
(2.1). For fixed A, B, II, a, and 11 the functions 
¢Ja (A,B,II,a,l1,x) form an orthonormal basis of L 2(Rn). 

III. SOME PRELIMINARY LEMMAS 

In this section we prove two rather technical lemmas on 
the small II asymptotics of certain integrals of a type we en
counter frequently in Sec. IV. The reader may skip the roofs 
of these lemmas as the details are not needed in the sequel. 

Lemma 3.1: Let n be an open subset of Rn. Let 
SEC 3 (n,R) and letgeC ~ (Rn,C) be such that supp(g) cn. 
Suppose Tis a complex n X n matrix valued class C I function 
on n satisfying 

(I) T(x) is symmetric [(real symmetric) 

+ t'(real symmetric)], 
(2) Re( T(x») is strictly positive definite, 

for all XEn. Define the square root of det [ T(x) + tS (2) (x) ] 
for XEn by analytic continuation along SE [0,1] of 

(det[Re(T(x») + St'(lm(T(x)) + S(2)(X» W12 
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starting with a positive value for S = a. For Ii> a and xe]Rn, 
let 

and 

F(Ii,x) =1i-n12 L g(q) 

xexp( - _1_ «x - q),T(q) (x _ q» 
21i 

+ ~ [S(q) + (S(I)(q),(x - q»]) dnq 

G(Ii,x) = (21T),,/2 

X(det[T(x) + S(2)(X) ])-1/2g (X)e'S(X)/Ii. 

Then, given Ae (a,!) there exists 8 > a and a constant C inde
pendent of Ii < /j such that 

IIF(Ii,.) - G(Ii,.) II < clf, 
for all lie (a,8) . 

Proof We first note that the determinant of 
Re(T(x») +st"(lm(T(x») +S(2)(x» is nonzero for all 
se[a,l] by virtue of the fact that Re(T(x») is strictly positive 
definite and Im( T(x») + S (2) (x) is real symmetric. We next 
reduce to a special case by noting that there exist finitely 
many open balls nk such that 

K 

supp(g) C U nk cn. 
k=1 

By introducing a C I partition of unity {h k}: = 1 satisfying 
supp(hk ) cnk and 1::= Ihk = Ion supp(g) we see by the 
triangle inequality that it suffices to prove the lemma only 
for the special case in which n is an open ball. Assuming this, 
one can easily show the existence of a constant E> a and a 
closed ball % c R" such that 

supp (g) C {qeR": dist(q,supp (g) ) < d c % c n. 

We set r = ! (1 + A), 8 = Ellr, and choose To such that 

a< To< inf inf (x,T(q)x). 
qE% Ilxll= I 

By the choice of To, Re( T( q) ) > Tol, for all qe%. 
We note that there exists a constant Cr independent of 

lie(a,8) such that 

The hypotheses on S, T, and g along with Taylor's 
theorem imply the existence of constants C I' C2, and C3 inde
pendent of lie (a,8) such that 

IS(q) + (S(I)(q),(x - q» - S(x) 

+ ~«x - q),s(2)(X)(X - q» I <C.lx _ q13, 

for allx,qe%; 

lexp{ - (1I21i) «x - q),T(q)(x - q»} 

IFI (Ii,x) - F2 (1i,x) I 

<1i-"
/2

Ig(x) I f% exp{ - 2~ Tolx-qI2} 
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- exp{ - (1I21i) «x - q),T(x) (x - q»}1 

<C2fi3r - 1 exp{ - (l/21i) Tolx _ qI2}, 

for all x,qe% with Ix - ql <fi2; and 

Ilg(x - y) - g(x)IIL2(Rn,dnx) <C3 1Y1, 
for allyeR". 

For xeR" and Ii> a, define 

FI (Ii,x) = Ii - n/2g (x) 

X r exp(-_l_«X- q),T(q)(x- q » J% 21i 

+ ~ [S(q) + (S(I)(q),(x - q»]) d nq, 

F2 (Ii,x) = Ii - n/2g (x) 

X r exp( - _1_ «x - q),T(q)(x _ q» 
J% 21i 

+ ~ [S(X) - ~ «X- q ),S(2)(X)(X- q»)) 

and 

F3 (Ii,x) = Ii - "/2g (X) 

X r exp( - _1_ «x - q),T(x) (x - q» J% 21i 

+ ~ [S(X) - ~ «x - q),s(2)(X)(X - q» )) 

xdnq. 

Then, 

IF(Ii,x) -FI (Ii,x)I<Ii-,,/2 f% Ig(q) -g(x)1 

thus 

xexp{ - 2~ Tolx - q12} d"q 

<Ii- ,,12 r Ig(x - y) - g(x) I 
JRn 

IIF(Ii,·) - FI (Ii,') II 

<1i-,,12 in IIg(x - y) -g(x)IIL2(Rn,d nX) 

xexp{ - 2~ Tolyl2} d"y 

<Ii - n12C3 in IYlexp{ - 2~ ToIYI2} d "y = C ;lil/2, 

where C; is independent of Ii. Similarly, 

Sam L. Robinson 414 



                                                                                                                                    

hence 

IIF1(1i,) -F2(1i,)11 

<1i-n'2I1gl1 sup [r exp{ __ 1_ Tolx _qI2} lexp{i... [Seq) + (S(I)(q),(x- q»l} 
xesupp(g) J;y 21i ft 

-exp{~ [S(X)- ~ «X_ q),S(2l(X)(X_ q»]}ld nq ] 

<ft- n'2 I1gl1 sup [ft- I r exp{-_I-Tolx-qI2}(IS(q)+(S(I)(q),(X-q» 
xesupp(g) J%'" 2ft 

-S(x) + ~ «X_q),S(2l(X)(X_q»I)dnq] 

<ft- (n+2)12llgIl CI i" iYI 3 exp { - 2~ Tolyl2} dny = Ciftl/2, 

where C i is independent of ft. Moreover, 

IIF2(ft,.) - F 3 (ft,) II 

<ft- n12 l1gll sup [r I exp{ - _1_ «x - q),T(q) (x - q»} - exp { - _1_ «x - q),T(x) (x - q»} I d nq ] 
xesupp(g) J%' 2ft 2ft 

<ft- n12 llgl1 sup [C2ft3Y-
1 i exp{ __ 1_ Tolx _qI2} dnq + 2 i exp{ - _1_ Tolx _ q12} d nq ] 

xesupp(g) Ix - ql <Ii" 2ft Ix _ ql lilY 2ft 

<lIgll(Clf + 2Cyft). 

Now we observe that 

G(ft,x) =ft- n12g(x) r exp(-_I_«X- q),(T(X) +tS(2l(X»)(X_q» + i...S(X»)dnq 
JR" 2ft ft 

(see, e.g., Theorem B, Sec. la of Bargmann9
). Hence 

IG(ft,x) - F 3 (ft,x) l<ft- nI2 Ig(x) I r exp( - _1_ «x - q),Re(T(x»)(x - q») d nq 
JR"I%' 2ft 

<ft- nI2 Ig(x) Ii exp( - _1_ Tolx - q12) dnq<Cyftlg(x) I 
Ix - ql )IIY 2ft 

and therefore 

IIG(ft,) -F3 (1i,·)II< Cy ft llgll· 
+ ~ [Seq) + (s(I)(q),(x - q» 1) d nq. 

The triangle inequality completes the proof of the lemma. • 
Lemma 3.2: Let 0, S, g, and T be as in Lemma 3.1. 

Then, there exists 8> 0 and a constant C independent of ft 
such that 

Supposec(Ii,')eCCO,C) and PeC(OXRn,C) are such that 
there exist r ,/3>0 and constants Cr and Cp such that 

and 

Let 

415 

Ic(ft,q) I <Crli'l2, for all qeO 

IP(q,x) I <Cp Ix - qlP, for all qeO, xeRn. 

F(ft,x) = ft- nl2 In g(q)c(ft,q)P(q,x) 

xexp( - _1_ «x - q),T(q) (x - q» 
2ft 
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IIF(ft, )1I<Cft(r+ P)/2, 

for all ft<8. 
Proof Choose To as in the proof of Lemma 3.1 and let C 1 

be such that 

IIg(x - y) - g(x) II L 2(R".d"X) <C1iYl, 

for allyeRn. Define 

F1(1i,x) = ft- nI2g(X) 

X In c(li,q)P(q,x) 

xexp( - _1_ «x - q),T(q) (x _ q» 
21i 
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and 

F2(1i,x) = 1i-"/2g (X)C(Ii,x)P(X,x) 

x f exp( - _1_ «x - q),T(q) (x - q» Jo 21i 

+ ~ [S(q) + (S(I)(q),(X- q»])d"q. 

NotethatP(x,x) [andhenceF2 (1i,x)] iszeroifp :;60. Then, 

IF(Ii,x) - FI (Ii,x) I <CrCpli(r- ")/2 

X L.lg(X - y) - g(x) I IYIP 

x exp( - 2~ To1Y12) d"y. 

Thus 
IIF(Ii,·) - FI (Ii,') II 

<CrCpClli(r- ")/2 L. IYIP + I exp( - 2~ To1Y12) d"y 

= C;Ii(r+P+ 1)/2, 

where C; is independent of Ii. Since 

Ic(li,q)P(q,x) - c(Ii,x)P(x,x) I <2CrCp1i'/21x - qlP, 

for all qeO we obtain 

IFI (Ii,x) - F2(1i,x) I <C2IiCr+P)/2Ig(x) I, 

for some C2 independent of Ii, and hence 

IIFI (Ii,') - F2(Ii,) II <C21i(r + P) /2 I1gll· 

The proof is completed by noticing that there is a constant C3 

independent of Ii such that 

IIF2 (Ii, . ) II < C31i'/2, 

ifP = 0, and 

IIF2(1i,') II = 0, 

ifP :;60. 

IV. PROOF OF THE THEOREM 

In this section we prove Theorem 1.2. Suppose V satis
fies Assumption 1.1 and let SoeC 3 (R" ,R). Given T> 0 and 
0o,1]oeR", the system of ordinary differential equations, 

~ o(t) = ~ 11(t), (4.ta) 
at m 

~11(t) = - VU)(o(t»), 
at 
a t' 
-A(t) =-B(t), 
at m 

~B(t) = t'V(2)(0(t»)A(t), 
at 

~ S(t) = _1_ 111(t) 12 - V(o(t»), 
at 2m 

(4.tb) 

(4.1c) 

(4.1d) 

(4.1e) 

subject to the initial conditions 0(0) = 00 , 11(0) = 110' 
A(O) = I, B(O) = I, and S(O) =So(oo), has a unique 
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bounded solution for te [ 0, T]. We denote this solution by 
[O(Oo,l1o,t), 11 (00,110,t), A (00,110,t), B(oo,l1o,t), S(Oo,l1o,t)]. 
By considering the system (4.1a) and (4.1b) we find thatthe 
functions 0 and 11 are of class C I + I in 00 and 110' These facts 
are standard results from the theory of ordinary differential 
equations.7 By Theorem 1.1 of Hagedom4 the matrices 
A (oo,l1o,t) and B(oo,l1o,t) satisfy conditions (2.1) for all 
te[O,T] and are given by 

(4.2a) 

(4.2b) 

From (4.2) and the remarks above it follows that A and B 
are of class C I in 00 and 110' 

Let Q be the mapping from R" X (0, T) into R" defined 
by 

Q(qo,t) = o(qo,S ~I) (qo),t). 

By the hypothesis on So and the remarks above, Q is of class 
C 2 in thevariableqoeR". LetfeC I(R",C) have compact sup
port. We now fix te(O,T) and assume 

det[a
Q 

(X,t)] :;60, (4.3) 
aqo 

for all xesupp ( f ). Since t is fixed, we will omit reference to t 
where possible but it should be remembered that all esti
mates obtained in this section are t dependent. 

Under the assumption (4.3), for each xesupp( f) there 
exists an open ball.Yx 3x such that the mapping Q t.Yx is 
a class C 2 diffeomorphism of.Yx onto Q [.Yx ]. Since 
supp(f) is compact, some finite subcollection {.Yk : 

k = 1, ... ,K} of the family {.Yx : xesupp(f)} covers 
supp(f). We denote by Qk the diffeomorphism Q t.Yx 
and define, for qeQk [.Y k ] , 

Pk (q) = l1(Q k-l(q),s~I)(Q k-I(q»),t), 

Ak(q) =A(Qk-l(q),s~I)(Qkl(q»),t), 

Bk (q) = B(Q k- l(q),s ~1)(Q k I(q»),t), 

Sk (q) = S(Q k l(q),s~I)(Q k I(q»),t). 

It is well known and not difficult to show that 

a 
pdq) =-Sk(q)· 

aq 
(4.4) 

Note that the functions Pk' Ak, and Bk are of class C 2 in 
qeQk [.Yk] while Sk is of class C 3

• Moreover, since 
Ak (q)Ak (q)* is strictly positive definite, the operational 
calculus shows that the matrix IAk (q) I is continuously dif
ferentiable with respect to qeQk [.Y k ] . 

Proposition 4.1: Let qeQk [.Y k ]. Then 

det[ Bk (q) + tS k2) (q)A k (q)] 

= det[ ~ Q k-1(q) ] 'det[I + tS~2)(Q k-I(q»]. 
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Prool: First note that, by differentiating the expression 
defining Q, 

~Qkl(q) = [!!!....+ aa S~2)]-1, 
aq aao a7Jo 

and, differentiating (4.4), 

In the last step we have used the fact that the mapping 

(ao, 7Jo)~(a (ao, 7Jo,t), 71 (ao, 7Jo,t») 

is a canonical transformation. II • 
Let qeQk [JY' k ] . Define the branch of the square root of 

det [A k (q)] by analytic continuation along 'TE [O,t] of 
(det [A (Q k- I (q),s ~I)(Q k- 1 (q) ),1") ])1/2 starting with a val
ue of 1 for 1" = O. We determine the branches of 

(det[l + tS~2)(Q k-I(q»] )1/2 

and 

(det[Bk (q)A k (q)-I + tSi2)(q) ])1/2 

by analytic continuation of 

(det[l + StS~2)(Q k- l (q»)])1/2 

and 

.(det[Re(Bk (q)A k (q) -I) 

+ s,'(lm(Bk (q)A k (q) -I) + S i2) (q»] )1/2, 

respectively, along Se [0,1] starting with positive values for 
S = O. This determines the branch of 

(det[Bk(q) +tSi2)(q)Ak (q)])1/2 

and the branch of (det[ (a laq)Q k- I(q)] )1/2 is then deter
mined by Proposition 4.1. Let Jl k (q) be the positive integer 
(mod 4) such that 

(det[;~ (Q k- 1 (q»)]) 112 

= e'(1TI2),..·(q) Idet[;~ (Q k-I(q»)] 1112. 

By continuity and the fact that Qk [JY'k] is pathwise 
connected the index Jlk (q) is independent of the choice of 
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Si2)(q) = [::: + ::0 S~2)] ~ Q k-1(q), 

where functions of ao and 710 are assumed evaluated at 
ao = Q k- l(q) and 710 = S ~I)(Q k l(q»). By (4.2) and parti
tioning of determinants, 10 

qeQk [JY' k ]. Hence to each JY' k we can assign a unique 
(mod 4) indexJlk' Moreover, in light ofthe facts above we 
see that if JY'k nJY'j is nonempty then Jlk = Jlr We now 
introduce a partition of unity {hk}f= Ion uf= lJY'k satisfy
ing hkeC~(R",C), supp(hk)CJY'k, ~f=lhk = 1 on 
supp( I) and setlk = fhk' The following proposition allows 
us to restrict our attention to a singleJY'k andlk • 

Proposition 4.2: LetxeR" be fixed. Let {xj}f= 1 be the set 
of points in U f = I JY' k such that Q(xj ) = x for j = 1,2, ... ,J 
and let Jl; be defined to be equal to Jlk if xjEJYk. Define 

S;(x) =So(xj ) 

+ f [2~ 17J(xj ,s ~I) (Xj ),1"W 

- V( a(xj,s ~ I) (Xj ),1"» ] d1" 

and let X k denote the characteristic function of Qk [JY' k ] . 
Then 

f eS.(x)H. + ",,1T/21 det[ aQ (Q k- 1 (X»)] 1- 1/2 
k= I aqo 

><fdQ k-1(X»)Xk (x) 

Proof; We note that Jl; is well-defined by the remarks 
preceding the proposition. Moreover, if xjEJYkl nJY' k,' then 
Sk, (x) = Sk, (x) = S;(x). The proposition follows by 
changing variables from Q k- I (x) to Xj in the first summa
~a • 

The next lemma is a version of Theorem 1.2 for the func-
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tions fk' The proof requires the functions tPa (A,B,ft,a;'l,x) 
defined in Sec. II. This lemma, Proposition 4.2, and the tri
angle inequality complete the proof of Theorem 1.2. 

Lemma 4.3: Given Ae(O,p, there exist a number 8> ° 
and a constant C independent of ft < 8 such that 

II e - ,tH(1I)/1i (e'SoIlIfk ) 

_ e,S,.I1I + ,p.kfr
/
2

1 det [;~ (Q k- 1 ( • )) ] 1- 112 

X/dQ k-
I
(. »)Xk II <Cff-, 

for all fte(0,8). 
Proof: We will omit the SUbscript k at the risk of confu

sion with previously defined quantities. The branches of 
square roots appearing in the proof are determined accord
ing to the discussion following Proposition 4.2. For xeRn let 

YII(x) = (41rli) -n/4 

X fA' (det [I + S b2) (qo) ] )1/2f(qo)eSo(qo)/1i 

XtPo(I,I,ft,qo,S bl)(qo),x)d NqO' 

By definition of tPo and Lemma 3.1, there exist 8 1 and C 1 

independent of ft such that 

Ile-,tH(II)/II(e'SoI'1) - e-,tH(II)/IIYII Ii <C1ff-, (4.5) 

for all fte (0,81 ) and t>O. By Theorem 1.1 of Hagedorn,6 for 
any qoeRn there exists a constant C2 such that 

II e'lH(II)/1i (e'soIlItPo(1 ,l,ft,qo,s bl
) (qo>'-) 

(I) 3(/- I) 
_ e,S(qo.so (qo).t}/II ') C

a 
(Ii,qo,t) 

lal=O 

XtPa (A (qo,S bl)(qo),t),B (qo,S bl)(qo),t), 

li,a(qo,sbl )(qo),t),77(qo,sbl)(qo),t),) II <C2ft
1
/
2, 

(4.6) 

whereca (ft,qo,r) is the unique solution of the system ofordi
nary differential equations 

a 
- Ca (Ii,qo,r) ar 

3(/ - I) 1 + 1 
') ') _t'liClI'I-2)/2(jl!)-I[Dp.V] 

= IPI= ° 11'1= 3 

X (a(qo,sb1
) (qo),r»baPp. (qo,r)cp(ft,qo,r), (4.7) 

subject to the initial conditions co(ft,qo,O) = 1 and 
Ca (ft,qo,O) = ° for lal = 0. The quantities baPp. are defined 
by 

baPp. (qo,r) 

= (tPa (A (qo,sb l
) (qo),r),B (qo,sb l

) (qo),r),I,O,O, ), 

x"tPp (A (qo,S bl) (qo),r),B (qo,s bl) (qo),r), 1,0,0,'»' 
(4.8) 

By the argument of Lemma 2.5 of HagedornS and the 
remark following that lemma there exists a constant C' such 
that the functions Ca satisfy 
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ICa (ft,qo,r) I <c'e12
, 

for 3(r - 1) < lal <3r and for all re[O,t]. 

( 4.9a) 

(4.9b) 

From the proofs4-6 of these facts we conclude that ( 4.6) 
and (4.9) hold uniformly for qo in a compact subset of Rn. 
From (4.7), (4.8), and the differentiability properties dis
cussed above we conclude that C a is of class C 1 in the variable 
qoeRn. Define 

Ca (ft,q) = ca(ft,Q -I(q),t) 

and 

<II a (Ii,x,t) = (41rli) - n/4 fA' (det [1 + S b2
) (qo)] )1/:t'(qo) 

XtPa (A (qo,s bl) (qo),t ),B (qo,s bl) (qo),t ),ft, 

a(qo,S bl
) (qo),t ),77(qo,S bl) (qo),t ),x)d nqo. 

By (4.6), 

Ile-'tH(II)/IIYII - ~~~~ q>a (ft"t) II <C2ft
I/2. (4.10) 

Changing the variable of integration in the definition of 

<II a (ft,x,t) 

= (41rli) -n/4 r (det[I +Sb2 )(Q -l(q»)] )1/2 JQ[A'] 
xf(Q - 1 (q) )eS(q)/1i 

XCa (ft,q)tPa(A (q),B(q),ft,q,p(q),x) 

Xldet(a~;1 (q»)1 dnq. (4.11) 

We now note that the functions JYa appearing in the 
definition of tPa(A (q),B(q),li,q,p(q),x) are of class C I in 
qeQ[ff] by virtue of the fact that the matrices ~ A.(q) and 
IA (q) I are continuously differentiable with respect to 
qeQ[ff]. Hence we can apply Lemmas 3.1 and 3.2 to each 
term in each of the <II a's [the function (foQ - 1 ) XQ I n is of 
class C ~ on Rn] and conclude, by (4.4), (4.9), (4.11), and 
Proposition 4.1 that there exist 83 and C3 independent of 
fte(0,83 ) such that 

') q> a (Ii, . ,t) - eS (' )/11 + 'l'fr/2 

11

3(/- I) 

lal=O 

X Idet(;~ (Q -1(. )))1-
112 

f(Q -1(. »)XII <C3ff-, 

(4.12) 

for all fte(0,83 ). Equations (4.5), (4.10), (4.12), and the 
triangle ineqUality complete the proof of the lemma. • 
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This paper investigates the extent to which the curvature structure of space-time determines 
the metric stucture. It continues the work of earlier papers by prescribing the curvature 
structure ~nd the curvature covariant derivatives up to certain orders. It is shown that, with 
the exceptlon of the so-called generalized pp waves, the curvature and its first and second 
covariant derivatives essentially determine the metric up to coordinate transformations. 

I. INTRODUCTION 

This paper continues the work of some earlier papers on 
the extent to which the curvature tensor components R ab . ~ 
In some coordinate domain of a space-time (M,g) determine 
the metric. Under reasonable conditions on the curvature 
components, it has been shown that the metric is as tightly 
determined as it can be, the only ambiguity being a constant 
conformal factor.) This paper explores those space-times 
where these conditions do not hold (and where a greater 
ambiguity in the metric results) by investigating the extra 
restrictions forced on the metric by prescribing not only the 
curvature components but also the first covariant deriva
tives of the curvature. In some very special cases, the second 
covariant derivatives of the curvature must also be assumed 
given. This problem is dealt with in Sec. III-VI, Sec. II being 
given over to some preliminary notions. 

The notation throughout will be conventional. It is con
venient on many occasions to use a real null tetrad of vector 
fields, (l,n,x,y) , where the only nonvanishing inner products 
are lana = xaxa = yaYa = 1. The Lorentz metricg will have 
signature ( - , + , + , + ), Latin indices will take the values 
0,1,2,3, whilst Greek indices will range over 1,2,3. Second
order symmetric tensors on space-time will often be de
scribed in terms of their Segre type and the notation and 
results here will be taken from Ref. 2. An asterisk will be 
used for the usual duality operation on a bivector and the 
blade of a simple bivector will have its usual meaning. The 
canonical pair of blades of a bivector will, for a nonsimple 
bivector, refer to the orthogonal timelike-spacelike pair of 
two-spaces it determines at each point, and for a simple bi
vector, refer to the blade of the bivector and that of its or
thogonal complement. Throughout the paper, the curvature 
tensor will always be assumed nonzero at each point in the 
region under discussion. All structures on M will be assumed 
smooth (although this restriction is easily weakened). 

II. RECURRENCE AND DECOMPOSABILITY 

In this section, the concept of recurrence and the related 
concept of reducibility will be reviewed. Most of the results 
mentioned here are contained explicitly or implicitly in the 
literature3

-
9 and so the discussion will be brief. 

A nonzero tensor Won M will be called recurrent if on 

each chart, W~"""~;e = W~"""~Pe (where a semicolon denotes 
a covariant derivative with respect to g) for some (co) vector 
field p called the recurrence vector. If W is recurrent then so is 

t/J W for any real valued differentiable function t/J on M. An 
equivalent statement is that if p,q E M and c is any differentia
ble curve from p to q, the tensor obtained at q by parallelly 
propagating Wp from p to q is proportional to Wq. A recur
rent tensor W may be locally scaled so as to be covariantly 
constant if and only if the recurrence vector is locally a gradi
ent. It follows that a nonzero recurrent vector field k on M is 
everywhere either spacelike, timelike, or null and, being nec
essarily hypersurface orthogonal, may be locally scaled so 
that ka;b ex ka kb • If a recurrent vector field k is everywhere 
non-null, then it can always be locally scaled so that k a'b = O. 
A null, recurrent vector field k on U may be locally sc~led to 
be covariantly constant if and only if R a bcd k d = 0 on M. 

If a recurrent bivector Fis admitted then F is also recur
rent and if Fis non-null the recurrence vector is again local
ly a gradient and F (and F) can be locally scaled so as to be 
covariantly constant. In the non-null case, the two indepen
dent null directions in the timelike member of its canonical 
blade pair are recurrent. Conversely, if two recurrent vector 
fields I and n are admitted, the timelike bivector 2/[a nb J is 
recurrent (and is covariantly constant if I and n are scaled so 
that lana = 1). A recurrent, null bivector is not necessarily 
locally scalable to being covariantly constant but its princi
pal null direction is a recurrent null vector field. The type of 
a recurrent bivector (timelike, spacelike, null, nonsimple) is 
the same throughout M. 

If M admits a recurrent non-null bivector with principal 
null directions I and n then the Ricci identity can be used to 
show that the Petrov type is either 0 or D with I and n as 
repeated principal null directions of the Weyl tensor and that 
I and n are Ricci eigendirections, the Segre type of the Ricci 
tensor being {( 1,1) (II)} or its degeneracy. If M admits a 
recurrent null vector field I then the Petrov type is either 0 or 
one of the algebraically special types with I as a repeated 
principal null direction and I is a Ricci eigenvector. In this 
case, the Petrov type is III, N, or 0 if and only if the Ricci 
scalar R = O. In vacuum, a recurrent vector or bivector must 
be null and the Petrov type is N or III [and is necessarily N 
(pp waves) if a constant vector or bivector is admitted] . 

A space-time M will be called locally decomposable if 
each pEM is contained in a chart domain U in which the 
metric takes either of the forms (a) or «(3), 

(a) ds2 = E dx0
2 + gaP dxa dxP, gap = gaP (xY), 

«(3) ds2 = gAB d~ dxB + gA 'B' d~' dxB
', (1) 

gAB = gAB (XC), gA'B' =gA'B'(X
C
'), 
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where A,B,C = 1,2, A', B', C' = 3,4, and E = ± 1. The 1 
+ 3 decomposition in (a) and 2 + 2 decomposition in (f3) 

are necessarily either timelike/spacelike or vice versa. 
Equivalent conditions are that each pEM lies in a neighbor
hood V such that any of the following hold. 

(i) Here V admits a non-null, recurrent vector field for 
(a) and a non-null, recurrent bivector field for (f3). Both 
the vector and bivector can then be locally scaled so as to be 
covariantly constant. 

(ii) The neighborhood V admits a second-order, sym
metric, recurrent tensor Tab with general Segre type {I, Ill} 
but with at least one degeneracy and not proportional to gab' 
The tensor Tab can be locally scaled so as to be covariantly 
constant because for such tensors Tab Tab #0 and so the re
currence vector is locally a gradient. (This condition is 
equivalent to the existence of a second-order, symmetric, 
recurrent tensor Pab not proportional to the metric and satis
fying pabPbc = pac.) 

(iii) Here V admits a non-null vector field X for case 
(a) [a pair of vector fields Yand Z spanning a non-null two
space at each pE V for case (f3)] such that the one-dimen
sional (two-dimensional) distribution so defined on Vis in
variant under parallel transport along any curve in V. [This 
provides the geometrical interpretation for local reducibi
lity. The distributions above are necessarily integrable and 
their complementary distributions enjuy the same properties 
as the original ones. The two families of submanifolds that 
result in each case are spanned by the recurrent vector field 
and its orthogonal complement in (a) and by the canonical 
blades of the recurrent bivectorin (f3) in condition (i) above 
and determine the Segre decomposition in (ii). They also 
provide the coordinates for Eq. (1).] 

III. CURVATURE STRUCTURE 

The curvature structure of space-time arises naturally in 
the principal (frame) bundleL(M) from the connection on 
L (M) that, in turn, is uniquely determined as the torsion
free connection compatible with the space-time metric g and 
there has some recent interest in the extent to which the 
curvature determines the metric that gave rise to it (for a 
bibliography see Ref. 10). Clearly, if (T is a positive constant, 
then g and og give rise to the same connection and curvature 
structure on M and a sufficient condition on the curvature 
for this to be the only ambiguity in g, together with a state
ment of the possible extra ambiguities when this condition 
fails to be satisfied, was given in Ref. 1. It is, of course, as
sumed that the curvature components R a bcd are given in 
some connected coordinate domain U and arise from some 
Lorentz metric g. Any other Lorentz metric g' compatible 
with this curvature must satisfy the algebraic conditions 
g'e(aR eb)cd = 0 at each pEU. The solution of this equation 
depends on the rank of Rabcd =gaeR ebcd regarded as a 6X6 
symmetric matrix and on the algebraic nature of the range 
space of the linear map from the vector space ofbivectors at p 
to itself given in the obvious way by Fab ->Rabcd F cd. (Here 
and throughout indices will always be raised and lowered 
with the original, given metric g.) It turns out 1.10.11 that the 
blade of any simple bivector in the range of this map consists 
entirely of eigenvectors of g' with respect to gat p (and hence 
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all have the same eigenvalue) whilst the same is true for each 
of the canonical blades of any nonsimple bivector in this 
range (but the two eigenvalues arising may be distinct). 
When the curvature is of sufficiently high rank one obtains 
the situation where all members of the tangent space to M at 
p are eigenvectors ofg' with respect tog with the same eigen
value and so g' is a multiple of g. The following cases arise at 
eachpEM. 

(a) Rank = 1. Here the range space is spanned by a 
singlebivectorthat is necessarily simple (sinceRa[bcd 1= 0). 

(b) Rank = 2 or 3 but with the members of the range 
simple bivectors with a unique, common eigenvector k with 
zero eigenvalue. 

(c) Rank = 2 but with the range spanned by an orthog
onal timelike-spacelike pair of simple bivectors (with re
spect to g) whose blades are spanned, respectively, by the 
pairs (I,n) and (x,y) where l,n,x,y constitute a null tetrad 
with respect to g. 

( d) All other cases. 
The general solutions for g' at p in these cases are, re

spectively, 

(a) g~b = tPgab + auaub + 2{3U(a Vb) + rvaVb' 

(b) g~b = tPgab + Okakb' 

(c) g~b = tPgab + Ul(anb) 

= 2(tP + A)l(anb) + tP(xaxb + YaYb)' 

(d) g~b = tPgab' 

(2) 

where tP,a,{3,y,O,AE R (restricted to preseve Lorentz signa
ture) and U,V span the orthogonal complement of the blade 
of the spanning simple bivector in (a). The rank may, of 
course, change from point to point, but only in a manner that 
is consistent with the lower semicontinuity of the rank func
tion so that if the rank at pis n then the rank is not less than n 
in some neighborhood of p. Here, however, it will be as
sumed that either case (a), (b), (c), or (d) holds through
out the coordinate domain U concerned. In this case, it can 
be shown that the assumed smoothness of the original metric 
(and hence the curvature) means that one can choose U so 
that the vectors U and v in case (a), k in case (b), and l,n,x,y 
in case (c) can (and will) be chosen smoothly over U. The 
solutions g' in each case are then smooth tensors on U if and 
only if the associated functions tP,a,{3,y,O, and A are smooth 
and this will be assumed to be the case. 

It is important to note that the equation 

(3) 

has exactly two independent solutions (u and v) in case (a), 
exactly one independent solution (k) in case (b), and no 
nonzero solutions in cases (c) and (d). 

Further information about cases (c) and (d) is immedi
ately available. Ifcase (d) holds ateachpEU then it has been 
shown that tP is necessarily constant on U (Ref. 1) and so in 
this case the "best possible" result is obtained and the (sym
metric, metric) connection compatible with the curvature is 
uniquely determined. 

Ifcase (c) holdsateachpEU the curvature tensor takes 
the form 

G. S. Hall and W. Kay 421 



                                                                                                                                    

with a,b nowhere zero smooth functions on U. Considering 
now the original metric g and denoting the corresponding 
covariant derivative by a semicolon a contraction of the 
Bianchi identity Rab [cd;e I = 0 first with I axbl cndxe and then 
with I axbl cndye, and use of (4) yields la'bXaxb = la'bxayb = O. 
Similarly, contractions with laxbxCyd/~ and laxb~Cydne give 
la'b~/b = la'b~nb = O. The symmetry of the curvature ten
s~r under th~ exchanges I++n and x++y reveals a similar set of 
relations and one deduces that la;bXa = la;bya = O. Since 
la;bla = 0, one sees that I is recurrent and, similarly, n is 
recurrent. Neither I nor n is scalable to a constant because of 
the absence of solutions to (3) in this case. It follows that U 
is 2 + 2 locally decomposable with the surface forming 
blades of F and F spanning the submanifolds of decomposi
tion (described in Sec. II) at eachpEU. Again referring to 
Sec. II, F and Fare covariantly constant non-null bivectors 
and 2/(onbl and XaXb + YaYb are covariantly constant ten
sors with Segre type {(1,1) (ll)}. The local decomposabi
lity also implies that, in (4), the functions a and b depend, 
respectively, only on the coordinates in the submanifolds 
spanned by F and F. The Petrov type is D or 0 and the Ricci 
tensor is of Segre type {( 1,1) ( II)} or its degeneracy. 

Now suppose that another metric g' of the form (2c) is 
also compatible with the curvature obtained from g. Then 10 
(or 1'0 = g'ablb ) and na are recurrent with respect to g' also. 
Denoting covariant derivatives with respect to g' by a stroke 
and, by p:." the difference between the Christoffel symbols 
r:., and {:.,} formed from g and g', respectively, one has, 
using a convenient result in Ref. 12 (with g'ab denoting the 
inverse matrix of g;b ), 

P a {a} r a la'ad(, +' ') be = be - be = ~ gdb;c gdc;b - gbc;d . (5) 

The recurrence conditions on la show that laP:" <xlblc' This 
condition, together with (5), the covariant constancy of the 
tensors 2/(a nbl and XaXb + YaYb and some appropriate con
tractions show that (t/J + A).a lies everyw here in the blade of 
F whilst t/J.a lies everywhere in the blade of F. Since these 
blades are the submanifolds of decomposition, the ambiguity 
in the metric represented by (2c) can be interpreted as a 
conformal scaling of the metrics 2/(anbl and xaxb + YaYb 
induced in the submanifolds of decomposition by the origi
nal metric g with the functions t/J + A and t/J, respectively. If 
one chooses conformally null coordinates u and v in the 
blades of F and conformally Euclidean coordinates X2 and 
X3 in the blades of F one can compute the curvatures of g and 
g' and find that they are equal if and only if 

7J7J.uv = 7J.u 7J.v (7J = t/J + A), 
,1.,1. - _,I. ,I. - (f' = X2 + ;X3), 'f"r.ss - 'f'.s'f'.s ~ 

for which a solution is 7J = a(u){3(v), t/J = r(s)8(t) with 
a,/3,r, and 8 arbitrary differentiable functions (but with t/J 
and 7J positive functions to preserve Lorentz signature). 
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IV. PRESCRIBING THE CURVATURE AND ITS FIRST 
COVARIANT DERIVATIVES 

Suppose now that the components R a bed;. as well as the 
components R a bed are given in U (and that, as before, these 
components are consistent with some Lorentz metric g). 
Then the algebraic relations gfta R fblcd;e = 0 for any alterna
tive Lorentz metric g' will supply, in general, further eigen
vectors for g' with respect to g and hence further information 
ong'. In this context, a useful result was given in Ref. 13 that 
says that if g and g' = t/Jg are conformally related metrics 
with the same curvature and curvature derivative (in the 
above sense) on a connected manifold N of dimension > 3 
and where the original metric giving rise to these given com
ponents is of arbitrary signature, then"" is constant on N. 

In case (d), the above extra conditions give no further 
information since the prescription of R a bed determines g up 
to a constant conformal factor and so the first- (and all high
er-) curvature derivatives are necessarily determined. In 
case (c), however, further information is obtained. In fact, 
one can write the equality of the curvature derivatives in the 
form 

R a bed;e = R a bcd Ie ¢:;>R a fcdP{" + R a bfdP{e 

+ R abefP~e - RfbedPfe = O. (6) 

If one substitutes into (6) the expression (5) for P:" and the 
ambiguity relation (2c) for g' [and recalls the covariant con
stancyofthetensors2/(a nbl andxaxb + YaYb withrespectto 
g] a contraction with lanbJcnd[e shows that (t/J + A).a is or
thogonal to I. A reversal of the roles of I and n then shows 
that (t/J + A).a is orthogonal to n. Since it has already been 
shown that (t/J + A.).a is orthogonal to x and y, it follows that 
t/J + A is constant on U. A similar argument involving a con
traction with xaybxcydxe then shows that t/J is constant on U. 
It follows in this case that the prescription of the curvature 
and its first derivatives determines the metric up to constant 
conformal scalings in each of the submanifolds of decompo
sition. Also, with this ambiguity, P bc = 0 and so the connec
tion is uniquely determined. Hence the curvatures and cur
vature derivatives of all orders for g and g' are equal. 

Now consider case (b). Here the curvature is of rank 2 
or 3 and has a uniquely determined direction k satisfying 
kaR \cd = O. If kaR a bed;e #0 at each point of U then suffi
cient extra eigenvectors of any alternative metric g' are gen
erated to ensure that g' is conformaly related to g on U. It 
then follows from the result mentioned at the beginning of 
this section in Ref. 13 that the conformal factor is necessarily 
constant and so the metric is determined up to a constant 
conformal factor. So suppose that kaR a bed;. = 0 on U with k 
chosen smoothly on U. It then follows that R a bed ka .• = 0 on 
U and so, by the uniqueness of the independent sol~tions to 
( 3) in this case k is recurrent on U. From the results of Sec. 
II it may then be assumed that k is chosen to be covariantly 
constant on U with respect to g if U is contractible. Thus the 
prescription of R a bed and R a bed;e on U uniquely determines g 
up to a constant conformal factor in case (b) unless k is 
(proportional to) a covariantly constant vector field as 
above. However, ka must also be recurrent with respect to g' 
(but the scaling required to make it covariantly constant 
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with respect to g' will, in general, be different from that re
quired with respect to g). So suppose k is scaled so that 
ka'b = O. Then the signs (or zeros) of kakb~b and kakbg'ab 
ar~ constant throughout U and the same for both metrics. 
Thus there are only three cases to be considered, namely 
when k is timelike, spacelike, or null. Suppose first that k is 
timelike (and scaled so that kakb~b = - 1 together with 
ka;b = 0). The fact that ka is recurrent with respect to g' 
yields 

kcP~ba:.kakb [:::::}¢.aka=O and (¢-8).aa:.ka ], 
(7) 

where the implications follow after a contraction with a vec
tor orthogonal to k with respect to g and hence g'. Now for 
each pEU there is a coordinate domain in U (still labeled U) 
containingp such that in this coordinate domain the original 
metric takes the form 

(8) 

where ka = u.a = (1,O,O,O),k a =~bkb = ( - 1,0,0,0), and 
haP is independent ofu. Then (7) shows that ¢ is indepen
dent ofu and ¢ - 8is independent ofthexa. The alternative 
metric g' takes the form 

dS'2 = - (¢ - 8)du2 + ¢JhaP dxa dxP. (9) 

Now consider the positive definite metrics hand ¢h in
duced in any of the hypersurfaces u = constant by the met
rics g and g'. It is easily shown from (8) and (9), together 
with the fact that ¢ is independent of u, that the curvature 
tensors of type (1,3) derived from the metrics h and ¢h, in 
the coordinate system xa

, have the same components [neces
sarily equal to the components R a py6 of the type (1,3) cur
vature tensor of g and g']. Now the theorem proved in Ref. 1 
and used to deal with the case (d) in Sec. III, when applied in 
the case of a three-dimensional positive definite space shows 
that when the curvature is of rank 2 or 3 the metric is deter
mined up to a constant conformal factor. The assumptions of 
the present case show that the rank of the induced curvature 
in the hypersurfaces u = constant is either 2 or 3 and is com
patible with both hand ¢h. Hence ¢ is independent of xa and 
is thus constant on U. Equation (7) then shows that 8 de
pends only on u. These conditions determine the ambiguity 
completely because with ¢ constant and 8 an arbitrary 
smooth function of u in the above coordinates, g and g' nec
essarily have equal curvature components R a bed as well as 
equal first- (and all higher-) curvature derivatives. This is a 
consequence of the following results, the first of which was 
given in Ref. 12: 

O=R'abCd -Rabed 

= P:d;c - P'bc;d + PfcP~b - PfdP{b' 

P a =..l (.J. _ 8) -I d8 k ak k 
be 2 'f' du b c' 

(10) 

(11) 

together with (6) and similar equations for the higher de
rivatives. Here, the R 'a bcd denote the curvature components 
derived from g'. It follows that the corresponding connec
tions are equal if and only if 8 is constant on U. 

The case when k is spacelike is essentially the same and 
so the case when k is null on U will be considered now. 
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Suppose k is scaled and coordinates xa are chosen in a subset 
of U (still labeled U) so that8 

ds2 = gaP dxa dxP - 2 dx3 dxO, (12) 

where the gaP depend only on the xa,ka = (0,0,0,1) 
= u,a (u =x3), k a = (- 1,0,0,0), and ka;b = O. A similar 

argument to that given at the beginning of the timelike case 
shows that ¢ depends only on u. Next, one notes that the 
relation (3) with k null implies that the Weyl tensor corre
sponding to g (and g') is algebraically special (including 
type 0) in the Petrov classification with k as a repeated prin
cipal null direction. 14.IS The same relation also shows that if 
xa and ya are spacelike vector fields orthogonal to each other 
and to k with respect to g (and hence g') then Rabed may be 
decomposed into the bivectors Fab = 2k[a Xb J' 

Gab = 2k[aYb J' and Hab = 2x[aYb J as 

Rabed = RIFabFcd + R2GabGcd + R3HabH cd 

+ R4(FabGcd + GabFcd ) 

+ Rs(FabHcd + HabFcd) 

+R6(GabHcd + HabGcd )' (13) 

where R I' .. R6 are smooth functions on U. It will also be 
assumed that xa and ya are normalized with respect to g and 
then (13) gives for the Ricci tensor (for either g or g'), 

Rab = (R I + R2)ka kb + 2R6k(aXb) 

- 2Rsk(aYb) +R3(XaXb +YaYb)' (14) 

The remainder of the argument then proceeds by consider
ing Petrov types (and it is known thatg andg' have the same 
Petrov typeIS

). Also the Weyl tensor rank (as a 6X6 ma
trix) is 0 for type 0,2 for type N, 4 for type III, and 6 for 
types II or D. Using the lower semicontinuity of rank it fol
lows that there exist open subsets A and Band U (one of 
which could be empty) such that the Weyl tensor is of Petro v 
type III, II, or D on A and N or 0 on Band thatA U B is dense 
in U. The subsets A and B will be considered separately. 

Since k is a recurrent null vector field on U, it follows 
from Sec. II that the Petrov type at pEA is II or D if and only 
if R #0 atp. If this is the case then R #0 in some neighbor
hood of p and a contraction of (6) with xaybxCyd and use of 
( 13) gives R¢,a = O. Hence ¢ is constant in some neighbor
hood of p. Substituting this back into (6) and performing 
some further algebraic manipulations gives 8.a a:. ka and so 8 
depends only on u in this neighborhood. If, on the other 
hand, the Petrov type at p is III, the assumption that ¢.a # 0 
at p and a contraction of (6) with Xa nbncydy' gives R6 = 0 in 
( 13) at p. A similar contraction gives Rs = 0 at p and the 
resulting Ricci tensor at p given by (14) is now not of Segre 
type {( 31)} with zero eigenvalue, contradicting. IS Hence 
¢.a = 0 at all pEA and so ¢ is a constant on each (necessarily 
open) component of A. Further, since the Ricci tensor has 
Segre type {( 31)} with zero eigenvalue and null eigendirec
tion spanned by k one may choose x and y so that 
RI + R2 = R3 = Rs = 0 in (14) at p. On substituting this 
into ( 13) and the resulting expression into (6) one finds that 
either 8.a = 0 or R ab 8·b = 0 at p. In the latter case 
8.axa = 8.a k a = 0 at p and a further contraction of (6) with 
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xanbnCyd shows that B,a ex: ka at p. Hence </J is constant on 
each component of A and B depends on u only throughout A , 
giving the same type of metric ambiguity as was obtained in 
the case when k was non-null. Once again, the connections 
associated with g and g' are equal on A if and only if B,a = 0 
on A (that is, B is constant on each component of A) and the 
curvatures and their corresponding covariant derivatives of 
all orders are equal, independently of B(u). Hence no 
further information is available from higher-order curvature 
derivatives than the first. 

In B the Ricci tensor, if nonzero, has Segre type { (211 ) } 
with zero eigenvalue and null eigendirection spanned by k 
(Ref. 15) and the curvature has rank 2 as follows directly 
from algebraic considerations. Since the Petrov type in B is 
NorOitfollowsfr~maresultinRef. 7 (seeEq. (2.3) of this 
reference) that if F is any null, complex, self-dual bivector 
with principal null direction k (which is necessarily recur-

+ 
rt:pt since k Js) then F has vanishing skew derivative 
F ab;[cd) = F ab/[cd) = 0+ This implies that the recurren~e 
vector corresponding to F is a gradient and hence that F 
can be (complex) scaled so as to be covariantly constant 
with respect to g in a neighborhood of any pElJ. In such a 
neighborhood the line element for g may be written as the 
special case of ( 12) (Refs, 4 and 8), 

ds2 = - 2 du dv + dXI2 + dX22 + H(xi,x2,u)du2, (15) 

where XO has been replaced by v. In this case, the condition 
that the curvatures of g and g' are equal does not restrict the 
ambiguities so tightly. In fact the curvatures are equal if and 
onlyif</J=</J(u) andl6 

B(u,v,xi,x2) = (~</J-I</J')2 - !</J" - !</J-I</J' F (u )(X
12 + X22) 

+ F(u)v + C(u) y + D(u)z + E(u), 

where a prime denotes differentiation with respect to u and 
C, D, E, and Fare functions ofu. The first covariant deriva
tives of the curvature are then equal if and only if F = 2</J'. It 
is not clear, in this case, what further information is obtaina
ble by supposing the equality of higher-order curvature de
rivatives. 

In all cases considered in this section the Petrov type 
and the Segre type of the Ricci tensor are easily found (and 
the table in Ref. 15 may be helpful but contains some omis
sions that are corrected in Ref. 17). 

V. CASE (a) AND THE PRESCRIPTION OF SECOND
ORDER CURVATURE DERIVATIVES 

This section will be concerned with case (a) and it will 
be supposed that the curvature (now of rank 1) and its first 
covariant derivatives are given. If the first curvature deriva
tives introduce enough extra bivectors for any alternative 
metric to be determined up to a conformal factor then the 
result in Ref. 13 used before can be used again to show that 
the conformal factor is constant and so the metric is deter
mined up to a constant conformal factor, 

Suppose now that the first curvature derivatives intro
duce no bivectors other than that bivector Fintroduced by 
the curvature. Then F is recurrent with respect to any met
ric compatible with the curvature and so F is either space-
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like, timelike, or null (with respect to any compatible met
ric) everywhere in U. 

If F is timelike U may be chosen so that there exist null 
vector fields I and n such that lana = 1 and Fab = 2/[anb ) 
that may be extended to a null tetrad on U, (i, n, x, y). The 
recurrence (and hence covariant constancy) of F implies 
the same for Fab = 2x[aYb) andsoxa + iYa is recurrent with 
a recurrence vector which is a gradient on account of the 
Ricci identity and the relations RabedXd = Rabedyd = O. 
Hence x and y may be chosen as covariantly constant with 
respect to g in the above null tetrad, xa;b = Ya;b = O. (The 
null vector fields I and n are, of course, recurrent.) The vec
tor fields x and yare then recurrent with respect to any alter
native compatible metric g' which for this case may always 
be written in the form 15 

g~b = </Jgab +axaxb +/JYaYb' (16) 

One then finds using the usual notation and appropriate 
expression for P bC , 

P'be laxc = P'belayc = P'benaxc = P'benayc = 0 

[~</J,aXa = </J,aya = (</J + a),ala = (</J + a),a na (17) 

= (</J+fJ),ala= (</J+/J),ana=O]. 

Since the curvature components and their first covar
iant derivatives are specified in this case, the appropriate 
expressions for P 'be and the results of the previous equation 
when substituted into (6) and contracted with lanblcnd re
veal that </J is constant on U (the specific form of the curva
ture tensor Rabed ex: FabFcd is used here). It then follows from 
(17) that a,ala = a,ana =/J,ala =/J,ana = o. Now, as men
tioned in Sec. II, such space-times are decomposable with 
the vector field pairs (i,n) and (x,y) spanning the submani
folds of decomposition. Using the covariant constancy of x 
and Y with respect to g one can choose coordinates adapted 
to the decomposition such that 

c~ 
0 0 

u' g,. ~ ~ t/J 0 

0 

0 0 
(18) 

x,X'+M ~(~ 
0 0 

0 0 

V 0 o . 
0 0 1 

It then follows that 

c~ 
0 0 

~} , 0 t/J 0 
(19) gab = </J ~ 0 a' 

0 0 /J' 
where t/J = t/J(XO,x l

), a' = a'(x2 ,x3),/J' = /J '(x2 ,x3) withxO 
and Xl coordinates in the submanifolds spanned by I and n 
and X2 and X3 coordinates in the submanifolds spanned by x 
and y. Now the curvature components R a bed from the origi
nal metric g are zero unless a, b, c, d are each either 0 or 1. On 
computing the curvature components R 'a bed from g' one 
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finds that they are zero unless either a, h, c, d are each equal 
to 0 or 1 [in which case they are the same as the curvature 
components of the two-dimensional Lorentz metric 
diag( -1/1,1/1)] or a, h, c, d are each equal to 2 or 3 [in which 
case they are the same as the curvature components of the 
two-dimensional positive-definite metric diag (a' ,/3 ') ] . One 
also finds thatR abed =R \Cd ifa, h, c,d are each equal toOor 
1. Hence R abed = R 'abed if and only if diag(a',B') is a flat 
metric. The final result here is that g is determined (apart 
from the unavoidable constant conformal factor) up to a 
two-dimensional flat positive-definite metric in the submani
fold spanned by the dual F of the bivector F appearing in the 
curvature tensor (the restrictions on the connection then 
being clear). The final form for the tensor P be can then be 
used to show in a straightforward way that the curvatures 
and curvature derivatives of all orders for g and g' are now 
equal. The case when F is spacelike is essentially the same 
and is omitted. In both these cases (where Fis non-null) the 
Petrov type is D and the Ricci tensor has Segre type 
{(1,1)(1l)}. 

Now consider the case when Fis null. Here, the Petrov 
type is N and the Ricci tensor has Segre type {( 211 )} with 
zero eigenvalue. In this case the situation is more complicat
ed. However, choosing a null tetrad of vector fields (/, n, x, 
y) such that Fab = 2/[aYb 1 the metric ambiguity isiS 

g~b = (pgab + alalb + 2/3/(a Xb) + rXaXb' (20) 

where a, /3, and r are smooth functions on U. One can ar
range that I and x are covariantIy constant with respect to g 
and hence recurrent with respect to g'. Similar calculations 
to the above then show that if la is written as u.a' </J depends 
only on u. More information can be obtained here by divid
ing up the ambiguities represented by this equation into 
three cases characterized by the Segre type of g~b with re
spect to gab [necessarily either {(1,1l)!}, {(31)} or 
{(21)!} or their degeneracies IS]. Using the equality of the 
curvature and its first covariant derivatives for g and g' it can 
be shownl6 that in the first two of these cases </J must be 
constant and that in all cases further information is available 
on the functions a, /3, and r. In fact one can choose coordi
nates u, v, x, Y such that the original metric g and the alterna
tive metrics corresponding to the above Segre types are, re
spectively, 
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ds2 = - 2 du dv + dX2 + dy2 + H(u,y)du2 

( original metric g-see Ref. 4), 

dS,2 = - 2</J du dv + </J(dx2 + dy2) + </JH(u,y)du2 

+ r(u,x)dx2 

[Segre type {( 1, 11 ) I} or its degeneracy; 

a =/3 = 0 in (20), </J = const and (r + </J)r.uu 

= !(r,u )2], 

dS,2 = - 2<P du dv = </J(dx2 + dy2) + </JH(u,y)du2 

+ (B(u) + C(x»)du dx 

[Segre type {(31)}; a = r = 0 in (20), 
</J = const and 2/3 = B + e], 
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dS,2 = - 2<P(u)du dv + r(u,x)dx2 

+ </J(u) (dX2 + dy2) + (</J(u)H(u,y) 

+ a(u,v,x,y»)du2 

[Segre type {( 21 ) I} or its degeneracy; /3 = 0 in 
(20) and 

a(u,v,x,y) = D(u,x) - 2v</J,u + yE(u) 

+ !</J-Iy2«</J,u)2 - </J</J,uu) 

and 

2Fa,xx = 2FD ,xx 

= F,xD,x + (F,u)2 - 2FF,uu 

(F= r+ </J)]. 

A lengthy calculation using the specific forms of the curva
ture in terms of the covariantIy constant bivector F, the co
variant constancy of the appropriate vector fields and the 
identity R a[bed 1 = 0 shows that the assumption of the equa
lity of the curvature and its first derivatives for g and g', in 
the first two cases above, implies the equality of the second 
and higher derivatives. Hence no further information is 
available in this way. However, for the case of Segre type 
{( 21) I} (or its degeneracy), the same assumption does not 
imply the equality of the second-curvature derivatives and if 
the latter condition is imposed further restrictions are ob
tained, one of which is that </J is constant on U. The third- and 
higher-order curvature derivatives for g and g' are then iden
tically equal. 

The only other possibility in case (a) is that the first
curvature derivatives introduce bivectors other than that in
troduced by the curvature itself but not sufficient to deter
mine g up to a conformal factor. In this case it is not difficult 
to show that it is impossible for the curvature to introduce a 
non-null simple bivector whilst its derivative augments this 
by adding only the dual of this bivector. As a consequence, 
the case in question here is such that the simultaneous equa
tions 

Rabedk d = 0, Rabed;e k d = 0, (21) 

uniquely determine the vector field k up to a scaling. Now 
one assumes that the second-curvature derivatives R a bed;ef 

are specified in U. If R a bed;efkd i= 0 on U then the extra bivec
tors introduced by these second derivatives together with the 
algebraic restrictions gk(aR \)cd;ef = 0 on any alternative 
metric determine the metric up to a conformal factor and 
hence by the result mentioned earlier13 the metric is deter
mined up to a constant conformal factor. If, on the other 
hand, R a bed;efk d = 0 on U then it easily follows from (21) 
that k d;eP e satisfies (21) for any choice ofthe vector field P 

and so k is recurrent and hence [by the first equation of 
(21) ] can be assumed scaled so that it is constant on U. If k is 
non-null on U then the arguments given in case (b) of Sec. 
IV go through as before with a metric ambiguity of the form 
(2b) with </J constant and () = ()(u). The only difference in 
the argument is in the proof of the constancy of </J. That </J is 
independent of u goes through as before and one again pro
jects to the hypersurfaces u = const and notes that the three-
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dimensional metrics h and <Ph in these hypersurfaces have 
the same intrinsic curvature components (necessarily equal 
to R a pyl) ) and the same intrinsic first covariant derivatives 
of the curvature (necessarily equal to R apyl);E ). One now 
applies the result of Ref. 13 to conclude that <P is constant. 
(The previous proof relied on the three-dimensional form of 
the theorem in Ref. 1 but this cannot be used here because 
the intrinsic curvature in the hypersurfaces only has rank 1.) 
If k is null on U, the bivector Fintroduced by the curvature is 
either spacelike or null. In the former case, the Petrov type is 
D, the Ricci tensor has Segre type {( 1,1) (II)} and R #0 
and so the ambiguity is as in the corresponding type for k 
null in case (b) of Sec. IV. This follows from the prescription 
of the curvature and its first and second derivatives and no 
further information can be obtained from prescribing high
er-order derivatives. In the latter case the Petrov type is N, 
the Ricci tensor has Segre type {(211)} with zero eigenval
ue, and the ambiguity is again as in the appropriate type of 
case (b) in the final part of Sec. IV. 

VI. SUMMARY AND DISCUSSION 

The work in the previous four sections can be summar
ized in the following way. Using the notation of Sec. III, if 
the curvature components satisfy the conditions of case (d) 
then the metric is determined up to a constant conformal 
factor and the connection is determined uniquely. This re
sult is "best possible" in the sense that prescribing higher
order curvature derivatives gives no further information. If 
the curvature components satisfy case (c) the curvature 
components and their first-covariant derivatives fix the met
ric up to two constant (two-space conformal) factors and 
the connection is uniquely determined. Again the result is 
best possible in the above sense. If the curvature components 
satisfy case (b) then with exception of the case when k is null 
and the Petrov type N or 0, the curvature components and 
their first covariant derivatives determine the metric to with
in either a constant conformal factor (and so the connection 
is uniquely determined) or to within a constant conformal 
factor together with an arbitrary (up to signature require
ments) function of a single variable [the determination of 
the connection is then given by (11)]. These results are all 
best possible. In the special case, the curvature components 
and their first covariant derivatives give certain information 
about the nature of the ambiguity but it is not clear what 
further information is obtainable from the equality of the 
second- or higher-covariant derivatives so it cannot be 
claimed that this result is best possible. If the curvature com
ponents satisfy the conditions of case (a) the curvature com
ponents and their first- and second-order covariant deriva
tives determine the metric and connection up to ambiguities 
described in Sec. V, and the results are best possible except in 
one special case that is very similar to the special case ob
tained in case (b). 

These special cases can now be discussed. They consti
tute a subclass of that class of metrics characterized by the 
existence of a covariantly constant, nowhere-zero, null bi
vector or, equivalently, by the existence of a covariantly con
stant, nowhere-zero, null vector field f and by being of Petro v 
type N or 0 (and so, necessarily, f is the repeated principal 
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null direction of the Weyl tensor, if it is nonzero, and ofthe 
Ricci tensor, if it is nonzero, that necessarily has the form 
Rab a: fa fb ). Referring to this class as the class of "general
ized pp waves" the special cases are a proper subclass since 
they have a two-parameter holonomy group (with the cur
vature of rank 1 or 2 ) whereas the generalized pp waves 
could also have a one-parameter holonomy group. These 
comments should be compared with the (vacuum) result 
given in Ref. 10 that a nonflat vacuum metric is determined 
up to a constant conformal factor by its curvature compo
nents and their first covariant derivatives unless it is a (vacu
urn) pp wave. This result is easily recovered from the present 
scheme by noting that a nonzero vacuum Riemann tensor 
has, on account of its self-duality, even rank and so case (a) 
is impossible. Case (c) is also impossible in vacuo and case 
(b) can only arise if k is null, a pp wave resulting if k is 
scalable to a covariantly constant vector field. Returning to 
the general case, it might be remarked, somewhat informal
ly, that the generalized pp wave space-times were the only 
space-times where the best possible ambiguity did not as
sume a particularly simple form. 

The results mentioned so far in this summary are clearly 
related to the holonomy group structure of space-time and 
this is discussed in detail in Refs. 17 and 18. 

Finally, it was pointed out in Sec. III that if (T was a 
positive constant then the metrics g and ag give rise to the 
same curvature structure. They also give rise to the same 
sequence of curvature derivatives. Thus with regard to the 
type of problem considered here, such an ambiguity is un
avoidable. Suppose now that the generalized pp waves are 
excluded from the discussion and that the curvature and its 
derivatives are prescribed up to that point where the ambigu
ity in the metric is best possible in the sense described above 
(so that, at most, second-order derivatives are required). 
Then there is a sense in which the above unavoidable ambi
guity is the only one up to "coordinate transformations." 
This is, of course, clear for cases (c) and (d) [two constant 
conformal factors being required in case (c), one for each of 
the two families of submanifolds of decomposition]. The re
quired coordinate transformation is clear in case (a) where 
Fis non-null and where no other bivectors are introduced by 
the first curvature derivatives. In the other cases, the ambi
guity is either a constant conformal factor only or takes the 
generalform 2(b). If k is non-null in 2 (b) then the ambigu
ity can be simulated, apart from the constant factor <p, by a 
coordinate transformationx'a = xa, U' = f(u) withfa suit
able function [see Eqs. (8) and (9)]. If k is null in 2(b) 
similar comments hold, this time using the coordinate trans
formation x'a = x a

, x'o = X O + g(x3
) for some suitable func

tion g [see Eqs. (12)]. Such coordinate transformations 
merely reflect the existence of curvature collineations in M 
which, whilst preserving the curvature structure (and its 
derivatives), generate the metric ambiguities (cf. Ref. 1). 
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The infinitesimal holonomy group structure of space-time is discussed and related to the 
Petrov type ofthe Weyl tensor and the algebraic (Segre) type ofthe energy-momentum tensor. 
The number of covariant derivatives of the curvature tensor required to determine the 
infinitesimal holonomy group is determined in each case and the complete classification 
scheme is tabulated. Some special cases of physical interest are investigated in more detail. A 
geometrical approach is followed throughout. 

I. INTRODUCTION 

The purpose of this paper is to give a straightforward 
and complete solution to the problem of classifying gravita
tional fields in general relativity with respect to their holon
omy group. A full list of holonomy groups is given together 
with the algebraic details of the associated Weyl tensor (Pe
trov type) and the energy-momentum tensor (Segre type) 
and they are displayed in Table I. Previous papers have dealt 
with holonomy group classifications l

-
7 but none are com

plete in the above sense and some contain cases that cannot 
occur. None of them gives a satisfactory account of the full 
implications for the energy-momentum tensor. 

Throughout, (M,g) will denote a space-time with g a 
smooth Lorentz metric on the smooth space-time manifold 
M. The tangent space to Mat pEM is denoted by TpM and 
the curvature tensor on M is represented by its coordinate 
components R abed. At all points considered here, the curva
ture will be supposed nonzero. The symbol !f will denote 
the proper (component of the identity of the) Lorentz 
group. Segre notation for the Ricci tensor types is taken from 
Refs. 8 and 9 whilst the results in Ref. 10 will also be drawn 
upon. Einstein's equations with zero cosmological constant 
are assumed. 

II. HOLONOMY GROUPS 

The concept of holonomy is, perhaps, best described in 
the frame bundle of M.II However, it will suffice for the 
present purposes to describe it within M, following Ref. 11. 
The Lorentz group !£ acts on Tp M as a Lie transformation 
group in an obvious way as does any Lie subgroup of !f. 
Consider the vector space of linear transformations spanned 
by the matrices R a bedxcyd, R a bcd;eXcydZ e, .•• , all evaluat
ed at pEM, where X,y,ZETpM and where a semicolon de
notes a covariant derivative. This set has a natural structure 
of a Lie algebra that makes it a subalgebra of the Lie algebra 
of the Lorentz group. The unique connected Lie subgroup of 
!£ that arises naturally from it is called the infinitesimal 
holonomy group of Mat p and denoted by 4>' ( p). The dimen
sion of this subalgebra is the dimension of 4>' ( p) and if it can 
be spanned by matrices of the form R abedxcyd only, the 
associated infinitesimal holonomy group is called perfect. 
The dimension of 4>' ( p) is, of course, restricted by lower 
semicontinuity in the sense that for each integer m, the sub-

set {pEM: dim 4>' (p) >m} is open in M. However, in this 
paper it will be assumed that one works in an open, connect
ed, simply connected (and, where required, contractible) 
chart domain U of M in which dim 4>' ( p) is constant. In this 
case the group 4>' ( p) can be realized in another way. For 
eachpEU let C( p) denote the set of all closed Ck (1,k, 00 ) 

curves in U with initial and final end point p. The set of all 
linear transformations Tp M ..... Tp M obtained by the parallel 
transport of each member of TpM around CEC( p) VCEC( p) 
constitutes a subgroup 4> ( p) of the Lorentz group !f that is 
independent of the differentiability index k and is called the 
holonomy group of U at p. The constancy of dim 4>' ( p) over 
U implies that the groups 4> ( p) and 4>' ( p) are equal at each 
pEU. [It is, in fact, a consequence of the assumed constancy 
of dim 4>' ( p) over U and the simply connected and connect
ed (and hence path-connected) properties of U that the ho
lonomy, restricted holonomy, local holonomy, and infinites
imal holonomy groups of U at each PEU are equal and at 
distinct points of U are isomorphic.] 

The Lie algebra of!f can and will be identified with the 
six-dimensional vector space of bivectors in Minkowski 
space, where the Lie bracket operation is the usual commu
tation. Starting with a real null tetrad (/,n,x,y) in Minkow
ski space a basis for this Lie algebra is, in an obvious nota
tion, 11\ x, Il\y, 11\ n, x I\y, n 1\ x, and n I\y. The connected 
subgroups of !f can then be specified by listing the subalge
bras of this Lie algebra (see, for example, Ref. 12) and there 
are fifteen convenient types for these subalgebras. The corre
sponding subgroups of!f will, following Ref. 1, be labeled 
R 1-R 15 and are defined in Table I. 

Now let pEM and let A be the Lie algebra of bivectors 
associated with 4>'( p) [ = 4>( p)]. IfkETpMisan eigenvec
tor (with respect to the metric g at p) of each member of A 
then the one-dimensional subspace of Tp M spanned by k is 
invariant under each transformation of 4>' ( p) and if, also, 
the eigenvalues to k are all zero, then k is a fixed point of each 
member of 4>' ( p). Of course, if k possesses any nonzero 
eigenvalue, it is necessarily a null vector. The subgroups of 
!£ can then be described in terms of their invariant sub
spaces in Tp M. 12 In the present case the equality of 4>' ( p) 

and 4>( p) at allpEU enables these results to be seen geome
trically by means of parallel translation. In particular, if V is 
an invariant subspace of 4>' ( p) then the parallel transport of 
Vat any other point qEU is independent of the path used and 
produces an integrable distribution on U. So, for example, if 
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the holonomy group is R14 (see Table I) then one has a 
recurrent null vector field Ion U (/a;b = laPb for some vector 
fieldpa on U) whilst if the holonomy group isR3, R 4 , R g, or 
Rll a covariantly constant, null vector field I is admitted. 

Regarding the holonomy group in the form <P' ( p), one 
constructs the Lie algebra from the curvature by accumulat
ing "generating bivectors" for this algebra from the curva
ture tensor and its successive covariant derivatives. It is use
ful here to note that if at any stage the k th covariant 
derivative of the curvature produces no bivectors other than 
those already accumulated in the previous stages up to the 
(k - l)th covariant derivative, then the procedure is com
plete in the sense that all higher-covariant derivatives of the 
curvature will produce only bivectors linearly dependent on 
those already obtained. If such is the case then the bivectors 
produced must span a subalgebra of the Lorentz algebra that 
then gives the associated holonomy group. To see this note 
that for any X,Y,Z,TeTpM, 
R a xcyd. "ZfTg bcd;e··Ig 

= (R abed;e .. IXcyd .. 'ZfTg);g 

- R abed;e .. I(Xcyd .. 'ZfTg);g' (1) 

If one regards the left-hand side of (1) as representing a 
bivector obtained from the (k + l)th curvature derivative, 
then the first term on the right-hand side of (1) may be 
written as (pab Tg);g, where the bivector pab arises from the 
k th curvature derivative. By the assumption P a b may then 
be written as a linear combination ofbivectors arising from 
curvature derivatives of order <k - 1 and as a consequence 
all the terms on the right-hand side of ( 1) are linear combi
nations of bivectors that have been produced up to the k th 
and hence the (k - l)th curvature derivatives. Repeating 
this argument then easily shows that all bivectors produced 
at any higher-order curvature derivative than the k th is a 
linear combination of those already produced up to the 
(k - l)th derivative. This, together with the remark that 
the above result in no way depended on the dimension of the 
manifold in question or on the signature of the metric (nor 
even on the fact that a metric compatible with the curvature 
existed), completes the proof. This result is useful in calcula
tions because it shows that if, at a certain stage in the above 
procedure the bivectors obtained do not form a subalgebra, 
then the next curvature derivative must contribute bivectors 
that are independent of those already generated. 

III. CURVATURE STRUCTURE AND INFINITESIMAL 
HOLONOMY GROUPS 

This is the main section of the paper and its aim is to give 
a complete description of infinitesimal holonomy groups in 
general relativity and to show how they are related to the 
Weyl and energy-momentum tensors of space-time. This de
scription also enables one to see that one need never go be
yond the second curvature derivatives in order to determine 
this group and, in fact, apart from some very special cases, 
the first derivatives suffice. [There is a precise sense in which 
the curvature components alone determine the group in the 
"general case" and this is discussed more fully in Sec. IV 
( vii) .] The work will proceed in the chart domain U de
scribed in the previous section that is restricted by the as-
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sumption of the constancy of dim <P' ( p) and another tech
nical restriction that will be discussed later. 

Suppose then that the curvature components R a bed are 
given in the coordinate domain U and are supposed to arise 
from some Lorentz metric g on U. The metric g is not sup
posed given and it is known that the curvature components 
do not necessarily determine the metric g or the associated 
(symmetric) connection uniquely. However the curvature 
components impose severe restrictions on the metric and 
connection. 13 The rank of the curvature at peU is the num
ber of independent bivectors contributed to the Lie algebra 
of <P' ( p) from the curvature components alone, that is, bi
vectors of the form R abedxcyd, X, YeTpM. The following 
cases can be distinguished. 13-15 

(a) Rank 1: Here the contributions to the holonomy 
from the curvature at p are multiples of a (necessarily sim
ple) bivector F. 

(b) Rank 2 or 3; but where all the bivectors contributed 
to the holonomy from the curvature at p have a unique com
mon eigendirection keTpM with eigenvalue zero (and are 
hence all simple). 

(c) Rank 2; but where the bivectors contributed by the 
curvature can be spanned by two simple bivectors that form 
an orthogonal timelike-spacelike pair with respect to any 
metric compatible with the curvature. 

(d) All other cases: A study of the metric ambiguities in 
each case then shows 15 that the following are independent of 
the metric that gave rise to the curvature structure: (i) the 
nature (spacelike, timelike, or null) of the bivector Fin case 
(a), (ii) the nature (spacelike, timelike, or null) of k in case 
(b) and the nature of the bivectors arising from the curva
ture in this case, and (iii) the fact that the (unique up to 
scaling) pair of simple bivectors that arise from the curva
ture in case (c) form an orthogonal, timelike-spacelike pair 
of bivectors. These results arise from the algebraic restric
tionsg'e(aR eb)cd = 0 that any alternative metricg' must sat
isfy and the general solution of this equation for each of the 
above cases is given in Refs. 13-15. Similarly, if the curva
ture derivatives are specified one has the analogous condi
tions g'e(aR eb)cd;f = O. The extra specification of curvature 
derivatives leads, in general, to more bivector contributions 
to the holonomy and, by the above relation, restricts the 
alternative metrics further lO and in such a way that the na
ture (in the above sense) of any additional bivectors so gen
erated is independent of the alternative metric. Similar com
ments apply to higher-order curvature derivatives. 

The technical restrictions mentioned earlier can now be 
discussed. It will be assumed that exactly one of the cases 
(a)-(d) holds throughout U. This is not so severe a restric
tion as it may seem and will be discussed in more detail else
where. It will also be clear that certain conditions of a similar 
nature are demanded of the curvature derivatives. 

Suppose now that condition (d) holds in U. Then it 
follows 13 that the metric corresponding to this curvature is 
determined up to a constant conformal factor and hence that 
the connection is uniquely determined. Thus the infinitesi
mal holonomy group is uniquely determined at each peU 
since the holonomy group is (see Sec. II). Since condition 
(d) excludes the possibility of a nontrivial solution reTp M 
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of the equation R abed' d = 0 at any pEU (Refs. 13-15) it 
follows from the second column of Table I that the group in 
this case is either R9, R 12, R 14, or R 15. The case R9 is neces
sarily perfect. If condition (c) holds in U the curvature com
ponents determine the group uniquely and it is R7 (perfect). 
If condition (b) holds throughout U then either the curva
ture first derivatives introduce only bivectors for which k is 
an eigenvector with zero eigenvalue, or other bivectors are 
introduced. In the former case a covariantly constant vector 
field proportional to k is admitted and the group is uniquely 
determined, being R6 (perfect) or RIO [:::;SO( 1,2)] if k is 
spacelike in U or R 13 [:::; SO ( 3 ) ] if k is timelike in U. If k is 
null in U the group is either Rg (perfect) or Rll (:::;E2, the 
Euclidean group of the plane) according as the bivectors 
contributed by the curvature are all null or not all null. In the 
latter case the group is either R9 or R 15 and, again, the curva
ture and curvature first derivatives distinguish them. If con
dition (a) holds throughout U then either no new bivectors 
are introduced by the curvature first derivatives, in which 
case the group is either R4 (for Fspacelike), R3 (for Fnull) , 
or R2 (for F timelike), or else other bivectors are introduced. 
In the latter case one specifies the first and second curvature 
derivatives and either the accumulated bivectors admit a 
unique common eigendirection with zero eigenvalue or they 
do not. In the first of these, the situation is as in case (b) with 
a covariantly constant vector field admitted and the group is 
then uniquely determined as either RIo, R II, or R 13 (F space
like), R6 or RIO (F timelike), or Rg or RIO (Fnull). In the 
second of these, the first and second curvature derivatives 
uniquely determine the group, which is either R9 or R 15. 

The proof can be gathered together from the results of 
Ref. 10 and the one atthe end of the last section using Table I 
as a guide. The following comments may be helpful. For 
each of the nontrivial infinitesimal holonomy groups RrR II 
and R 13 it can be shown, by performing null rotations or 
similar transformations, that in each case the canonical set of 
bivectors for the group given in the second column of Table I 
can be chosen in such a way that a bivector basis for the span 
of the curvature is as in column 3. Similar entries for column 
3 for the R 12 and R 14 cases can be given but they are more 
complicated and are omitted (the algebraic structure in the 
R 12 case is, in any case, independent ofthe curvature rank). 
The second column enables the Ricci tensor and its Segre 
type to be calculated. Also, if U admits a recurrent, null 
vector field 1 that is not scalable to a constant (/a;b = laPb 
withPa nota gradient) thenR abedld #0 and so this restricts 
the set of bivectors that are contributed by the curvature 
alone. Also, in this case, any bivector of the form 1/\ q will, 
upon covariant differentiation, introduce only bivectors of 
the form 1 /\ q' for covectors q and q'. The group in this case is 
either R 2, R6 , R 7, R9, R 12' or R 14' If only 1/\ n and x /\y occur 
in the curvature tensor the Bianchi identities show that one 
necessarily has the group R 7 • 10 If a covariantly constant null 
vector field 1 is admitted then R a bed 1 d = 0, R a bed;e 1 d = 0, 
etc., and the group is R 3, R 4, R g, or R ll' In the R II case the 
bivector x /\y must occur in the curvature tensor. Another 
useful comment is that if the curvature tensor and its first 
covariant derivatives contain only bivectors for which a par
ticular null vector field 1 is an eigenvector then 1 is necessarily 
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recurrent. This follows by covariantly differentiating an ap
propriate expression for the curvature that contains a bivec
tor F for which 1 is an eigenvector and then showing that, for 
any vector P, Fab;eP e is a linear combination of bivectors 
each of which admits 1 as an eigenvector. Finally if one has 
case (a) with F represented by x /\y and if all the bivectors 
that arise from the first curvature derivatives have 1 as a null 
eigenvector with zero eigenvalue, then 1 may be scaled to a 
covariantly constant null vector field. This follows by covar
iantly differentiating the relation R a bed 1 d = 0 and obtaining 
the equation la'b = la'b + naSb for covector fields, and s. A 
contraction with F then shows that S = 0 and so 1 is recur
rent and hence scalable to a constant since R abed 1 d = O. 

This information and more is collected together in Table 
I, where the infinitesimal holonomy groups are listed togeth
er with their Lie algebras and the corresponding Petrov type 
of the Weyl tensor and Segre type of the Ricci tensor. For 
these calculations, the table in Ref. 15 is relevant (but note 
the remark in the caption to Table I) as is the comment that 
if a recurrent null vector field is admitted then the Weyl 
tensor is algebraically special and, in particular is of type III, 
N, or 0 if and only if the Ricci scalar R = O. For the compu
tation of the algebraic structure in Table I it is useful to note 
that, if R abedk d = 0 atp for some non-null kETpM, then by 
working in the three-space of TpM orthogonal to k one can 
exhibit a simple relationship between the Segre type of the 
Riemann tensor (regarded in the usual way as a linear trans
formation on the six-dimensional vector space ofbivectors), 
the Segre type of the Ricci tensor (either through its eigen
vector structure or the eigenbivector structure of the anti
self-dual part of the Riemann tensor9

) and the Petrov type 
(through the eigenbivector structure of the Weyl ten
sor) .15.16 The proof can be accomplished either by direct 
calculation or by considering the three-dimensional duality 
relation in the three-space of TpM orthogonal to k. 

IV. FURTHER COMMENTS 

(i) For a null Maxwell field, the Segre type of the Ricci 
tensor is {( 211)} with zero eigenvalue and so the only possi
bilities for the infinitesimal holonomy group in this case 
(with the corresponding Petrov types in brackets) are R3 
(N),R g (N orO), RIO (N), RI4 (III), andR I5 (algebraical
ly special and not conformally fiat). This mostly follows 
from Table I, it being easily shown that the Ricci eigenvalue 
is zero in these cases. In the R 14 case, the Petrov type I is 
ruled out (since all null Maxwell fields are algebraically spe
cial from the Goldberg-Sachs theorem, see, for example, 
Ref. 17) the Petrov types II and D are impossible because of 
the existence of a recurrent null vector field, together with 
the equation R = 0, and the Petrov types Nand 0 are impos
sible because in these cases one necessarily has Rabed 1 d = 0 
for the recurrent Maxwell principal null direction I. (The 
curvature rank is, in fact, necessarily 4 as is then easily seen 
on algebraic grounds from the canonical form of its (neces
sarily type III) Weyl tensor). Since the principal null direc
tion of a conformally fiat null Maxwell field can be scaled to 
a covariantly constant vector field (see, for example, Ref. 
17) this case is incompatible with R 15. These results agree 
with those in Refs. 4 and 7. 
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TABLE I. The first column gives the group label. following the convention in Ref. 1. but with the trivial subgroup RI of.!L' and the full group RI5 =.!L' 
omitted. The second column gives a basis of bivectors for the corresponding Lie algebra. The third column gives the rank of the curvature tensor and the 
bivectors it contributes to the corresponding Lie algebra. The fourth and fifth columns are the associated Segre type of the Ricci (or energy-momentum) 
tensor and the Petrov type. The set {/.n,x,y} always denotes a null tetrad whilst. in R 13. {x,y,z} is an orthonormal triad of spacelike vectors and in RIO u is a 
timelike and z a spacelike vector orthogonal to each other and to x. No attempt is made to list the possibilities for R 14 since many pairings for the Segre and 
Petrov types seem to be consistent. Suffice it to say. in this case. that a recurrent null vector field I is admitted. that the Petrov type is algebraically special with I 
as a principal null direction and that I is a null Ricci eigendirection. This last fact means that the corresponding Segre type is {( I.I)II}. {2.1 I}. {3I} or a 
degeneracy thereof. The comments in Sec. III show that for RI4t the curvature rank is not 1. The entries in the RJO (rank 2 and 3 cases) may be taken as a 
correction to the entries in the "(ii) spacelike" case of Table 2 in Ref. IS. Finally. it is not claimed that all the possibilities listed here can actually exist. 

Holonomy group 

Curvature rank! 
Label Bivectors bivectors Segre type Petrov type 

R2 IAn {(t.I)(Il)} D 
R3 lAx {(21l)} N 
R4 xAy {(t.I)(Il)} D 
R5 IAn +p(xAy) Impossible 
R6 IAn. lAx 1(/An) {(t.I)(Il)} D 
R6 IAn. lAx 2 {(31)} III 
R6 IAn. lAx 2 {2(1l)} II 
R7 IAn.xAy 2 {( 1.1) (II)} or {( IIII)} DorO 
R. lAx. lAy 1(/ Ax) {(21l)} N 
R. lAx. lAy 2 {(211)} NorO 
R9 IAn. I Ax. lAy I(/An) {(t.I)(Il)} D 
R9 IAn. lAx. lAy 2(/An./Ax) {(3I} III 
R9 IAn. lAx. lAy 2(/An,lAx) {2(1l)} II 
R9 IAn. lAx. lAy 3 {(31)} III 
R9 I A n. I A x. lAy 3 {2(l1)} IIorD 
R9 IAn./Ax./Ay 3 {(t.1) (ll)} IIorD 
RIO IAn./Ax.nAx 1(/An) {(l.I)(Il)} D 
RIO IAn. lAx. nAx I(/Ax) {(21l)} N 
RIO IAn. lAx. nAx I (x Az) {(t.I)(Il)} D 
RIO IAn./Ax.nAx 2(/An. lAx) {(3l)} III 
RIO IAn. lAx. nAx 2(/An. lAx) {2(ll)} II 
RIO IAn./Ax.nAx 2(lAx.nAx) {1.1l1} or {ull} or {u( Il)} I 
RIO IAn. lAx. nAx 2(/Ax.nAx) {(l.l) Il} or{ 1.1( Il)} lorD 
RIO IAn./Ax.nAx 2(lAx.nAx) {21I} II 
RIO IAn. lAx. nAx 2(uAx. uAz) {1.11l} I 
RIO IAn. lAx. nAx 2(uAx. uAz) {(l.I)(Il)} D 
RIO I An. lAx. nAx 2(uAx. uAz) {(t.l) Il} or{I.1( Il)} lorD 
RIO IAn. lAx. nAx 3 {(t.Il) I} 0 
RIO IAn./Ax.nAx 3 {I.III} or {( 1.1) Il} or {I.I( II)} I 

or {:all} or {u(l1)} 
RIO IAn./Ax.nAx 3 {I. I (ll)} or {(l.l) Il} or {(l.I)( Il)} D 

or {I.( Ill)} or {(l.Il)1} 
RIO IAn. lAx. nAx 3 {211} or{(21)1} or {2(l1)} II 
RIO IAn./Ax.nAx 3 {3I} or {(31)} III 
RIO IAn. lAx. nAx 3 {(21) I} N 
RII lAx. lAy. xAy l(xAy) ((l.l)( Il)} D 
RII IAx./Ay.xAy 2(/Ax.xAy) {(31)} III 
RII lAx. lAy. xAy 2(/Ax.xAy) {2(1l)} IIorD 
RII IAx./Ay.xAy 3 {(31)} III 
RII IAx./Ay.xAy 3 {2(1l)} IIorD 
RII IAx./Ay.xAy 3 {(l.1)(1l)} II orD 
RI2 J lAx. lAy. f >2 {(31)} III 

IAn +p(xAy) 
RI3 xAy.yAz. xAz l(xAy) {(l.I)(Il)} D 
RI3 xAy.yAz.xAz 2{xAy.yAz) {1.1l I} I 
RI3 xAy.yAz.xAz 2{xAy.yAz) {1.1(l1)} D 
RI3 xAy.yAz.xAz 3 {1.1l I} or{( 1.1) Il} I 
RI3 xAy.yAz.xAz 3 {I. I (ll)} or {(l.I)( Il)} or {(I.ll)1} D 
RI3 xAy.yAz,xAz 3 {I.( Ill)} 0 
RI4 l/An,Xi\y·t >2 {( 1.1) I I} or {21 I} or {3I} or a algebraically 

lAx. lAy degeneracy of one of these types special 
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(ii) For a non-null Maxwell field, the Segre type ofthe 
Ricci tensor is {( 1,1) ( 11 )} where the nonzero eigenvalues 
differ only in sign. The infinitesimal holonomy groups al
lowed in this case, together with their Petrov types, are R7 
(0), RI4 (III orN), andR ls' (TheR9 possibility is ruled out 
since it has R =/:. 0 and the others cannot occur since they have 
a zero Ricci eigenvalue.) In the R7 case the curvature rank is 
2 whereas it is 4 in the RI4 (N) case and 3 or 4 in the RI4 

(III) case, as follows from elementary algebraic consider
ations. These results agree with those in Refs. 4 and 7. 

(iii) For perfect fluids with p>O, p>O, where p is the 
isotropic pressure andp the proper density, the Segre type of 
the Ricci tensor is {I, (111)} with the timelike eigenvalue 
nonzero and distinct from the spacelike one. Hence null 
Ricci eigenvectors are forbidden and the infinitesimal holon
omy group and Petrov type are either RIO (D) or R is (all 
Petrov types), the curvature rank being 3 in the R 10 case. If it 
is required that p =/:.p, then the space1ike eigenvalue is non
zero and only R IS survives. 

(iv) The vacuum cases are not included in Table I. They 
are however well known. l

-4 The self-duality of the vacuum 
Riemann tensor forces the rank of the curvature tensor and 
the dimension of the infinitesimal holonomy group to be 
even and the only possibilities, and their Petrov types, are R 8 

(N), RI4 (III), and R IS (all Petrov types) with curvature 
ranks 2 (for R 8 ), 4 (for R I4 ), and 2, 4, or 6 (for R Is ), respec
tively. The curvature components and their first covariant 
derivatives suffice to determine the holonomy group. 

(v) For a (nonvacuum) Einstein space the self-duality 
of the curvature tensor again forces the rank of the curvature 
tensor and the dimension of the infinitesimal holonomy 
group to be even. This, together with the absence of any 
vector field k satisfying Rabcd k d = 0 (since this would imply 
R = 0) means that the only possibilities are R 7 , R 14, and 
R IS' For the group R 7, the Petrov type must be D because if it 
were 0, one would have a space of constant curvature and 
hence a contradiction since the group R7 has dimension 2. 
The group R 14 cannot occur as can be seen from the follow
ing argument. Let I be a recurrent null vector field (which is 
necessarily admitted) and note that, since R =/:.0, the Petrov 
type is II or D. The Ricci identity on I and the Einstein space 
condition imply that 

Rabcd ld = Gable (R abed = Cabed + iRga[egd]b)' (2) 

where G is some bivector. Upon substituting into (2) the 
canonical forms for the Weyl tensor Cabed for Petrov types II 
and D (see, for example, Ref. 18) and performing an obvious 
contraction, one obtains the contradiction R = O. Hence a 
nonvacuum Einstein space can either have the infinitesimal 
holonomy group R7 (curvature rank 2 and Petrov type D) 
or R is (all Petrov types). 

(vi) The group Rs cannot occur as an infinitesimal ho
lonomy group since it is generated by a nonsimple bivector, 
in contradiction to the relation R a[bed ] = O. (Similar com
ments, together with some remarks in Sec. III, show that R 12 

cannot have curvature rank 1.) If one imposes the dominant 
energy conditions (see for example, Ref. 19) then R 12 is 
ruled out because in this case the Segre type of the Ricci (and 
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hence energy-momentum) tensor is necessarily {( 31)} and 
this type can never satisfy the dominant energy conditions.8,9 
Hence if these conditions are imposed, the Lie algebra of the 
holonomy group can always be spanned by simple bivectors. 

(vii) Returning to the remark made at the beginning of 
Sec. III, consider the topological space rr (L) consisting of 
the set L of C' Lorentz metrics on M (r>3) together with 
the Whitney C' topology (further details onjet bundles and 
Whitney topologies can be found in Ref. 20). Then there 
exists an open dense subset Wof rr (L) such that the curva
ture associated with each ge W belongs to the case (d) de
fined earlier at each peM,21 In this sense one can say that in 
the general case the curvature components determine the 
metric (up to a constant conformal factor), the connection 
and hence the infinitesimal holonomy group at each peM. In 
fact W can be chosen so that the infinitesimal holonomy 
group is necessarily equal to .Y (=R 1S ) at each peM as 
follows from a result in Ref. 21 [and using the fact that the 
local holonomy group ct>* ( p) of Mat p, which is a Lie group 
containing ct>' ( p ), as a connected Lie subgroup, has a di
mension that satisfies the upper semicontinuity condition: 
{peM: dim ct>* ( p) <.m} is open in M for each integer m]. 
With this choice of W it does not follow that the infinitesimal 
holonomy group resulting from a metric in W is perfect at 
each peM but it does follow that it is perfect at each point of 
an open, dense subset of M. 
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Two examples are presented in this paper, the first is unfavorable to the c-boundary 
construction given by Geroch, Kronheimer, and Penrose [Proc. R. Soc. London Ser. A 327, 
54~ (1972)] but in favor of that given by Budic and Sachs [J. Math. Phys. 15, 1302 (1974)], 
whIle the second plays an opposite role. The second example is also an example of a causally 
continuous space-time with a "really big gap," contrary to what was believed in the literature. 

I. INTRODUCTION 

In order to have a better description of space-time singu
larities within the framework of classical general relativity, 
one would like to construct an enlarged topological space M 
interpreted as the space-time manifold M with some singular 
boundary a attached. Various constructions have been put 
forward. The constructions of the b-boundaryl and the g
boundary2 have been known to be unsatisfactory. 3.4 The con
struction known as the c-boundary (causal boundary) con
struction given by Geroch, Kronheimer, and Penrose5 

(GKP) in 1972 makes use only of the causal structure of the 
space-time and hence has certain merit from the physical 
point of view. However, as illustrated by its authors, it fails 
to construct a Hausdorff topological space M that is also a 
causal space in general. To surmount this difficulty, Budic 
and Sachs (BS) gave an improved definition of the c-bound
ary construction in 1974.6 They proved that the resulting 
Hausdorff topological space M is also a causal space with 
causal structure extended from that of the original space
time (M,g) itself, provided that (M,g) is causally contin
uous (a causal requirement much stronger than distinguish
ing required by Ref. 5); thus it makes good sense to ask 
whether signals with speed less than or equal to that of light 
can be sent between a regular point and an ideal point. We 
will refer to the c-boundary construction given in Ref. 5 as 
the GKP construction and that given in Ref. 6 as the BS 
construction. In a recent paper by Kuang, Li, and Liang,7 it 
was shown that for some singular exact solutions to Einstein 
equations the c-boundary of the GKP construction is un
satisfactory, for example, the "singular portion" of the c
boundary of Taub's plane-symmetric vacuum solution 
turned out to be a single point, suggesting that it might not be 
fruitful describing the structure of singularities using the no
tion of the c-boundary defined by GKP. Besides, as will be 
shown in the next section, there is something else that is also 
unfavorable to the GKP construction. The fact that these 
two deficiencies do not exist in the BS construction suggests 
that the BS construction might be more acceptable. Never
theless, we will give an example in Sec. III showing that there 
is also something unfavorable to it, a drawback which is not 
shared by the GKP construction. Therefore it seems still an 

open question whether one can construct some imprOVed c
boundary free of deficiencies. 

II. A SECOND EXAMPLE UNFAVORABLE TO THE GKP 
CONSTRUCTION 

Assuming the reader is familiar with the GKP construc
tion, we present the example as follows. 

Let (M,'T]) be a three-dimensional Minkowski space
time with Cartesian coordinates (t,x,y) and (M,'T]) a sub
space-time where M = {(t,x,y): y> O}. Consider a future 
directed timelike clll!,e rCM with the origin (0,0,0) as its 
future end point in M and a past directed timelike curve 
ii.CMwith (0,0,0) aspastendpointinM. Notethatr (resp. 
ii.) is future (resp. past) unextendable in M. It is reasonable 
to require that the TIP (terminal indecomposable past set), 
/ - (r,M), and the TIP (terminal indecomposable future 
set),l + (ii.,M) , be identified inM, and this is exactly the case 
according to the BS identification rule. It is, however, not 
true in the GKP construction. Indeed, there exist two open 
sets 0 1 and O2 with /-(r,M)*E01, /+(ii.,M)*E02, and 
0 1 n02 = 0. To see this, consider the following two subsets 
ofM: 

A = {(t,x,y): t>x,y>O}, 

B = {(t,x,y): t <x,y>O}. 

They are, respectively, a TIP and a TIP in M, since there 
exist some past (resp. future) unextendable timelike curves 
a (resp.p) inMsuch thatA = / + (a,M) andB = / - (P,M). 
Por instance, one can take the following curve to be p: t = t, 
x = t + lIt,y = lit (t> 1), and dually fora. According to 
the GKP construction, the following two subsets of the in-

A ext = {p *eJI # : PE.Jt and P = / - (S) ::::} / + (S) ~A 

for all S~M}, 

B ext = {F*eJI#: FeJt and F = / + (S)::::}/ - (S) ~B 

for all S~M}. 

It is straightforward to check that / + (ii.,M) *ElJ"xt and 
/ - (r,M)*EAext by showing that any S~Mwith /+ (S,M) 
= / + (ii.,M) [resp. / - (S,M) = / - (r,M) ] satisfies 
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J - (S,M) ~B [resp. J + (S,M) ~A]. Consequently Aext and 
next can be taken to be the desired 0, and O2, respectively. 
Note, however, that this is not true if we are dealing with M 
instead of M since the origin (0,0,0) can then be taken as S 
violating the requirement in the definitions of Aext and next. 

III. AN EXAMPLE UNFAVORABLE TO THE BS 
CONSTRUCTION 

We first give a brief outline of the essential contents of 
the BS construction relevant to this paper as follows. 

Define binary relations > and > on a time-orientable 
space-time (M,g) as usual. Define concepts IP and IF as in 
the GKP construction. Denote the power set, the topology, 
the collections of past sets, future sets, IP's and IF's of (M,g) 

A V 

as Y, Y, f!lJ, Y, vii, and vii, respectively. Define a map J -: 
Y ..... f!lJ by J - S = {xeM: x «s for some seS} V SeY. Define 
a map I: M ..... f!lJ by Ix =J-{x} VxeM. Define a map l: 
Y ..... f!lJ by l U = J - {xeM: x « u VueU} = interior{xeM: 
x«u VueU} VUEY. The maps J+, I, and t are defined 

A v 
dually. Define> and> on vIIUvII by Table 2.2 in Ref. 6. 
For example, ifP,~, then P> Qiff pn tQ :;60. Define an 

A v A 

equivalence relation - on vIIUvII as follows: for A,Bevll 
v A v 

(or vii), A -B iff A = B; for AeJI, BeJI, A -B iff A = lB 
and B = tAo Define the causal completion of (M,g) as _ v v -
M = vIIUvII / -, then> and > are well defined on M. De-
fine the extended Alexandrov topology Y on M as the small
est topology on M such that for all ceM, each of the following 
four subcollections is open: J +{c}, J -{c}, K +{c} 
=M -J-{c}, K-{c}=M -J+{c}, where J+{c} 
= {aeM: a>c},andJ +{c}={aeM:a>c}. It was shown that 
(M,>,>,Y) is a causal space with Hausdorff topology and 
I: M ..... M has all the desired properties (e.g., it is a dense 
imbedding) provided that (M,g) is causally continuous, 
thus the boundary a is naturally interpreted as the causal 
boundary of (M,g). 

An essential requirement for constructing a causal com
pletion M which is both a Hausdorff topological space and a 
causal space is the causal continuity of (M,g). A space-time 
(M,g) is said to be causally continuous iff it is both distin
guishing and reflective. Here (M,g) is said to be reflective iff 
tIx = Ix and lIx = Ix VxeM. The causal continuity of 
space-times has been investigated in detail by some auth
ors.6.8-1O It was pointed out in Ref. 8 that "roughly, a causal
ly continuous space-time ... has no really big gaps (gaps of 
'dimension' more than 2)" and some statements similar in 
spirit to it can also be found in the other references quoted. 
However, we have found a four-dimensional space-time (ar
tificial though) with a "really big gap," i.e., a "gap" off our 
dimensions which is causally continuous. It is also this 
space-time to which the application of the BS construction 
gives some unfavorable result, as will be illustrated shortly. 

Although the motivation of the BS construction was to 
overcome the noncooperation between the Hausdorff topol
ogy and the causal structure of the resulting space M, it turns 
out that the two defects ofthe GKP construction mentioned 
in Secs. I and II are also surmounted. Nonetheless, the fol
lowing example illustrates that it might have its own draw
back. 

Consider an (n + 1 )-dimensional Minkowski space-
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time (M,1]). Denote the Cartesian coordinates of M by 
(t,x', ... ,x"). Let a = ( - 1,0, ... ,0)eM and b = (1,0, ... ,0) 
eM. By removing a closed subset R = closure[' + (a,M) 
nJ - (b,M)] of the same dimension from M we get a sub
manifold M = M - R and a sub-space-time (M,1]). Since 
two space-times (M,1]) and (M,1]) will be alternatively dealt 
with, we will, whenever necessary, add subscripts M or M to 
the symbols for the relation> and maps J -,1 + ,J,'i, l, and t 
to clarify the space-time involved. We will also write I Kia n 
ij{b instead ofl + (a,M) nJ - (b,M) to be in accordance with 
the BS notation. It will be proved in the next section that the 
sub-space-time (M,1]) is causally continuous provided that 
n> 1; thus the BS construction is applicable. Let M be the 
causal completion of (M,1]). In addition to the infinity por
tion ai of the c-boundary a, there is also some singular por
tion as. Obviously, there is a natural correspondence 
between aR and as, hence one would intuitively expect that 
near as the topological structure of M should be the same as 
that of M, i.e., the way of "gluing" as to M should be the 
same as that of "gluing" aR to M. However, the following 
shows that it is not the case, thus suggesting that there might 
be something unsatisfactory about the BS construction. 

Choose a point e = ( - ~, - 1,0, ... ,0)eM, then IMe 
-IMe is a regular point inM. Let rCMbe a past inextendi
ble timelike curve which, viewed as a curve in M, has b as its 
past end point, then J ~ r is an ideal point in M. Since 
a ~ rnI Me :;60, we have, according to the BS construction, 
J ~r>IMe or equivalently J ~yel+{/Me}. Consider a 
point sequence {.t;} in M defined by.t; = (1,1/i,O, ... ,O), 
then one has a corresponding point sequence {F, } in M de
fined by Fi = 1M .t;eM. Since lIJ; nIMe = 0, we have 
FiEU + {/Me} for any i. This, together with the fact that 
J+{/Me} is an open set in the extended Alexandrov topol
ogy, implies that {Fi } does not converge to J ~ r in M. It is, 
however, obvious that {.t; } converges to b inM, therefore we 
conclude that the topology of M near J ~ r is different from 
that ofM. 

IV. PROOF OF THE CAUSAL CONTINUITY OF (M-R,1]) 

Throughout the prool we will use the followinl nota
tion: for xeM (resp. xeM) and Sc;.M (resp. Sc;.M), we 

writex« S (resp. x~ S) iff x<s (resp. x ~s) VseS. Dual 
M M M M 

statements (if any) to those in the following lemmas are 
taken for granted and are not written. 

Lemma 1: Letx,yeM and {ul } be a sequence inM satis
fyin} (1) {ui }CIx, and (2) x is a limit point of{u i }, then 
y<Jx iffy«{u;l. 

This lemma is true for all chronological space-times, the 
proof is trivial and is omitted. 

To prove the causal continuity of (M,1]) is to prove 

t MIMc = Ic and lMIMc = IMc for all ceM. Since Ij{c 
nR :;60 and Ij{cnR :;60 would imply ceR, we have only 
three possible cases: 

(1) IMcnR = 0, IMcnR = 0; 

(2) IMcnR :;60, IMcnR = 0; 

(3) IMcnR =0, IMcnR :;60. 
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Lemma 2: IMcnR = 0 implies IMc = IMc. 
Proof It suffices to show IMCk:IMc. For any xElMc, the 

timelike curve connecting C to x must not intersect R or there 
would be yE/MCnR. HencexElMc. • 

Lemma 3: tMIMcC tMIMc. 
Proof For any- xEtMIMc, there exists yeM, 

x).y).IMccIMc. Let {uJ be a sequence in IMc with c as its 
M M 

limit point, then y).{uJ, which implies y~{uJ, hence 
M M 

y~IMc and xEtMIMc. Note that Lemma 1 has been used 
M 

twice. • 
Since we always have IMCk: tMIMc and IMCk:!M IMc, 

what remains to be shown is !MIMCk: IMc and tMIMc 
k: IMc. On account of Lemmas 2 and 3 as well as the causal 
continuity of (M,1]), tMIMCk: IMcis true for cases (1) and 
(3), while !MIMCk: 1M cis true for cases (1) and (2). There
fore the essential issue is to prove t M I MC k: I M C for case (2) 
since !MIMCk: IMc for case (3) will then follow dually. 

Let c = (te,x!, ... ,x~). then IMcnR #0 implies te <0. 
Define 

S, = tMIMcn{(t,x', ... ,x"): t..;;O}, 

S, = tMIMcn{(t,x1,. .. ,xn): t..;;O} 

=IMcn{(t,xI, ... ,x"): t..;;O}, 

S2= tMIMcn{ (t,x' •... ,xn): t>O}, 

S2=tMIMcn{(t,x', ... ,x"): t>O} 

= IMcn{(t,x', ... ,x"): t>O}, 

then tMIMc = S, US2, S, k:S, - R, S2k: S2 - R. We want 
to show S, k:IMC and S2k:IMc. 

LetpES, k: S, - R, thenpElMc. Thetimelikecurvecon
necting c to p must not intersect R or there would be 

qERnIMP which implies pElMan{(t,x', ... ,xn): t..;;O}CR, 

thuspe/Mc. 
Let p=(tp,x; •... , x;)ES2, then pEinterior{yeM: 

y). IMc} and one can choose a < tp such that p' 
M 

= (tp - a,x;, ... ,x;)E interior{yEM:y).IMc}, i.e.,p').IMc. 
M A M 

Let Vi = (te - 1Ii,x!, ... ,x~), then {Vi}C/MC and {vJ con-

verge to c. By Lemma 1 we havep').{vJ, hence there exist 
M 

timelike curves Yi in M connecting Vi top'. Since tp - a > 0 
and te - 1Ii < 0, each Yi must intersect the plane 
E={(O,x', ... ,xn)} at some point qiEEnM. The timelike 
property of Yi gives 

(t _1Ii)2> (Xl _X!)2 + ... + (xn _X")2 
c qj c qt c' 
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while qiEYi nE and Yi nR = 0 yield 

1 < (x~y + ... + (x;y. 
On the other hand, lim(tc - 1/i) = tc implies that all qi'S 
with sufficiently large i are within a compact region of the n
dimensional Euclidean space E, hence there exists a subse
quence {q;} of {qJ such that {q;} converges to a point 
q = (0, x!, ... ,x;)EE satisfying 

t~;;;'(x! _X!)2+ (x; _X~)2, (1) 

1..;;(x!)2+ ... + (X;)2, (2) 

And q;elMp' CIMp' implies qE closure(IMP') C IMP. 
Lemma 4: If there exists rEE satisfying (a) r is suffi

ciently close to q so that reIMp, and (b) re(IMc 
- R) nE = (I McnE) - (RnE), thenpe/Mc. 

Proof Since (M,1]) is a Minkowski space-time, reIMp 
implies that there exists a timelike geodesic t connecting r to 
p. ButrEE - R impliesynR = 0, hencepElMr. On theoth
er hand, requirement (b) leads to reS! - R = S, k: I MC, 
therefore pEl MC. • 

Let BooBe CE be open balls centered at (0,0, ... ,0) and 
(O,x!,x~) with radii 1 and Ite I, respectively, then the require
ment re(IMc-R)nE and inequalities (1) and (2) are 
equivalent to rEBe - closure(Bo) and qEClosure(Bc ) - Bo, 
respectively. Since Be !tBo or c would be in R, it is clear that 
one can always find such an r for any q unless qEiJBe naBo 
and n = 1. Therefore we conclude that the space-time 
(M,1]) with n > 1 is causally continuous. 

ACKNOWLEDGMENTS 

The authors would like to thank Professor Abdus Sa
lam, the International Atomic Energy Agency, and 
UNESCO for hospitality at the International Centre for 
Theoretical Physics, Trieste, where part of this work was 
done. 

lB. G. Schmidt, Gen. Relativ. Gravit. I, 269 (1971). 
2R. Geroch, J. Math. Phys. 9, 450 (1968). 
JR. A. Johnson, J. Math. Phys. 18, 898 (1977). 
4R. Geroch, Liang can-bin, and R. M. Wald, J. Math. Phys. 23, 432 
(1982). 

SR. Geroch, E. H. Kronheimer, and R. Penrose, Proc. R. Soc. London Ser. 
A 327,545 (1972). 

6R. Budic and R. K. Sachs, J. Math. Phys. 15, 1302 (1974). 
7Kuang zhi-quan, Lijian-zeng, and Liang can-bin, Phys. Rev. D 33, 1533 
(1986). 

's. W. Hawking and R. K. Sachs, Commun. Math. Phys. 35, 287 (1974). 
~. D. Vyas and G. M. Akolia, Gen. Relativ. Gravit. 18, 309 (1986). 
IOJ. K. Beem, Gen. Relativ. Gravit. 8, 245 (1977). 

Kuang zhi-quan and Liang can-bin 435 



                                                                                                                                    

Static uniform-density stars must be spherical in general relativity 
Lee Lindblom 
Department 0/ Physics. Montana State University, Bozeman, Montana 59717 

(Received 11 June 1987; accepted for publication 30 September 1987) 

In this paper the uniqueness of the static solutions of Einstein's equation that represent isolated 
uniform-density perfect-fluid stellar models is demonstrated: any static asymptotically flat 
space-time containing only a uniform-density perfect fluid confined to a spatially compact 
world tube is necessarily spherically symmetric. This result generalizes to relativistic uniform
density models the well known Newtonian theorem of Carleman and Lichtenstein. 

I. INTRODUCTION 

The inevitability of spherical symmetry in isolated static 
(i.e., time independent and nonrotating) fluid stellar models 
was first demonstrated in the Newtonian theory by Carle
manl and Lichtenstein.2

•
3 To date the analogous result has 

not been established in general relativity theory. A number 
of studies of the properties of static relativistic stellar models 
have been published, however. Some ofthe more interesting 
results of these investigations are as follows. Masood-ul
Alam4 has shown that the topology of the space-times con
taining these static stellar models must be diffeomorphic to 
R3 X R. Avez,5,6 Kiinzle,7 and Lindblom8,9 have studied the 
geometry of this general class of space-times. They estab
lished the equivalence of spherical symmetry and a number 
of other geometrical properties (e.g., spatial conformal flat
ness) in these space-times. Kiinzle and Savage 10 showed that 
the spherical static space-times are isolated in the sense that 
no continuous family of static fluid space-times exists which 
contains both spherical and nonspherical space-times. 

Recently Masood-ul-Alamll explored the implications 
of the positive mass theorem 12-14 on the geometry of static 
fluid space-times. He demonstrated that the positive mass 
theorem could be used to prove the necessity of spherical 
symmetry in a subset ofthese space-times that satisfies cer
tain special properties. He assumed that the fluid obeyed a 
particular equation of state, which having dp/dp < 0 is un
fortunately extremely unphysical. He also limited his atten
tion to a subset of the stellar models based on this equation of 
state which have p>O. Since the spherical models in this 
subset all havep = 0 at the center of the star, he has implicit
ly assumed that the central pressure in these (potentially 
nonspherical) models is never greater than that achieved in 
the corresponding spherical model. When stated in this way 
the additional assumption, p>O, seems to me to be an un
natural auxiliary assumption in the context of the particular 
equation of state considered by him. 

In this paper the necessity of spherical symmetry in iso
lated static uniform-density stellar models is demonstrated. 
These stellar models have a somewhat more physically ac
ceptable equation of state than the one considered by Ma
sood-ul-Alam. Furthermore, no unnatural auxiliary as
sumption is necessary in this case. Thus Masood-ul
Alam'sll recognition of the importance ofthe positive mass 
theorem in the study of static space-times is further support
ed. This work also supersedes portions of Ref. 8 which erro-

neously claimed to prove the necessity of spherical symme
try in static uniform-density stellar models. (This error has 
been noted previously in Ref. 9.) Section II of this paper 
reviews the established properties of static stellar models 
that are needed in this analysis. Section III presents the proof 
that spherical symmetry is a necessary property of isolated 
static uniform-density stellar models in general relativity 
theory. The method of proof is to perform a particular con
formal transformation on the spatial metric which sets the 
mass to zero and leaves the scalar curvature non-negative. 
The demonstration that the scalar curvature resulting from 
this transformation is non-negative requires the use of the 
divergence identities for static stellar models found in Ref. 8. 
The positive mass theorem implies that this conformally 
transformed metric is flat. The desired result follows from 
the already established equivalence of spatial conformal flat
ness and spherical symmetry in static fluid space-times.8 

II. STATIC STELLAR MODELS 

In this section some of the basic properties of static per
fect-fluid space-times are reviewed. Careful derivations of 
these results can be found in the literature. The statements in 
this section are valid for any static perfect-fluid space-time 
while those in the next section are valid only for uniform
density stellar models. 

A static space-time must admit a hypersurface orthogo
nal timelike Killing vector field, t a. Let t be a function whose 
level surfaces are orthogonal to t a, and let t a a at = 1. The 
space-time metric can then be represented in the form 

d:?- = - V 2 dt 2 + gab dxo dxb, ( 1 ) 

where gab is the positive definite three-metric of the con
stant-t surfaces and 0 = at v = atgab' Einstein's equation for 
such a space-time with a perfect-fluid stress-energy tensor is 
equivalent to the system of equations 

DaDa V = 41TV( p + 3p), 

Rab = V-1DaDb V + 41T( P - p)gab' 

(2) 

(3) 

where D a and Rab are the three-dimensional covariant deriv
ative and the Ricci curvature tensor associated with gab , pis 
the total energy density (including rest-mass energy), and p 
is the pressure of the fluid. To these equations must be added 
an equation of state: a function p = p ( p) that summarizes 
the microscopic properties of the particular fluid. This func
tion must be positive and monotonically increasing to be 
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physically relevant. Associated with Eq. (3) is a Bianchi 
identity, which is equivalent to Euler's equation for these 
static fluids, 

DaP= -V-'(p+p)DaV. (4) 

The solutions of Eqs. (2) and (3) that are of interest in 
this paper are the physically isolated solutions. Thus we only 
consider solutions in which the support of the pressure is 
spatially compact, and in which the space-time metric is 
asymptotically flat in an appropriate sense. We assume that 
V and gab are given asymptotically by expressions of the 
form, 

V= I-m/r+v, 

gab = (1 + 2m/r)8ab + hab' 

(5) 

(6) 

where 8ab is the standard flat metric on a constant-t surface, 
the function r is the asymptotic spherical coordinate given by 
,-2 = 8abxaXb, and the xa are the Cartesian coordinates asso
ciated with 8ab on each constant-t surface. The quantities v 
and hab must vanish like r-2 as r- 00, and their first and 
second derivatives must vanish with successively higher 
powers of r- I

• The constant m is the mass of the star. These 
asymptotic conditions on the solutions of Eqs. (2) and (3) 
can be deduced from rather mild asymptotic falloff assump
tions. 's 

To avoid the possibility of surface stresses and surface 
energy densities and thereby violate the assumption that the 
stress energy in these space-times is purely that of a perfect 
fluid, some care must be taken to ensure the proper matching 
conditions at the boundary between the exterior vacuum re
gion and the interior fluid portion of the stellar model (and 
in addition at any interior surface on which the equation of 
state is not continuous). From Eq. (4) it follows that p (and 
consequently p) must have level surfaces that coincide with 
the level surfaces of V. It also follows from Eq. (4) that p 
must be a continuous function (since V must be continuous) 
to avoid the existence of surface stresses on the boundary 
between the interior and exterior of the star. The pressure 
must vanish, therefore, on this boundary. Let V = Vs be the 
level surface of V that corresponds to this boundary. We 
must also impose an appropriate discontinuity in D aDb V at 
this surface if the equation of state is one for whichp(O) =1=0 
[see, e.g., Eq. (2)]. The needed condition is most easily ex
pressed in terms of the function W =.D a VD a V. This function 
must satisfy the following discontinuity condition8 on the 
surface V = y.: 

(7) 

where [Q] represents the discontinuity (exterior minus inte
rior) in the quantity Q on the surface V = V •. 

The conformal properties of a three-geometry are ex
pressed in terms of a certain third-rank tensor field Rabe de
fined by 

Rabe = DcRab - DbRac + !(gacDbR - gabDcR), (8) 

where R = Rab~b. This tensor vanishes if and only if the 
geometry is conformally flat. 16 Two different expressions for 
Rabe will be useful in the analysis that follows. The first re
lates Rabe to the geometrical properties of the constant-V 
two-surfaces in static perfect-fluid space-times: 
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(9) 

where f/!ab is the trace-free part of the extrinsic curvature and 
flab is the intrinsic metric of the constant-V two-surfaces. If 
the metric gab were conformally flat then the left-hand side 
of Eq. (9) would vanish. Since the metric gab is positive 
definite it would follow that 

(10) 

in this case. Avez5
•
6 and Kiinzle7 have shown that these con

ditions, Eq. (10), are equivalent to spherical symmetry. 
Therefore, Eq. (9) establishes the equivalence of spatial con
formal flatness and spherical symmetry for static perfect
fluid space-times.8 Using Eqs. (2) and (3) Rabe can also be 
expressed completely in terms of V, the fluid variables, and 
their derivatives. An expression of this type that will be use
ful in the analysis that follows is given by 

! V4W-IRabeR abe 

=DaDaW- V-'DaVDaW 

- ~ W-'DaWDa W + 811'W( p + p) 

+ 411'VW- ' ( p + 3p)DaVDa W 

- 16rV2( p + 3p)2 - 811'VDaVDa p. (11) 

One further property of the conformal transformation of 
three-geometries will be useful. Consider the conformal met
ric gab = f/!4gab . The conformally transformed scalar curva
ture R. is related to R by the equation 16 

R. = f/!-4(R - 8f/!- 'D
aDaf/!), (12) 

where R and D a are the scalar curvature and covariant deriv
ative associated with gab' 

III. STATIC UNIFORM-DENSITY STARS MUST BE 
SPHERICAL 

The necessity of spherical symmetry in isolated static 
uniform-density stellar models will be demonstrated by 
showing that any such model must be spatially conformally 
flat. To accomplish this an explicit conformal transforma
tion is performed on the metric. The scalar curvature of the 
conformally transformed metric is shown to be non-nega
tive. The positive mass theorem is then used to demonstrate 
that the transformed metric is in fact flat. 

Consider the conformal transformation gab = f/!4gab , 
where f/! is the following function of V: 

.J.(V) {!(1 + V), y'<V<I, 
If' = 1(1+y')3/2(1+3V.-2V)-1/2, 

:2 O<V<V •. 

(13) 

Note that f/!( V) and its first derivative are continuous at the 
surface V = y.. Also note that f/!" ( V), the second derivative 
of f/!( V), vanishes for V. < V < 1 and is positive for 0 < V < Y. 
since 

f/!"( V) = ~(1 + y')3/2(1 + 3y' - 2V)-S/2>0. (14) 

The scalar curvature associated with the metric gab can now 
be computed using Eq. (12) with the result 
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R = 8,p-S,p"{Wo( V) - W}. (15) 

The function Wo( V) used in Eq. (15) is defined by 

To establish Eq. (15) it is necessary to use Eqs. (2) and (3) 
and the fact that the integral ofEq. (4) for the pressure can 
be written in the form 

( 17) 

for uniform-density fluids in the domain 0 < V.;;; V •. 
The next step is to demonstrate that the scalar curvature 

Ii given in Eq. (15) is non-negative. Since ,p and ,p" are non
negative from Eqs. (13) and (14) it remains only to deter
mine the sign of Wo( V) - W. The function Wo( V) is contin
uous at the surface V = V., while its first derivative satisfies 
the following discontinuity condition: 

[W-IDa VDaWo] = - 81TV. p. (18) 

This is precisely the same, for uniform-density stellar mod
els, as the discontinuity condition, Eq. (7), satisfied by the 
first derivative of W. Consequently the function Wo( V) 
- Wand its first derivative are continuous everywhere in

cluding the boundary surface V = V •. 
The sign of Wo( V) - W will be determined using two 

identities and the maximum principle for elliptic differential 
operators. Using Eqs. (11), (16), and (17) it is straightfor
ward to show that in the interior ofthe star (Le., the region 
0< V.;;; V.) the following identity must be satisfied8: 

Da{V-IDa (W - Wo)} 

= IV3W-IRabcR abc 

+ ~V-IW-IDa(W- Wo)Da(w- Wo)' (19) 

The right-hand side of Eq. (19) is non-negative. The left
hand side is an elliptic differential operator acting on the 
function W - WOo The maximum principle (see, e.g., Ref. 
17) states that W - Wo must achieve its maximum value at a 
boundary point of the domain on which Eq. (19) is valid 
(i.e., on the surface V = V. in this case). Furthermore the 
gradient Da (W - Wo) must be nonvanishing and directed 
out of the domain (the interior of the star in this case) at this 
maximum point unless the function W - Wo is in fact con
stant. 

A similar identity exists in the exterior of the starll •
18 

(i.e., the region where V • .;;; V.;;; 1 ): 

D {V-IDay} = V4RabcR abc + 3XaX
a 

(20) 
a 4VW(1 _ V2)3 ' 

where Xa and Yare defined by 

Xa = Da W + 8VW(l - V2) -IDa V, (21) 

Y= (W- Wo)/(l- V 2)3. (22) 

The right-hand side of Eq. (20) is also non-negative while 
the left-hand side is an elliptic differential operator on the 
function Y. The maximum principle implies that the maxi-

438 J. Math. Phys .• Vol. 29. No.2. February 1988 

mum of Y must occur either on the surface of the star where 
V = V. or at infinity where V = 1. 

Consider first the case where the maximum Yoccurs at 
infinity. The asymptoticfalloff conditions [i.e., Eqs. (5) and 
(6) ] imply that Wand Wo go to zero like r-4 while 1 - V 2 

vanishes like r- I
• Therefore Y vanishes at infinity. If the 

maximum of Yoccurs at infinity then W - Wo is necessarily 
nonpositive in the exterior of the star from Eq. (22). By 
continuity and the argument given above for the location of 
the maximum of W - Wo in the interior of the star, it follows 
that W.;;; Wo everywhere in the space-time in this case. (This 
case was inadvertently overlooked in Ref. 8.) Finally, it fol
lows from Eq. (15) that the conformally transformed scalar 
curvature is non-negative in this case: R>O. 

Consider next the case where the maximum of Y (with 
respect to the exterior of the star) occurs on the surface of 
the star, V = V •. In this case Y>O at this maximum since 
Y = 0 at infinity. It follows that the maximum of the func
tion Y(l- V2)3mustoccuratthesamelocationasthemax
imum of Yin this case, since Yis non-negative and the maxi
mum of (1 - V2)3 occurs on the surface of the star V = V •. 
Therefore the maximum of W - Wo = Y( 1 - V2)3 with re
spect to both the interior and the exterior regions must occur 
on the surface of the star in this case. Since D a ( W - Wo) is 
continuous it must vanish at this maximum point. The gradi
ent of Y at this maximum point is given therefore by 
Da Y = 6VY( 1 - V2) -IDa V. Since Vis larger in the exteri
or of the star than the interior, this gradient points into the 
exterior region. The maximum principle demands that this 
gradient points out of the exterior region unless Y is con
stant. Since Y = 0 at infinity it follows that Y must vanish 
everywhere in this case, and consequently W = Wo every
where as well. Thus the conformally transformed scalar cur
vature would vanish identically in this case: R = O. 

To summarize, the conformally transformed scalar cur
vature R is necessarily non-negative in a static asymptotical
ly flat uniform-density fluid stellar model. 

To complete the proof of the necessity of spherical sym
metry the asymptotic behavior of the conformally trans
formed metric gab must be determined. The asymptotic ex
pansion of the conformal factor defined in Eq. (13) can be 
determined by the asymptotic form of V given in Eq. (6): 
,p = 1 - m/2r + <p, where <p vanishes like r- 2 as r--+ 00. It 
follows that the conformal metric is given in this limit by 
gab = {jab + hab' where hab vanishes like r- 2. Thus the mass 
associated with the metric gab vanishes. The positive mass 
theorem 12-14 states that any three-geometry having non-neg
ative scalar curvature and zero mass is in fact flat. Therefore 
the metric gab is flat. The physical spatial metric gab is conse
quently conformally flat, and the stellar model is therefore 
spherical. 
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Vacuum solutions admitting a geodesic null congruence with shear 
proportional to expansion 
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Algebraically general, nontwisting solutions for the vacuum to vacuum generalized Kerr
Schild (OKS) transformation are obtained. These solutions admit a geodesic null congruence 
with shear proportional to expansion. In the Newman-Penrose formalism, if II' is chosen to be 
the null vector of the OKS transformation, this property is stated as a = ap and Da = O. It is 
assumed that a is a constant, and the background is chosen as app-wave solution. For generic 

values of a, the OKS metrics consist ofthe Kasner solutions. For a = ± (1 ± Ji), there are 
solutions with less symmetries including special cases of the Kota-Perjes and Lukacs solutions. 

I. INTRODUCTION 

In this paper we shall obtain algebraically general, 
nontwisting generalized Kerr-Schild (OKS) type vacuum 
solutions using the Newman-Penrose (NP) formalism. I We 
recall that the generalization consists of allowing nonflat 
backgrounds in the Kerr-Schild metrical anzatz (see 
Kramer et al.,2 Chap. 28). That is, the OKS metric is of the 
form gl'v = gl'Y + 2 Vll'lv' where II' is a null vector (with 
respect to both metrics), but gl'v is not necessarily fiat. In 
order to obtain new solutionsgl'v one starts with a (known) 
background solution and, using the Einstein equations for 
gl'v' obtains and solves differential equations for V. This pro
cess is called the OKS transformation. 

For vacuum to vacuum ( V -+ V) OKS transformations, 
the null vector (II' ) of the transformation must be geodesic 
(K = 0).3 Then the OKS metrics are obtained by solving 
first-order linear equations.4 ,s When II' is shear-free (a = 0) 
the transformation equation are compatible, but the OKS 
solutions are necessarily algebraically special.5 This case has 
been studied in the literature by various authors.6-9 When II' 
is shearing (a#O), the transformation equations give the 
following constraint on the background: 

\110 = [2a/(p + .0) Hau - p2] . 0.1) 

Equation (1.1) is invariant under the OKS transformation. 
When II' is nontwisting (p = .0), this constraint gives5 

a=ap, ( 1.2) 

where a is a function such that Da = O. Thus for the V -+ V 
transformation with shearing but nontwisting null vectors, 
the admissible backgrounds and corresponding OKS solu
tions are both characterized by the existence of a geodesic 
null congruence whose shear and expansion have the same 
"radial" dependence. This property eliminates the possibil
ity of obtaining asymptotically fiat "radiating" solutions. 1,5 

In Sec. II we shall obtain a type N background solution 
satisfying (1.2) with a = const. In fact this solution is a 
(vacuum) pp wave (see Kramer et al.,2 Sec. 21.5). In Sec. 
III, using these backgrounds, we shall obtain algebraically 
general OKS metrics. These solutions depend on a function 

a) Present address: Department of Mathematics, State University of New 
York at Stony Brook, Stony Brook, New York 11794. 

Vo such that D Vo = O. For generic values of a, Vo reduces to 
a constant and these metrics are the Kasner solutions.10 For 
a = ± (1 ± v1), Vo is either a linear function of Xk, or an 
exponential function of u and Xk • k = 3 or 4 (these coordi
nates are defined in the beginning of Sec. II). The solutions 
with linear Vo are the nontwisting cases of the Kota-Perjes 11 

and Lukacs 12 solutions (space-times with geodesic eigenrays 
and, respectively, a timelike or spacelike Killing vector). 
The OKS solutions with exponential type Vo admit only one 
spacelike Killing vector. By linearity of the V -+ V OKS 
transformation equations, it is also possible to have metrics 
with arbitrary functions. Also if Vo is a superposition oflin
ear and exponential type functions, the resulting space-times 
can be considered as nonstationary vacuum perturbations of 
the Kasner, or the Kota-Perjes-Lukacs solutions. The re
sults of Sec. II and III are summarized in Table I. 

We shall use the coordinates and the tetrad frame de
fined in Sec. VI ofNP.' To avoid repetitions, we shall use the 
quantities therein without redefining, and we shall directly 
refer to the equations in that section. For example, Eq. 
(NP6.5) will denote Eq. (6.5) in Sec. VI ofNP. 

II. BACKGROUND SOLUTIONS 

We shall start by a background metrical anzatz that will 
ensure that II' is a shearing nontwisting geodesic null vector. 
We choose the coordinates (x' = u, x 2 = r, x3 = x, X4 = y) 

and the tetrad frame (ll',nl',ml",;fzl') as in the Sec. VI ofNP 
(in particular p is real). In addition we assume that the met
ricfunctions [see Eqs. (NP6.5-6)] satisfy 

w=U=Xk=O, tk=tk(r), k=3,4. 

Then the directional derivatives reduce to 

D=or' !1=ou' b=sk(r)ok' k=3,4. (2.1) 

TABLE I. Algebraic types for background and OKS solutions. The metric 
isgivenbyfU2=2dudr- [ra+ dx2 +ra- dy] +2V(r'du2 • 

Background solutions 

OKS solutions 

TypeN 

Flatfora= ± 1 
Type D fora =0, ± 3 
Type I otherwise 
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From the commutation relations [Eqs. (NP6.8)] it can be 
seen that the only nonzero spin coefficients are p and u. In 
addition we assume that 

u=ap. (2.2) 

Then without loss of generality we can take a real, since the 
phase of u does not depend on r.13 

Equations (NP6.11a) and (NP6.11b) give 

p = - 1/( 1 + a2 )r, (2.3) 

u= -a(1 +a2)r, (2.4) 

'1'0 = - (1- a2)/(1 + a2)2r, (2.5) 

and it remains to solve only [Eq. (NP6.lOa)] 

Dtk =pt k + U~k. (2.6) 

In the following, whenever convenient, we shall use the nota
tion 

7J± =7J±Tj, (2.7) 

where 7J is either a spin coefficient, '1';, i = 0, ... ,4, or~. Using 
(2.3) and (2.4), Eq. (2.6) can be written as 

Dtk± = - (a±/r)tk±, 

where 

a ± = (1 ± a)/(1 + a2) . 

Then t k ± can be solved easily as 

t k± = t~± /rat , 

(2.8) 

(2.9) 

(2.10) 

where t~± are constants. We choose these constants as 

t~+ = {i, t6- = i{i, t~- = t6+ = O. Then (2.11) re
duces to 

D = a" 6. = au, 
~= (1/{i) [r-a+ ax +ir- a - ay]. (2.11 ) 

The background metric is then given by 

ds2 = 2 du dr - (ra+ dx2 + r a- dy2) . (2.12) 

Since all the spin coefficients except p and u vanish, it can be 
seen that nJ.';v = O. Then the metric (2.12) admits a covar
iantly constant null vector field. Hence it is a pp-wave solu
tion (see Kramer et al., 2 Sec. 21.5). 

III. SOLUTION OF THE V .... VGKS TRANSFORMATION 
EQUATIONS AND THE GKS METRICS 

We start by giving a brief description of the OKS trans
formaton: Let It'v be a (known) background solution, and 
(l",nJ.',mJ.',mJ.') the corresponding null tetrad frame. The 
OKS transformation is defined by the following transforma
tion of the tetrad vectors: 

Then, the OKS metric has the form 

?/'V = It'v _ 2V/J.'P. 

(3.1) 

(3.2) 

For the background given in Sec. II, the OKS transforma
tion equations5 reduce to 
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DV= (1-a2)pV, 

!~DV +ap8V= 0, 

p 6.V=~8V, 
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(3.3) 

(3.4) 

(3.5) 

where p, u, and the directional derivatives are defined by 
Eqs. (2.3), (2.4), and (2.11). 

Equation (3.3) is solved as 

V = Vor- s , (3.6) 

where DVo = 0 and s = (1 - a2)/(1 + a2). Thus the OKS 
metric has the form 

tfS2 = 2 du dr - [r a + dx2 + r a - dy] + 2 Vor - S du2 
• 

(3.7) 

Using Eqs. (3.3) and (2.11), Eq. (3.4) can be written as 

(a2 - 2a - I)ax Vo r- a + 

(3.8) 

where a+ and a- are defined by (2.9). 
Therefore if a::j: ± (1 + v'1), then ax Vo = ay Vo = 0, 

and Eq. (3.5) gives au = o. Thus generically Vo reduces to a 
constant. In this case the OKS metrics given by Eq. (3.7) 
admit three Killing vectors {ax,ay,au}' The vectors ax and 
a yare spacelike, and au is spacelike (timelike) if Vo is nega
tive (positive). For Vo> 0, these metrics have been explicitly 
identified with the Kasner solutions 10 [see Eq. (11.5) in 
Kramer et al. 2

]. 

We recall that the solutions with positive and negative 
values of a are related by a tetrad rotation. Thus we consider 
only the special values a = 1 ± v'1 [note that if a = 1 ± v'1, 
thena+ = !,a- =!(1 =f v'1), ands = =fv'1/2]. In this case 
Eq. (3.8) gives ay Vo = 0, and Eq. (3.5) reduces to 

au Vo + (2 ± v'1)axx Vo = O. (3.9) 

The constant solutions of (3.9) are discussed above. For 
linear solutions of (3.9) of the form Vo = P x, P constant, 
the OKS metrics admit two Killing vectors {ay,au } which 
have the same character as above. These metrics correspond 
to the nontwisting cases of the K6ta-Perjes (P> 0) and Lu
kacs (P < 0) solutionsY·12 In fact, the identification can be 
explicitly made by taking Q = 0 in the K6ta-Perjes-Lukacs 
solutions with r::j:O, Q = const. The eigenfunctions of (3.9) 
are 

Vo =e- ru +ax
, a 2=r/(2±{i), r=const. 

r 
(3.10) 

By specifying boundary conditions, one can obtain metrics 
with arbitrary functions. If Vo is given by (3.10) the OKS 

TABLE II. The dependence of Va on a in the GKS solutions. 

Generic case 
(a# I ± v'l) 

a=l±v'l 

Va= const 
(Kasner solutions) 

Va = Px. P constant 
(P> 0 K6ta-Perjes solutions) 
(P<O Lukacs solutions) 

Va = Cyerv + ax 

C and r constants 
al = rl(2 ± v'l) 
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metrics admit only one spacelike Killing vector {ay }' The 
results for both the background and the OKS solutions are 
given in Tables I and II. 

For completeness, we give the expressions for the Weyl 
spinor components (using ay Vo = 0), 

- 2 -2 '110 = '110 = - [as/(l + a )]r , (3.11a) 

q,1 = 'III = 0, (3.11b) 

q,2= [s/(1 +a2 )]Vor- 2
-

s
, (3.11c) 

q,3 = [ - (3 - a2)/4(1 + a2) J[ v'2 a~,vo]r-I-s-a+ , 

q,4 = [(1- a)/4] [2 an,vo r- S
-

2a+] 
- [as/(l + a2 )] V~ r- 2 -

ls
• 

(3.11d) 

(3.11e) 

For a2 =+= 2a - 1:1= 0, the eigenvalues of the Weyl tensor 
are{ - V(l + a)'IIoIa, - V(l - a)'IIoIa, 2V'IIo} . The so
lutions are flat for a = ± 1, type 0 for a = 0, ± 3, and alge
braic general otherwise. For a2 =+= 2a - 1 = 0, the Petrov 
classification algorithm is used to show that all solutions are 
algebraically general. 

Note added in proof: The complete solution of vacuum 
metrics satisfying u = ap was recently obtained. Point: Oe-
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nerically, in addition to the metrics described here, there is 
only one solution not of OKS type. Thus the metrics given in 
Table II constitute all the vacuum OKS solutions with a 
shearing, nontwisting, null vector. 

ACKNOWLEDGMENT 

The author would like to thank Professor Ourses for 
help, encouragement, and valuable suggestions, and the ref
eree for suggesting the final form of the manuscript. 

IE. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); 4, 998 
(1963). 

2D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of 
Einstein's Field Equations (VEB Deutscher, Berlin, 1980). 

3 A. H. Bilge, and M. Giirses, in XI International Colloquium on Group 
Theoretical Methods in Physics (Springer, Berlin, 1982). 

4B. C. Xanthopoulos, J. Math. Phys. 19, 1607 (1978). 
sA. H. Bilge and M. Giirses, J. Math. Phys. 27, 1819 (1986). 
6C. J. Talbot, Commun. Math. Phys.13, 45 (1969). 
7I. Robinson and J. R. Robinson, Int. J. Theor. Phys. 2, 231 (1969). 
8L. P. Hugston, Int. J. Theor. Phys. 4, 267 (1971). 
9A. Thompson, Tensor 17, 92 (1966). 

1<>£. Kasner, 1. Math. 43, 217 (1921). 
"I. K6ta and Z. Perjes, J. Math. Phys. 13, 1655 (1972). 
12B. Lukacs, Acta Phys. Slovaca 33, 225 (1983). 
13M. Carmeli and M. Kaye, Ann. Phys. (NY) 99, 188 (1976). 

A. H. Kupeli 442 



                                                                                                                                    

General relativistic fluid spheres with nonzero vacuum energy density 
William A. Hiscock 
Department of Physics, Montana State University, Bozeman, Montana 59717 

(Received 1 July 1987; accepted for publication 30 September 1987) 

Bounds are developed for the ratios M / R and m/ R for fluid spheres in asymptotically de Sitter 
or anti-de Sitter space-times, where M is the mass of the fluid sphere, and m is the total mass 
interior to R: M plus the interior vacuum energy. This represents a generalization of the work 
of Buchdahl to the case of a nonvanishing vacuum energy density. In the asymptotically de 
Sitter case, it is possible to construct models which have m/r ..... !. Further, it is shown that 
static fluid spheres can exist in an asymptotically de Sitter space with vacuum energy density 
Pv only if their radius satisfies R..;; (817"pv) 1/2, a maximum radius smaller by a factor of3- I /2 

than the horizon size of the de Sitter space in the absence of a fluid sphere. If the vacuum 
energy density is negative, then the ratio m/ R is shown to be bounded above by the 
asymptotically flat limit of 3, and the radius of a positive total mass (m) sphere is shown to be 
bounded above by R < (217"l/1v 1)-112. 

I. INTRODUCTION 

The purpose of this paper is to examine the degree of 
compaction (revealed in the ratio M / R) possible for perfect 
fluid spheres in general relativity when the vacuum energy 
density is nonzero, and space-time is thus asymptotically 
described by the de Sitter or anti-de Sitter metrics l rather 
than being asymptotically flat. The "degree of compaction" 
is closely related (in the asymptotically flat case) to the sur
face redshift of a fluid sphere; this analysis is thus a general
ization of the work of Buchdahl,2 which showed that in the 
asymptotically flat case, any static fluid sphere in general 
relativity must have M / R ..;;~, and hence a surface redshift 
z..;;2. 

The main motivation for this study is formal; the vacu
um energy density today, if nonzero, is minute and unimpor
tant in the construction of stellar models. While the vacuum 
energy density may have been much larger in the early uni
verse,3 conditions there probably precluded the formation of 
gravitationally condensed objects which could be well mod
eled by static fluid spheres. If some form of "shadow matter" 
exists,4 defined by the property that it interacts with "ordi
nary" matter only via the gravitational interaction, then it is 
conceivable that such objects might exist (or might have 
existed). It is also conceivable that the universe may yet de
cay into a negative energy density anti-de Sitter state, in 
which the new low-temperature phenomenological laws 
might allow the formation of gravitationally condensed ob
jects. 

Section II sets out the basic equations and boundary 
conditions for general relativistic static fluid spheres with 
nonvanishing vacuum energy density. Since the space-times 
are not asymptotically flat, the notion of surface redshift is 
not well defined; thus, instead of bounding the redshift, 
bounds are determined for the total fluid mass divided by the 
radius of the sphere (M / R) and also the total mass (fluid 
plus vacuum energy) divided by the radius of the sphere (m/ 
R). In Sec. III a lower limit on the fluid mass and an asso
ciated upper limit on the radius of fluid spheres in a positive 
vacuum energy density universe are derived and discussed. 

In Sec. IV Buchdahl's theorem is examined and extended 
easily to the case of nonzero vacuum energy density; its im
plications are then examined for the case of a negative vacu
um energy density. An Appendix contains an explicit de
scription of the solutions for uniform density fluid spheres 
with nonzero vacuum energy density. 

II. FLUID SPHERES WITH NONZERO VACUUM ENERGY 
DENSITIES 

The basic equations describing a static, spherically sym
metric ball of perfect fluid in the presence of a nonzero vacu
um energy density are exactly the same as in the asymptoti
cally flat cases; the metric may be put into the standard form 

ds2 = _e2v(r'dt 2 + [1-2m(r)/r]-ldr 

+ r(d() 2 + sin2 () dtjJ2) , (1) 

where 

and 

dm(r) _ A_ ..2 
~-offlpr, 

mer) + 41r~p 
-= 

,-2[1- 2m (r)/r] , 
dv 
dr 

(2) 

(3) 

wherep is the total energy density (fluid plus vacuum), and 
p is the total pressure (again. including any vacuum contri
bution which may be present). Conservation of stress energy 
yields the Oppenheimer-Volkoff equation, 

dp = _ (p+p) mer) +41r~p . (4) 
dr r[1 - 2m(r)/r] 

The energy density and pressure may be divided into 
contributions from the vacuum and from the fluid, respec
tively, 

P=Pv +p" 

P=Pv +p" 

(5) 

(6) 

where, since the stress-energy tensor of the vacuum has the 
form - pgafJ' 
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Pv= -Pv' (7) 

The mass function m(r) may also be divided into contribu
tions from the fluid and vacuum energy, 

m(r) = M(r) + 41TpvrI3, 

where 

(8) 

M(r) = f 41Tpf r dr . (9) 

The difference in the description of general relativistic 
fluid spheres in the case of nonzero vacuum energy density is 
in the boundary conditions imposed on Eqs. (2)-(9). The 
surface of the fluid sphere (denoted by r = R) is defined by 
the condition that Pf = 0 there. The metric functions for all 
r>R are then given by 

m(r)=M+411'pvrI3 (10) 

and 

e2v
(r) = 1 ~ 2m(r)lr = 1 - 2M Ir - 811'pvrI3, (11) 

where M = M(R) is the total mass of the fluid. The usual 
boundary conditions at r = 0, namely that m (0) = 0, and 
that the pressure be bounded for all r#O, will also be im
posed. It is also assumed that the fluid density and pressure 
are non-negative, and that 

(12) 

III. FLUID SPHERES WITH POSITIVE VACUUM ENERGY 
DENSITY 

The Oppenheimer-Volkoff equation [Eq. (4)] may be 
used to create an interesting lower bound on the mass of a 
fluid sphere in the presence of a positive vacuum energy den
sity. Evaluating Eq. (4) at the surface of the fluid sphere, 
where Pf = 0, one obtains 

dPf M(R) - 811'PvR 3/3 

T,= -Pf R [R -2m(R)] 
(13) 

The quantity R - 2m (R) must be non-negative at the 
surface of a static fluid sphere; for the moment assume it is in 
fact positive [the exceptional case where R = 2m (R) will be 
discussed below]. Since it has been assumed thatPf is non
negative throughout the star, the pressure gradient at the 
surface, where Pf = 0, must also be non-negative, and hence 
the numerator of the right-hand side of Eq. (12) must be 
non-negative, i.e., 

(14) 

The existence of this bound does not depend on the magni
tude or sign of Pv; the bound, however, is clearly only of 
consequence if Pv > O. In the case of a uniform fluid density, 
M(R) = 411'pf R 3, and Eq. (13) simply implies that 

Pf >2pv (uniform density). (15) 

Equation (14) together with Eq. (10) imply that 

m(R)IR>411'pvR 2, (16) 

for any fluid sphere in an asymptotically Schwarzschild-de 
Sitter space-time. 

Now consider the possibility of an upper bound to the 
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ratio m(R)IR. The requirement that the fluid sphere not 
extend past its own horizon may be written as 

m(R)IR< ~. (17) 

In the asymptotically flat case, better bounds are available 
than that given by Eq. (17), namely, the bound discovered 
by Buchdahl,2 m(R)IR<3. When the vacuum energy den
sity is positive, however, it is always possible to find fluid 
spheres which satisfy the equality in Eq. (17); no better 
bound (such as Buchdahl found) is available or valid. Equa
lity in Eq. (17) may be achieved by the simple uniform den
sity models (e.g., a portion of the Einstein universe) de
scribed in the Appendix. 

Combining the constraints ofEqs. (16) and (17) yields 

R«811'Pv)-1/2. (18) 

This is an upper bound on the radius of any fluid sphere in a 
space-time with positive vacuum energy density. Note that 
the maximum radius, given by equality in Eq. (18), is only 
3 -1/2 times the radius of the de Sitter space in the absence of 
the fluid sphere. 

IV. FLUID SPHERES WITH NEGATIVE VACUUM 
ENERGY DENSITY 

It is very easy to extend the analysis of Buchdahl2 to the 
case of nonzero vacuum energy density; in the case of a nega
tive vacuum energy density it is also fruitful. The details of 
the proof are unchanged; all that is required is that the 
boundary conditions be modified to agree with Eqs. (10) 
and (11). Buchdahl derived the following inequality: 

m(r)lr < ij{l - 611'rp(r) + [1 + 611'rp(r)] 1/2} . (19) 

Applying Eq. (19) to the surface of the fluid sphere at r = R 
gives 

m(R)IR< §[1 + 611'PvR 2 + (1- 611'R 2Pv)ll2] . (20) 

Equation (20) onlyholdsforvaluesofpvR 2«811')-1. Larg
er values of Pv R 2 are spurious, and do not satisfy the original 
inequality which has been squared once to reach the form 
given in Eq. (20). 

The largest value m (R) 1 R can ever attain, according to 
Eq. (20), with a negative vacuum energy density, is the as
ymptotically flat value of 3. This value may be approached 
for arbitrary Pv by simply making R small enough (when the 
fluid sphere is extremely small, compared to Ipv 1- 1/2, then 
the vacuum energy density cannot have a large effect on its 
structure). The maximum value of m(R)IR attainable 
steadily decreases as Ipv IR 2 increases; fluid spheres become 
less and less gravitationally compact. At the same time, the 
ratio M IR increases steadily, 

(21) 

The right-hand side ofEq. (21) increases steadily (and with
out bound) as IPv IR 2 is increased. Although the minimum 
radius of a given fluid mass sphere is decreasing, as shown in 
Eq. (21), the horizon radius is shrinking even more rapidly 
as IPv IR 2 is increased. 

A final constraint which is of interest may be obtained 
from Eq. (20). If Ipv IR 2 is too large, then the total mass 
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associated with a fluid ball m (R) can never be positive. Set
ting the right-hand side ofEq. (20) equal to zero gives 

R < (21Tlpv 1)-1/2. (22) 

Equation (20) must be satisfied if the total mass measured at 
the surface of the fluid sphere is to be non-negative. 
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mer) = 41T"(po +Pv),-'J/3, 

APPENDIX: UNIFORM DENSITY FLUID SPHERES 

In this appendix the metric functions for a uniform den
sity fluid sphere in a space-time with nonzero vacuum ener
gy density are explicitly given. The uniform density spheres 
are described, as in the asymptotically flat case, by the interi
or Schwarzschild metric,5.6 since it is the unique solution of 
the Einstein field equations for a static, spherically symmet
ric uniform density perfect fluid. The relations between the 
central pressure, total mass, and radius of the fluid sphere, 
however, depend on the boundary conditions at r = R, and 
are hence different in the present case from the usual rela
tions which assume asymptotic flatness.s Integrating the 
Einstein equations [Eqs. (2) - ( 4 )] for a fluid with uniform 
densitY,PI = Po = const, with boundary conditions given by 
Eqs. (5)-(8), one finds that 

(AI) 

ev(r> = 3[1-2m(R)/R ]1/2_ (1-2pv/poHI-2m(r)/r]1/2, 

2(1 + Pv/Po) 
(A2) 

(1 - 2pv/PoH 1 - 2m(r)/rp/2 - [1 - 2m(R)/R p12 
per) = (Po +Pv) 3[1- 2m(R)/R ]1/2 _ (1- 2Pv/PoHl- 2m(r)/rp/2' 

(A3) 

The central pressure and the radius of the fluid sphere are 
related by 

R = [(3/81Tp){1 - (1 - 2pJpO)2 

(A4) 

wherep =Pv + Po· Notice that as Po ..... 2pv , p(r) ..... - Pv' a 
constant, and e2v

(r> ..... 1-2m(R)/R, also a constant. The 
interior metric is then the metric of a portion of the Einstein 
universe,l in which pressureless dust is held in equilibrium 
by the opposing forces of gravitational attraction and the 
repulsion caused by the nonzero vacuum energy density. 
This case, with Po = 2pv, is the lowest density uniform stel
lar model possible when the vacuum energy density is posi
tive, since the fluid pressure is zero everywhere. A uniform 
density fluid sphere with a smaller density would lack suffi-
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I 
cient mass to hold itself together against the repulsive force 
associated with the vacuum energy density. Since, the fluid 
pressure within the Einstein universe is zero (all pressure 
coming from the vacuum stress energy), the radius of a uni
form density fluid sphere with Po = 2pv can be chosen arbi
trarily, up to and including the radius of the event horizon, 
RH = 2m(RH ) = (81Tpv)-1/2. 

IS. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time 
(Cambridge U. P., Cambridge, 1973), Chap. 5. 
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The Perjes vector is decomposed on a Frenet basis. Geometric insights into the Perjes 
classification of zero Simon tensor vacuum solutions to the Einstein field equations are 
obtained. The behavior of the classification under a Killing vector preserving transform is 
studied. 

I. INTRODUCTION 

The metric for a stationary axis-symmetric space can be 
written as 

dS 2 = A(dt + Wi dxi) - (hiJA)dXi dX j
• (1) 

The metric functions can be found by solving the field equa
tions or by transforming from known solutions. 

A particularly interesting set of solutions for this metric 
is the static vacuum metrics with a conformally flat three
space (gij)' These spaces have a zero York tensor Yij' I 

Y/ = 2Ejkl(Rik - !Rgik );1' (2) 

where Rik is calculated for gjk' The perhaps best-known 
member of this solution set is the Schwarzschild metric with 
gjk as the metric for the t = const, three-space.2 A second 
example is the three-space of timelike Killing trajectories, 
51" of the metric described by Eq. (1). This three-space has 
metric hij and will be conformally flat if Y/ due to h/ is zero. 

Simon3 has discussed a complex generalization of the 
York tensor. The Simon tensor Cij was constructed to char
acterize the Kerr solution for Eq. (1) in the same way that 
the York tensor characterizes the Schwarzschild solution. A 
vanishing Simon tensor, coupled with the requirement of 
asymptotic flatness, will single out the Kerr solution to the 
vacuum field equations for the metric (1) .4 Perjes5 has 
shown that the condition of zero Simon tensor alone, in
cludes many interesting solutions that can be divided into 
three classes. 

The purpose of this paper is to examine the transforma
tion properties of the zero Simon tensor vacuum solutions. 
In particular, we will examine the behavior of the Perjes 
classes under a transformation that preserves the timelike 
Killing vector 51' of a stationary axis-symmetric space-time. 

In the next section we briefly review the Perjes classifi
cation of the zero Simon tensor solution. Some new geomet
ric insights into this grouping are obtained. The transforma
tion is discussed in Sec. III. 

II. THE CLASSIFICATION OF ZERO SIMON TENSOR 
VACUUM SOLUTION 

A. Perjes classification 

The timelike Killing vector associated with the metric 
( 1) has a norm A and a vector twist w,., (Ref. 6), 

A = 5,.,5"'>0, (3) 

(4) 

D 

where 5"'v is the dual Killing bivector 

(5) 

and wi' describes the rotation of the Killing congruence. This 
will be made more precise in the next section. This wi' is curl
free and can be written as the gradient of a scalar potential, 
where the gradient is defined in the three-space of Killing 
trajectories H; hij' 

Wj = - D j ¢, (6) 

where i runs over spatial indices and Dj is the covariant de
rivative in hij' Here Wj can be pulled back to the four-space 
g,.,v to create W,.,.6 The negative sign is added to conform to 
Perjes' conventions. An Ernst potential can be formed from 
the norm and scalar twist 

'T =A + i¢. (7) 

The Simon tensor is defined in terms of the Ernst poten
tial'T, 

C/ = (2E/kj/A 2) ['Tj./'Tk - huh mn'Tm;[n'Tk d, (8) 

where 'Tj = aj'T is the gradient of the. scalar potential 'T. For 
static space-times, ¢ = 0; the Simon tensor is equivalent to 
the York tensor. 

The vacuum spaces with zero Simon tensor can be clas
sified by using the vector G (Refs. 5 and 7), 

G,., = (l/U)'T,., = (l/U)(A,., + i¢,.,). (9) 

We use f.L as an index of the pulled back functions. Here 
A,., is related to the normal to the surface A = const, and ¢,., is 
related to the twist associated with that trajectory. The three 
classes of zero Simon tensor vacuum solutions correspond to 
( 1) G·G = 0, the null class (2) G X G* = 0, the degenerate 
class, and (3) G X G* =1= 0, the general class. Perjes identified 
specific solution sets within each class by the behavior of spin 
coefficients for a triad (I,."m,." m,.,) defined on hij' The 
spin coefficient method ofPerjes is very useful in identifying 
the Petrov class of solutions belonging to each set. We found 
that decomposing G in terms of a Frenet-Serret tetrad of 
vectors allowed some new geometric insights into the Perjes 
classification. 

B. Frenet decomposition of GI'-non-null KIlling vector 

The groups that Perjes uses to classify the zero Simon 
tensor solutions, differentiate properties of the Killing bivec
tor 5,.,;v and of the congruence of Killing vectors forming h ij' 
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The Killing vector and bivector properties are conveniently 
described in terms of the orthonormal Frenet tetrad 
(e'(0)J A P, BP, CP) with 

-e'(O)ep(O) =APAp = BPBp =CPCp = -1. (10) 

The timelike tetrad member is chosen to lie along the Killing 
vector 

e'(0) = sPI,jT. (11) 

The spatial triad (A P, B P, C P) are the normal and first and 
second binormals to the Killing trajectory. The trajectories 
can be described by three scalars k, '1'1' and '1'2' the curvature 
and first and second torsions, respectively. These scalars en
ter the absolute derivatives of the tetrad, 

~] [~O~] , 
- '1'1 0 '1'2 BP 
o - '1'2 0 CP 

k o 
o 

(12) 

where, for example, Af-L = Af-L ;vev (0) 
The Frenet formalism is ideally suited to the discussion 

of Killing vectors and bivectors. Normally a timelike vector 
derivative is written in terms of acceleration, angular speed, 
expansion, and shear. Because the Killing bivector is anti
symmetric, only the three parameters describing accelera
tion and angular speed are nonzero. These can easily be iden
tified with the Frenet scalars. The bivector expansion is 

Sp;v =k( -s,..Av +SvAp) +,jT'1'I(ApBv -AvBp) 

+,jT1'2(BpCv -BvCp)' (13) 

The parameters k, 1'1' and '1'2 are constant along the Kill
ing trajectory.s The "acceleration" and "angular speed" of 
the Killing vector S,.. ares 

tp =SP;vSv = AkAp, 
D 

or =!aY' = - ¢l'12 = S ,..;vSv = -A(1'I CP + '1'~ P), 

(14) 

OP describes the rotation of the Frenet frame relative to a 
frame that is Fermi-Walker transported along the trajec
tory. A static space has both torsions zero. From Eq. (13) 
we find the bivector norms and products can be parame
trized in terms of the Frenet scalars and are given by 

sP;vsp;v = _U(k2_~ -~), 
D (15) 
S,..;vSP;v = - 4Ak'1'2· 

The vector G can be written in terms of Frenet vectors, 

Gp = (lIU) (Ap + it/Jp ) 

(16) 

G has no component along the first binormal Bp. 
The first class of solutions corresponds to GoG = O. Us

ing Eq. (16), this is equivalent to 

k2=~+~, 

k1'2 = O. 

(17) 

(18) 

The first condition requires the Killing bivector have 
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zero norm. The second condition requires that the Killing 
bivector be orthogonal to its dual, or that the bivector be 
simple. These are the conditions for the bivector to be null, as 
pointed out by Perjes.4 The first or null class then consists of 
solutions with null Killing bivectors. Simple bivectors are 
expressible as a single antisymmetric product. Using Eq. 
(13) we find 

SP;v = k,jT[Ap (e~O) - Bv) -Av(e~O) - Bp)]. (19) 

The two vectors are Ap and the null vector e~O) - B,... A 
possible Perjes triad (l,m,m) for this class is 

(B,(A ± iC)/{i). 
The spaces with a null bivector are algebraically spe

cial.9 The restriction to non-null Killing vector restricts the 
space-time to be Petrov III or N. IO

,l1 

The second class of zero Simon tensor solutions is char
acterized by GXG* = O. Using (15), this can be written as 

(G XG*)p = i21'lkB,... (20) 

Normally k is taken nonzero so that for class 2 solutions 
there is no first torsion. The bivector is not null. For this class 
G,.. can be written 

Gp = ( - k + i'1'2)Ap' (21) 

This set includes both static (t/Jp = 0) and stationary 
(t/Jp = + i'1'~p) solutions. It is interesting that the rotation 
of the Frenet frame relative to the Fermi transported frame 
lies along the acceleration. A possible triad for this class is 

(l,m,m) = (A,B ± iC l{i). 
One could choose k = 0 in this class. The G vector is 

Gp =i('1'ICp +'1'~p). 

This subclass seems to be artificial since the only example we 
were able to find also had '1'1 and '1'2 zero. We will see it is 
mathematically nice and so include it for completeness. 

The general class is described by Eq. (20). There are no 
restrictions on any of the Killing scalars. 

The Frenet decomposition makes very clear how G be
haves from class I to II. In addition it also describes the 
classwise behavior of the bivector. This behavior is especially 
interesting in the case when the second torsion, '1'2' is zero. 
The first class has bivector norm zero and G perpendicular to 
1= B. The second class has two subclasses. In II a, the bivec
tor norm is negative and G is along I = A. In II b, the bivec
tor norm is positive and G is along I = C. In all three cases, 
the bivector is orthogonal to its dual. This is summarized in 
Table I. 

TABLE I. Behavior of Peljes vector and Killing bivector norm for zero 
second torsion. 

Class G sl';V Sl';V k 1"( 1"2 

I 
GXG=O k( -A + iC) 0 B k k 0 

IIa 
GXG*=O -kA -Uk 2 <O A k 0 0 

lIb 
GXG*=O i1"(C Ur.>O C 0 1"( 0 
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C. Frenet decomposition-null Killing vector 

The decomposition discussed in the previous section is 
only valid for non-null Killing vectors, I/. #0. If we wish to 
discuss the behavior of G on a Killing horizon, a different set 
of Frenet tetrads must be used because of differences in de
fining trajectory parameters. 

If the Killing vector is null but has a non-null normal, 
the appropriate tetrad is 12 described by 

(22) 

with sil-BII- = 1 = -All-All- = -BII-CII-' all others zero. In 
terms of these vectors 

(23) 
nil-nil- #0, oj" = - k 1CII-, 

nil- is the normal to the I/. = 0 Killing horizon and should be 
compared to I/. II- in the previous section. The Killing bivector 
has norm and dual product12 

D 

SII-;vslI-;v = - 4klk2' SII-;vslI-;V = - 4klk3' (24) 

For this case the vector G is defined by 

Gil-;: - k 1(A II- - iCIl-) , (25) 

which is clearly of the Perjes null class with no bivector re
striction. A metric example of this case is the Kerr solution. 
The Killing horizon (I/. = 0) is not coincident with the event 
horizon (I/. 11-1/.11- = 0) except on the axis of rotation. On the 
Kerr Killing horizon, Gil- is a null vector. 

If the Killing vector and the normal are both null, as for 
example on the Schwarzschild horizon, then a single null 
vector Nil- parametrizes all vectors and we haveI2

•
13 

f: II- = N II- I/. = 0 I/. II- = EN II- I/. 11-1/. = 0 
~ " 'II-' (26) 
oj" = 8NII-, oJ"{J)1I- = 0, G = rNIl-, Gil-Gil- = O. 

For this case the classes merge. 

III. TRANSFORMATIONS 

The transformations we want to consider are transfor
mations among the three classes of zero Simon tensor solu
tions which preserve the Killing vector. We consider only 
non-null Killing vectors. This transformation has been de
scribed by Geroch.6 1t generalizes the work of Ehlers 14 and 
Harrison. IS The transform is a projective transform on the 
complex function i1', 

i1" = (ai1' + b)/(ci1' + d), (27) 
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with a, b, e, d as constants. The transform is performed in the 
space h; hij of Killing trajectories with the requirement 

h/ = hij' (28) 

Under the transformation the Killing scalars transform as16 

t/J' = ([at/J - b) [d - et/J] - ael/. 2}/[ (d - et/J)2 +1/. 2e2], 

1/.'=I/.(ad-be)/[(d-et/J)2+1/.2e2]. (29) 

Under this transform, the zero Simon tensor is preserved. 
We wish to find the effect ofthis transform on the vector G. 
Take the covariant derivative of Eq. (29) in the Killing 
space. Pulling back to the metric space one finds 

I/. ~ = 1/.11- cos a + t/JII- sin a, 

t/J~ = t/JII- cos a -I/.II- sin a, 

with 

cos a = [(d - et/J)2 - e21/. 2)![ (d _ et/J)2 + e21/. 2], 

sin a = Ue(d - et/J)/[ (d - et/J)2 + e21/. 2]. 

Using these vectors to form G we have 

G~ = (1/./I/.')e-iaGIl-' 

(30) 

(31) 

(32) 

where G' differs from G only by a scaled phase factor. Class is 
clearly preserved by this transformation. For example, this 
transform will take the Schwarzschild metric into the Taub
Nue7 space-time. We would expect the Schwarzschild and 
Taub-NUT spaces to be of the same Perjes class II. 

In conclusion, we have decomposed the Perjes G vector 
onto a Frenet basis and discussed the Frenet scalar relations 
in each class. We find also that Perjes class is preserved un
der a transform that preserves the Killing vector. 
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An analytic solution to Einstein's field equations is presented for the Bianchi type Vlo class of 
models. The energy-momentum tensor is of the perfect fluid type. The solution corresponds to 
a locally rotationally symmetric and expanding cosmological universe which would give an 
essentially empty universe for large time. Some kinematical properties of the solution are 
discussed. 

I. INTRODUCTION 

The simplest model of the expanding universe is well 
represented by the Friedmann-Robertson-Walker (FRW) 
models which are both spatially homogeneous and isotropic. 
FR W models, in some sense, are good global approxima
tions of the present universe, but it is unreasonable to assume 
that the regular expansion predicted by these models is also 
suitable for describing the early stages of the universe. After 
spatially homogeneous and isotropic models, the simplest 
cosmologies are spatially homogeneous and anisotropic 
models. Bianchi spaces I play an important role in construct
ing models of spatially homogeneous cosmologies. Homo
geneous cosmological models filled with matter together 
with specified equations of state have already been widely 
studied. Recently Bayin and Krisch2 presented some analyt
ic solutions to Einstein's field equations with perfect fluids 
for Bianchi type I and III spaces. Using metric solutions 
parametrized over several Bianchi types is a useful tool in 
constructing and studying current modern cosmologies 
since spatially homogeneous and anisotropic Bianchi mod
els are a method somewhere between FRW models and com
pletely nonhomogeneous and anisotropic universes. 

We obtain an analytic solution to Einstein's field equa
tion with perfect fluids for Bianchi type Vlo spaces. The solu
tion represents a locally rotationally symmetric (LRS) cos
mological model that expands at large time to a very dilute, 
essentially empty space for vanishing cosmological constant. 

II. FIELD EQUATIONS AND THEIR SOLUTIONS 

The field equations in general relativity are 

RJ.lv - ~ RgJ.lv + AgJ.lV = - 81T TJ.lv· (2.1) 

The energy-momentum tensor for a perfect fluid is 

TJ.lv = (p + p) VI' Vv - pgJ.lV' VI' VI' = - 1. (2.2) 

The metric of Bianchi type Vlo is 

ds2 = dt 2 - A (t)dx2 - B(t)e - 2mx dy2 - C(t)e2mx dz'l, 
(2.3) 

where A, B, C are cosmic scale functions and m is a nonzero 
constant.3 We number the coordinates x,y,z,t as 1,2,3,4, re
spectively. In comoving coordinates the field equations to be 
considered are 

81TP = - !(B "IB) - !(C" IC) + l(B'IB)2 

+ l(C'IC)2 -l(B'C'IBC) - m21A + A, (2.4) 

81TP = - !(A" IA) - !(C" IC) + l(A 'IA)2 

+ l(C'IC)2 -l(A 'C'IAC) + m21A + A, (2.5) 

81TP = - !(A "IA) - !(B" IB) + l(A 'IA)2 

+ l(B 'IB)2 -l(A 'B'IAB) + m21A + A, (2.6) 

81Tp = l(A 'B'IAB) + l(B 'C'IBC) 

+ !(A 'C'IAC) - m21A - A, 

B'IB-C'IC=O, 

where a prime denotes a derivative with respect to t. 

(2.7) 

(2.8) 

Equation (2.8), on integration, givesB = nC, n being an 
arbitrary constant. Without loss of generality one can take 
n = 1. Then Eqs. (2.4) and (2.5) give 

!(B" IB -A" IA) + !(A 'IA)(A 'IA -B'IB) 

+2m21A =0, (2.9) 

which is a single equation in two unknowns. For a complete 
solution of this equation we require an extra condition. A 
number of solutions to (2.9) could be generated by assuming 
solutions for A (or B). Here we obtain a physically realistic 
solution by assuming 

A = (at + b)2, (2.10) 

a and b being arbitrary constants. Substitution of (2.10) into 
(2.9) gives 

(at + b)2B" - a(at + b)B' + 4m2B = 0, (2.11) 

which is a Lagrange linear differential equation. The general 
solution of (2.11) is 

B=a(at+b)l+r +p(at+b)l-r, 

where a and P are integration constants and 

r = (a2 - 4m2) 1/2Ia. 

Hence the metric of our solution is 

d~ = dt 2 - (at + b)2 dx2 - {a(at + b) 1+ r 

+ p(at + b) 1- r}(e - 2mx dy + e2mx dz'l). 

The pressure and density are 

(2.12) 

(2.13) 

(2.14 ) 
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817: = _ a2{ ar(1 + r)(at + bV-
1 
-Pr(1 - rHat + b) - y-l } + a2

{a(1 + rHat + b)Y + P(1 - rHat + b) -Y}2 
P a(at+b)l+y+p(at+b)l-Y 4 a(at+b)l+y+p(at+b)l-y 

- m 2/(at + b)2 + A, (2.15) 

81T. = a2
{a(1 + r)(at + bV-

1 + P(1 - r)(at + b) -Y-l} + a2
{a(1 + r)(at + b)Y + P(1 - r) (at + b) -Y}2 

'P 2 a(at+b)I+Y+p(at+b)I-Y 4 a(at+b)l+y+p(at+b)l-Y 

III. PHYSICAL AND KINEMATICAL PROPERTIES OF 
THE MODEL 

We discuss the properties of the shear tensor. It has been 
pointed out by Collins and Wainwright4 that the shear ten
sor (T,." plays an important role in general relativistic cosmo
logical and stellar models. The shear tensor arises in the de
composition of four-velocity vector of the fluid, i.e., 

V,.;v = - V~ V" + aI,." + (T,." + ah,.J3, (3.1) 

V~ = V,.;" Vv, V~ V" = 0, (3.2) 

aI,." = VI,.;,,! + V["V"!' aI,."V" = 0, (3.3) 

h,." =g,." + V,. V,,, h,..,V"=O, (3.4) 

(T,." = V(,.;v) + V;,. V,,) -ah,.,,/3, (T,."V" = 0, (3.5) 

and a = V:;', where V',., aI,.", a, and (T,.., are called accel
eration, rotation, expansion, and shear, respectively, and a 
semicolon means a covariant derivative. S 

For the model (2.14) we find 

a = a{a(2 + r)(at + bV + P(2 - rHat + b) - Y}, 
a(at + b)l +Y +p(at + b)l-y 

V'JL = O. (3.6) 

The shear scalar (T defined by q2 = !(T,.v 01''' has the value 

(T = _a_{aO- rHat + bV +P(1 + r)(at + b) -Y}, 
2.[3 a(at+b)I+Y+p(at+b)l-y 

(3.7) 
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(2.16) 

which is nonzero for all values of t (0 < t < 00 ) and drops to 
zero at infinite time (t- 00). Thus the model is anisotropic 
for O<t< 00. 

As t-oo, p(oo) =A and p(oo) = -A, so A=O 
would give at large time an essentially empty universe. The 
ratio 

(T 1 {a(1 - r)(at + bV + P(1 + r)(at + b) -Y} 
a = 2.[3 a(2+r)(at+bV+P(2-r)(at+b)-Y 

(3.8) 

tends to (1I2.[3)(1-r)/(2+r) ast-oo. Thus the shear 
scalar (T does not tend to zero faster than the expansion. The 
ratio in (3.8) tends to zero as t- 00 forr = 1. But for r = 1, 
Eq. (2.13) gives m = 0 and consequently we obtain the LRS 
Bianchi type I perfect fluid universe with spatial isotropy at 
infinite time. For the model (2.14) all the components of the 
rotation tensor are zero. Hence (2,14) represents an expand
ing and anisotropic cosmological model in which all of the 
fluids are acceleration- and rotation-free. 
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A systematic method to obtain a series of new correlation inequalities for a class of two
component vector spin systems is presented. These correlation inequalities are applied to lattice 
scalar field models with two-body, anisotropic or isotropic ferromagnetic interactions and 
interaction potential of even polynomials, especially the It( 1<1>12)2 model, which includes the 
plane rotator model as a special case. Here an external field h = (h,H), h>O, H>O, is present. 
The possible way to extend our method to the N-component (N)3) case is also discussed. 

I. INTRODUCTION 

Correlation inequalities are a very powerful tool in rig
orous studies of quantum field theory and statistical me
chanics. I

•
2 For a set of lattice sites A, let A = {A/}iEJ\ be a 

family of non-negative integers, only a finite number of 

which are nonzero. Define tpA = niEJ\tp/i and IA I 
= l:;eAAj> where the tp; are real-valued scalar fields. For 

appropriate "ferromagnetic" expectations ( . ), the first and 
second OKS inequalities 1 read 

(tpA »0, 
(tpA;tpB)=(tpAtpB) _ (tpA)(tpB»O, 

foral/A,B. 

(1.1 ) 

But, it is unknown, in general, whether similar correla
tion inequalities hold for twice and more-times-truncated 
expectations, although they would have many important ap
plications in rigorous studies of quantum field theory and 
statistical mechanics.2,3 For nearest neighbor ferromagnetic 
interactions, e.g., the correlation inequality (tp A;tp B;tp C) >0 
(which has not been proved) would imply the convexity of 
the susceptibility and the monotonicity of the specific heat 
w.r. t. (with respect to) the inverse temperature J in the high 
temperatureregionJ<JcforlA I = IBI = ICI = 2 (Ref. 3), 
and the convexity ofthe magnetization w.r.t. J for IA I = 1, 
IB I = IC I = 2 in the presence of the magnetic field. For the 
twice-truncated expectation, the following correlation in
equality (called the new Lebowitz inequality4) is known to 
hold, for all A,B,C; 

(tpA;tp B;tp C) > _ 2 min[ (tp A) (tpB;tp C), (tpB) (tpA;tp C), 

(tpC)(tpA;tpB)], (1.2) 

where 

(tpA;tpB;tpC)={tpAtpBtpC) _ (lPA)(lPBtpC) 

_ (tp B) (lPAlP C) _ (lPC)(tpAlPB) 

+ 2(tpA)(tpB)(lP C). (1.3) 

Yet, it is incorrect to expect that (lP A;lP B;lP C) >0 holds for 
allA,B,C. In fact, for IA I = IB 1= IC 1= 1,theOHSinequal
ity holds,s namely 

(lP/;tpj;tpk)<:'O, (1.4) 

which implies the concavity of the magnetization and mono
tonicity of the susceptibility w.r.t. the magnetic field h. 

Moreover, for the four-times-truncated expectation, we 
have the Lebowitz inequality6 

(tp/;lPj;tpk;tp/) <:.0 (1.5) 

in the absence of external magnetic field. 
In the earlier work,7 we presented a series of correlation 

inequalities for higher-times-truncated expectations. For ex
ample, in the presence of an external field, we proved 

(tp;;tpj;tpk;tp/) > - 4(tp/;tp) (lPk;lP/), (1.6a) 

(tp;;tpj;tpk;tp/)<:' -4(tp;)(tpj;tpk;tp/)· (1.6b) 

Note that the inequality (1.6b) reduces to (1.5) in the ab
sence of an external field. Inequalities of this type [i.e., 
(1.2), (1.6a), and (1.6b)] turn out to be very useful in the 
rigorous study of the continuum limit and the critical behav
ior of the broken-symmetry lattice scalar field models.8 But 
they are restricted to one-component ferromagnets whose 
single spin measures belong to the EMN (Ellis-Monroe
Newman) class.9-12 

The extension of correlation inequalities to multicom
ponent ferromagnets has been performed by several auth
ors. 13-26 For two-component spin systems where the spin is 
denoted as ct> = (tp,s), 1ct>1 = 1, Monroel4 presented the fol
lowing correlation inequalities of OKS type: 

We would like to obtain explicit correlation inequalities 
for the three- and four-times- (at least) truncated expecta
tions for multicomponent ferromagnets whose spin variables· 
ct> are allowed to take unbounded values. Although the 
broken-symmetry scalar A<I>4 theory plays an important role 
in the Higgs mechanism,27 it has been recently proved8 that 
( under reasonable assumptions) the continuum scalar 
A (lP 4) d field theory obtained from the corresponding lattice 
regularized model by taking the continuum limit is trivial in 
d> 4 dimensions, if one adopts the renormalization condi
tion that the vacuum expectation value of the single (renor
malized) scalar field remains finite and nonzero in this limit. 
However, the result is restricted to the one-component mod
el. 8 This work has begun with the motivation of extending 
the triviality proof of broken-symmetry A (tp 4) d field theory 
to the two- and more-component cases. 

In Sec. II, we present a strategy based on duplicated 
variables for proving correlation inequalities. In Sec. III, we 
consider the anisotropic case. Section IV is devoted to the 
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isotropic case. In this paper, explicit correlation inequalities 
are derived only for a class of two-component ferromagnets. 
In the final section, we discuss the possibility of extending 
our method to N-component (N) 3) ferromagnets. The ex
plicit correlation inequalities involving three- and four
times-truncated expectations are listed in Appendix A for 
the anisotropic case and in Appendix B for the isotropic case. 

110 TWO-COMPONENT MODEL 

In this section we consider the two-component scalar 
field or spin model on a lattice A that consists of a set of N 
sites in d-dimensional space. To each site we associate a two
dimensional vector spin <I> = (tp,s). The Hamiltonian is of 
the form 

N 

Kr<CIl) = L (Jijtp;tpj + KijS;Sj) 
;J,kj= I 

N 

- L (hjtpj + HjSj ), (2.1) 
j=1 

where r=.{Jij,l(ij,hj,Hj} and Jij,Kij,hj'~>O for all i andj. 
Note that the ferromagnetic interaction strength Jij and the 
external fields hj'~ are made to vary from bond to bond and 
from site to site, respectively. Let a finite family of real-val
ued random variables CIl = {<I>j ER2; i = 1, ... ,N} be distribut
ed by the measureJl on (R2)N given by 

N 

dJlr(CIl) =ZilexP[ -Kr(CIl» II dv(tpj), (2.2) 
j=1 

where Zr is the partition function that guarantees the nor
malizationSdJlr(CIl) = 1 anddv(tpj) is the single spin mea
sure, 

dv(<I» =d<l>exp[ - V(<I»], d<l>=dtpds, (2.3) 

whose explicit form is specified below. 
Before proceeding to find new correlation inequalities 

for two-component vector spin systems, we should explain 
the connection of our paper with that of Monroe. 14 Monroe 
considered the spin <I> with unit length I <I> I 
=. (tp 2 + S 2) 1/2 = 1, whose distribution over the unit circle 
is given by I( <1» assumed to be even, i.e.,/( - <1» = I( <1». 
Our model allows the spin to be unbounded and, if desired, 
the fixed-length case is recovered by adopting 
V(<I» =A(I<I>1 2 _1)2 and taking the limit A-+ 00. So our 
method covers a more general class of two-component ferro
magnets than those encompassed by Monroe. 

Consider the duplicate system whose random variables 
CIl and cr.=. (q;,~) are independently, identically distributed 
according to Jl. 

Introducing the vector notation 

~=.(tp,~), t=.(s,t), 

i=. (~l), H=. (h,h,H,H), 
(2.4) 

the sum of the original and duplicated Hamiltonian can be 
written as 

N 

Kr (CIl) + Kr (fi,) = L (Jij~;O~j + Kijtot) 
;J,kj 

(2.5) 
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For an orthogonal matrix T, define 

X=.iii>, (2.6) 

where we have defined the variables 

X=. (x,y), x=. (x,x),Y=. (y,ji). (2.7) 

( I) If T is taken to be the direct sum of two orthogonal 
matrices A,B such that 

T= I~ ~I, (2.8) 

then we obtain 
N 

Kr(CIl) +Kr(fi,) = L (Jijx;OXj + KijY/Yj) 
iJ:i<i 

N -+-+ - L (T~)oXj' (2.9) 
j=1 

-+::;t -+ 
where x = AY' and Y = Bs. 

(II) If the ferromagnetic interaction is of isotropic type: 
Jij = Kij' then, for any orthogonal matrix T, 

N -+-+ - L (TH)o~. (2.10) 
j=1 

Forthemulti-indexP(a) = {Pj(a)}je/\ (a collection of non
negative integers), define 

-+ N -+ 
{(X) (a)}p(a) = II {(~) (a)Yi

a
), (2.11) 

j=1 

where a labels the components of X. 
Definition 1: Let CIl and cr. be two independent copies of a 

random variable CIl distributed by v. Now we define the class 
9 of single spin measures by 

g=. {v; Eo LUI {(X) (a)}p(a) ]>0, 

for all P(a»O, a = 1, ... ,4}, (2.12) 

where we have defined the unnormalized expectation 

Eo[F(<I>,cr.)] = I F(<I>,~) ;.frl dv(<I>;) j.frl dV(~j)' 
(2.13 ) 

Now we look for an orthogonal matrix T that satisfies the 
conditions (2.12). First, we restrict the potential V to be of 
the <1>4 type, namely, 

V4 (<I» =A(tp2+ S 2)2+Jl(tp2+ S 2), A>O, JlER. 
(2.14 ) 

In general, however, we suppose V is a polynominal of de
gree D, that is, 

D 

VD (<I» = L A2n (1<I>12)n, 1<I>12=.tp 2 + S 2. (2.15) 
n=1 

Then we define 

m(<I>,~)=,VD(<I» + VD(<I» 

D 

= L A2n [( 1<I>12)n + (1<I>12)n], (2.16) 
n=1 
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which is rewritten in terms of the variable X by substituting 
the relation (f,:=TtX (T': transposed matrix of T): 
m

D 
(<I>,CI» = W

D 
(X (I), X(2), X(3), X(4), and is decomposed 

into a sum of (even terms in each X (a» and (odd terms in 
each X (a». The even terms cause no problem. The odd 
terms must be ferromagnetic. 

Define 

(2.17) 

Since the orthogonality of T implies 

P
2

(<I>,CI» = (X(I)2 + (X(2)2 + (X(3)2 + (X(4)2, 
(2.18 ) 

it suffices to cheek the ferromagnetic character of P 2" (<I>, CI> ) 
for n;,2. 

Finally, note that 

dv(<I»dv(CI» 

= dcp ds dq, it exp [ - {V( cp,s) + V( q,J)} ] 
-+-+ 

= dx dy dx dy exp[ - W(x,y) ]det 1 a(cp,s) 1 

a(x,y) 

=dxdydxdyexp[ - W(x,y)]det T'. (2.19) 

Thus we must check the following points: (I) the ortho
gonality of T, (II) det TT = det T> 0, (III) ferromagnetic 

--> 
character of the odd terms in W(x,y), and (IV) (THj )(a);,o 
for all a = 1, ... ,4 (in the presence of external fields). 

The requirements (II) and (Ill) are sufficient to con
clude that veg. Therefore, the requirements (I) and (IV) 
imply that, for all P(a);,O (a = 1, ... ,4), 

f 
4--> 

dJ..lr «(I) )dJ..lr (CI» JI {( T(I) (a)}p(a);,o, (2.20) 

provided that veg (see, e.g., Sees. 4.3 and 4.7 of Ref. 2). 
For a given set of multi-index P(a):={Pj(a)}ieA 

(a = 1, ... ,4), the corresponding correlation inequalities are 
obtained by explicitly expanding the product 

4 --> II {(T(I)(a)}P(a) 
a=1 

N --> --> 
= jJJt I {( T<I>j )(I)V,(\){( T(I)j )(2)VP) 

X {(Ti
k 

)(3)}p.(3){( Tfi,l )(4)V,(4), 

where 

--> 4--> 
(T(I)j)(a):= L Tab (I)/b) 

b=1 

= Tal CPj + Ta2 q,j + Ta3 Sj + Ta4t j , (2.21 ) 

and rewriting each term of the result in terms of the normal
ized expectation 

( ( . »:= f dJ..lr «(1)( . ), (2.22) 

according to the rule that, for F«(I) = cpASB and 
G(q,):=q,Ct D

, 

f dJ..lr «(I)dJ..lr (q,)F«(I)G(q,) = (F«(I)) (G«(I)). 

Here it should be remarked that, in this procedure, there 
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appear only terms that are a product of at most two expecta
tions, since we have prepared the twofold duplicated system; 
but see See. V. Subsequently, we rewrite them in terms of the 
truncated expectations; see Appendixes A and B. 

Finally, note that the measure dJ..lr «(I)dJ..lr (q,) is in
variant under the transformation of exchanging the original 
and duplicated variables 

CPj-->q,j and Sj-->tj , for all iJeA, (2.23) 

and, if the external field is zero, under the following indepen
dent four transformations: 

cPj --> - CPo Sj --> - Sj' ;Pk --> - ;Pk' tl--> - tl' 
(2.24) 

III. THE ANISOTROPIC CASE 

In this section, we look for an orthogonal matrix satisfy
ing the above conditions (1)-(lV) such that T is of block 
diagonal form entailing two 2 X 2 orthogonal matrices. Any 
2 X 2 orthogonal matrix can be written as 

A=I_; :1 or B=I; _:1, (3.1) 

where a 2 + {3 2 = 1. Here note that det A = 1, but 
detB = - 1. 

Then the 4 X 4 matrix T is obtained as follows. 
Case (1): 

a {3 0 0 

T= I~ 01 1 -{3 a 0 0 
/j=,fi 0 0 ii P 

0 0 -P ii 

Indeed, the requirement (II) is satisfied, since 

det T' = !(a2 + {32)(ii2 + P 2) >0. 

By explicit calculations, we obtain 

(3.2) 

P
4

(<I>,CI» = !{(X(I)4 + (X(2»4 + (X(3»4 + (X(4)4 

+ 6(X(I)2(X(2)2 + 2(X(I)2(X(3)2 

+ 2(X(1)2(X(4)2 + 2(X(2)2(X(3)2 

+ 2(X(2)2(X(4)2 + 6(X(3)2(X(4)2} 

+ 4a{3iiPX (I)X (2)X (3)X(4) . (3.3) 

Then the requirement (Ill) forces us to take 

a{3iip= - 1«0), (3.4) 

which is sufficient to conclude that veg. Then we have 

TH = l/,fi«a +{3)h,(a -{3)h, 

(ii +P)H,(ii -P)H). (3.5) 

Let a,/3,iijj = ± 1. Then one has 

TH = l/,fi(a +{3)h,(a -{3)h, 

ii(1- a{3)H,ii(1 + a{3)H). (3.6) 

(i) Thecaseofa {3 = 1: TH = ,fi(ah,O,O,iiH). Now the 
requirement (TH) (a);,o for all a = 1, ... ,4 leads to the final 
result 

a= 1, ii= 1, {3= 1, P= -1. (3.7) 

(ii) The case of a {3 = - 1: in this case TH = ,fi 
(O,ah,iiH,O). Then we obtain 
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a= 1, it= 1, /3= - 1, p=1. (3.8) 

Case (2): 

a /3 0 0 

T= I~ 01 1 /3 -a 0 0 
jj=..[i 0 0 it P 

0 0 P -it 

(3.9) 

Then 

det T' = (a2 + /3 2)(it2 + P2)/4>0. 

Also in this case, the odd term has the same form as above. 
So we can proceed as before and obtain the following results. 

( i) The case of a /3 = 1: 

TH = ..[i(ah,O,O - itH). 

Then a = 1, it = - 1, /3 = 1, P = 1. 
(ii) The case of a /3 = - 1: in this case TH 

= ..[i(0, - ah,itH,O). Then we obtain 

a = - 1, it = 1, /3 = 1, P = 1. 

Case (3): 

a /3 0 0 

T= I~ 01 1 -/3 a 0 0 
(3.10) jj=..[i 0 0 it P 

0 0 P -it 

which is orthogonal, but yields 

det T' = (a2 + /3 2)(it2 + P2)/4 <0. 

Hence this choice of T contradicts requirement (II). 
In this paper, explicit correlation inequalities are ob

tained for the matrix T case (1) (i): 

1 o 0 

o 0 1 -1 
T=-

..[i 0 0 
(3.11) 

-1 
0 0 

Then one finds 

J dJLr (.)dJLr (i») Jjl {(Ti)<Q'}p<Q' 

= JdJLr (.)dJLr (i») .. ft (qJi +~i)Pi(ll 
IJ,k,r= 1 

X( -qJj +ifJj)Ppl(Sk -tdPk(3)(sr +tr)P1<4l. 
(3.12) 

Combining this with the invariance of the measure 
dJLr (.)dJLr (i») under the transformation (2.23), nontri
vial correlation inequalities are obtained only if 

N N 
I ~ (2) and I Pk (3) are both even or both odd. 
i=1 k=1 

(3.13) 

By performing the transformations (2.24) simultaneously, 
it is easy to see that all the possible choices of T above pro
duce the same set of correlation inequalities as those ob
tained by, e.g., (3.11). So all cases are exhausted by consid
ering (3.11). 

For the matrix Tof (3.2), one has 
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14>12 =101 - 2a/3X(l)X(2) - 2aPX(3)X(4), 

14>12 = 101 + 2a/3X(1)X(2) + 2aPX(3)X(4), 

where we have defined the inner product 

(3.14) 

101= (X(l))2 + (X(2»)2 + (X(3»)2 + (X(4»)2. (3.15) 

It is not difficult to show that the condition (3.4) is sufficient 
to guarantee the ferromagnetic character (III) of the poly
nomial P 2n (4), c1» for all n > 2. So the correlation inequalities 
presented below hold also for 

D 

VD (4)) = I A,2n(I4>1 2 )n, 
n=1 

if A,2n >0 (n>2) and A,2=JLER. (3.16) 

We define N(a) =~iEAPi (a) and the index N=(N( 1), 
N(2); N(3), N(4)). Then, for example, we obtain 

(qJi;Sj) <0, (3.17) 

for (0,1;1,0), which is a special case of (1.7), and 

(qJi;Sj» - 2(qJi) (Sj)' (3.18) 

for (1,0;0,1). For more correlation inequalities, see Appen
dixA. The inequalities (25), (28), and (29) in Ref. 14corre
spond to (1,2;0,0), (1,0;2,0), and (0,1;1,1), respectively. 

Especially, in the case that h=O (but H-,O), our in
equalities have the following form: 

(1,1; 1,0) [the special case of (1.7)], 

(qJiqJj;Sk)<O; (3.19) 

(0,2;0,1), (2,0;0,1), 

(qJiqJj;Sk) > - 2 (qJiqJ) (Sk); 

(0,0;2,1), 

(Si;Sj;Sk» - 2 (Si;S) (Sk); 

(2,2;0,0), 

(qJi;qJj;qJk;qJr) -, - 2 (qJiqJj ) (qJkqJr); 

(1,1;1,1), 

(qJ;qJj;Sk;S/)< - 2(qJiqJj;Sk) (Sr); 

(0,2;2,0), (2,0;2,0), 

(qJiqJj;Sk;S/» - 2(qJiqJj) (Sk;S/); 

(0,2;0,2), 

(qJiqJj;Sk;S/» - 2(qJiqJj;Sk) (Sr); 

- 2(qJiqJj;SI ><Sk) 

- 2(qJ;qJj) (Sk;S/) 

- 4(qJiqJj) (Sk) (51) 

> - 2(qJiqJj) (Sk;S/) 

- 4(qJjqJj) (Sk) (51); 

where we have used (3.19), 

(0,0;2,2), 

(Si;Sj;Sk;S/» - 2(S;;Sj;Sk) (51) 

- 2 (Si;Sj;Sr ) (Sk) 

- 2(5;;5) (Sk;Sr) 

- 4(Si;Sj) (Sk) (51)' 
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(3.21 ) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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IV. THE ISOTROPIC CASE 

Consider now an orthogonal matrix T given as the ten
sor product 

aa alJ pa plJ 

- 1 -alJ aa -plJ pa 
(4.1) T=A®A=-

-pa -plJ aa alJ 2 
plJ -pa -alJ aa 

where A and A are the 2 X 2 orthogonal matrices (3.1). How
ever, an explicit calculation shows that 

P4(~'cj» = !{(X(I)4 + (X(2)4 + (X(3)4 + (X(4)4 

+ 6(X U)2(X(2)2 + 2(XU)2(X(3)2 

+ 2(XU)2(X(4)2 + 2(X(2)2(X(3)2 

+ 2(X(2)2(X(4)2 + 6(X(3)2(X(4)2} 

(4.2) 

Note that, in this expansion, the quantities a, p,a, lJ to be 
specified do not appear anywhere. Moreover, for both 
T=A ®B and T=B®B, P4(~'cj» has the same form as 
( 4.2). Hence the requirement (III) cannot be satisfied for 
these 4 X 4 matrices T of the tensor-product type. 

Next we try to look for an orthogonal matrix T of the 
form 

T=al+pS, 

where I is the unit matrix. Note that 

TT' = (al + PS) (al + PS') 

= a 21 + apeS + S') + p 2SS'. 

(4.3) 

Hence for TT' = 1 to hold, it is sufficient that S satisfy the 
conditions 

(4.4) 

For example, the 2 X 2 matrix A is recovered from 

S= I 0 11, T= I a PI, 
-1 0 -p a 

For the 4 X 4 matrix, we set 

a b c d 

1 -b a e 1 1 
T=- =-aI+S. (4.5) 

2 -c -e a g 2 
-d -I -g a 

The condition that all the off-diagonal elements of AA ' van
ish turns out to be satisfied if we take 

1 = - cde and g = bde, 

provided that b,c,d,eJ,g = + lor - 1. 
In this reduction, we obtain 

P4(~'cj» = H(X(1)4 + (X(2)4 + (X(3)4 + (X(4)4 

+ 2(2 - abce) (X(1)2(X(2)2 

+ 2(XU)2(X(3)2 

+ 2(2 + abce) (X(I)2(X(4)2 

+ 2(2 + abce) (X(2)2(X(3)2 

+ 2(X(2)2(X(4)2 
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(4.6) 

+ 2(2 - abce) (X(3)2(X(4)2} 

- 4abcdX(1)X(2)X(3)X(4). 

Then the requirement (ferromagnetic interaction) 

abed = 1 

is sufficient to conclude that veg. Finally we have 

a b c 

1 
T=-

-b a e 

2 -c -e a 

-abc -abe -ace 

Note that det T' = 1, and in addition, 

TH= H(a + b)h +c(1 +ab)H, 

(a - b)h + e(1 - ab)H, 

- (c + e)h + a(1 + ce)H, 

abc 

-abe 

ace 

a 

abe - c + e)h + a(1 - ce)H]. 

Consider now the case ab = 1, ce = 1 for which 
..... 

TH = (ah + cH,O, - ch + aH,O) 

= a(h + (c/a)H,O - (c/a)h + H,O). 
..... 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

Forac = 1, TH = a(h + H,O, - h + H,O), the requirement 
(IV) is satisfied if we take a = 1, b = 1, c = 1, e = I, pro
vided that H>h>O. For ac = - 1, iiI = a 
(h - H,O,h + H,O), then the requirement (IV) is satisfied if 
a = 1, b = 1, c = - 1, e = - 1, provided that h>H>O. 
Other cases are discussed in a similar manner, and the results 
are summarized as seen in Table I. Here the requirement 
(IV) is satisfied for cases from 1-4 in the region H>h>O, 
and for the cases from 5-8 in the region h>H>O. 

We present correlation inequalities for the matrix T 
(under the condition H>h>O): 

1 

1 -1 -1 1 
T=-

-1 1 2 -1 
(4.11) 

-1 -1 1 1 
By the same argument as that in the previous section, nontri
vial correlation inequalities are obtained only if 

N N 
L ~(2) and L Pk(3) are both even or both odd. 
j=l k=l 

( 4.12) 

As in the anisotropic case, one can check that all the possible 

TABLE I. Allowed sets of matrix elements for the matrix (4.5) which satis-
fies allthe requirements (I)-(IV); we assumed that 0= + 1. 

a b c d e f g ab ce abce 

I + + + + + + + + + 
2 + + + + + + 
3 + + + + + + 
4 + + + + + 
5 + + + + + + + 
6 + + + + 
7 + + + + 
8 + + + 
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choices of T above produce the same set of correlation in
equalities as those obtained by, e.g., (4.11). 

By explicit calculations, one may show that the condi
tion (4.S) that guarantees the ferromagnetic character (III) 
of the polynominal Pn (<1>,<i», for n = 2,4, is sufficjent to 
satisfy the requirement (III) for n = 3, but fails for n = 4. So 
the correlation inequalities presented below hold also for the 

V6 (<1» = 1/( 1<1>1 2)3 + .1.( 1<1>12)2 + ,u1<1>12 

model (1/.A.>0, ,ueR), together with the A.( 1<1>12)2 model. 
For example, we have the following correlation inequal

ities corresponding to the multi-index (N( 1 ), ... ,N( 4»): 

(0,1,1,0), 

«({J;;({Jj) - «({J;;S}) + (S;;({Jj) - (Si;S}»O; 

(1,0,0,1), 

«((Ji;({Jj) + 2«({Ji) «({Jj) - «((Ji;Sj) 

- 2«({Ji) (Sj) - (Si;({Jj) - 2(Si) «({J) 

+ (Si;Sj) + 2(Si) (Sj)<O. 

(4.13) 

(4.14 ) 

Further explicit correlation inequalities are presented in Ap
pendix B, for the case of h=O. For the isotropic case, in 
contrast with the anisotropic case, we can obtain upper 
bounds on (Si;Sj;Sk)' For example, corresponding to the 
multi-index (0,1,1,1), we have 

(Si;Sj;Sk)< - 2(Si;Sj) (Sk) 

+ «({J;({Jj;Sk) + «((J;({Jk;Sj) 

- (Si;({Jj({Jk) + 2 «({Ji({Jj ) (Sk)' ( 4.15) 

Note here that in the right-hand side of this inequality the 
first three terms are nonpositive and the remaining two are 
non-negative. 

v. ON THE EXTENSIONS TO N-COMPONENT MODELS 
(N)3) 

In this section we discuss the extension of our method to 
get more correlation inequalities for N-component ferro
magnets (N)3). Let us consider R-fold replicated systems 
(R >2). The case N = 2, R = 2 has been already considered 
in the previous sections. Let us putF = N XR. In the follow
ing we try to find anF XF(F>4) orthogonal matrix T that 
satisfies the requirement (III). If we could find such a ma
trix T, all the remaining steps are carried out easily, as exem
plified in the preceding sections. 

First, we consider the two-component model, but we 
increase R to obtain correlation inequalities for higher- (at 
most R) -times-truncated expectations. This might enable us 
to obtain, e.g., the GHS inequality for two-component ferro
magnets: (Si;Sj;Sk)<0.21 

(i) The case N = 2, R = 3: For example, consider the 
orthogonal 6 X 6 matrix 

T(6) = 1:(1) ~(2)1, 

where {} (a) is a 3 X 3 orthogonal matrix, e.g., 

o 0 
{} = 0 a /3 ,a2 + /3 2 = 1. 

o -/3 a 
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But, by explicit calculations, it turns out that all the 6 X 6 
matrices T of this type do not satisfy the requirement (III). 

(ii) The case N = 2, R = 4: A candidate is the following 
SXS matrix: 

T(S) = 

A (1) 
o 
o 

o 
A (2) 

o 

o 
o 

A (3) 

o 
o 
o 

o 0 0 A (4) 

where each A (a) is a 2 X 2 orthogonal matrix of the form 
(3.1). This matrix is obviously orthogonal, but does not sat
isfy the requirement (III). Furthermore, the orthogonal 
matrix 

T(S) = 1~(1) ~(2)1 
made from the 4X4 matrix Tin (4.9) cannot satisfy the 
requirement (III), either. 

Next we consider the N-component case, N>3 with 
R = 2. A possible (orthogonal) matrix T is obtained as the 
direct sum 

A (I) 

A (2) 

T= 

A(N) 

where each A (a) is a 2X2 orthogonal matrix as in (3.1). But 
a matrix of this type fails to satisfy the requirement (III) for 
N= 3 and 4. 

The above consideration forces us to take T not of the 
diagonal form. As a first step, we tried to look for an F X F 
(F;;;.5) orthogonal matrix T with elements Tab = + 1 or 
- 1. In the range 5<F<7, we exhausted all the possible 

cases and obtained the result that there exist no orthogonal 
matrices T which take values only + 1 or - 1 as their ma
trix elements. For F = S, however there exist such orthogo
nal matrices. We expect that some of them satisfy all the 
requirements (I )-( IV). Work to check them is now in prog
ress. We hope that the results can be reported in a subsequent 
paper. The applications of the new correlation inequalities 
obtained in this paper to the study of the critical behavior of 
multicomponent ferromagnets will be presented elsewhere. 

APPENDIX A: NEW CORRELATION INEQUALITIES 
(ANISOTROPIC CASE) 

In what follows we enumerate correlation inequalities 
together with the index N=(N( 1 ),N(2),N(3),N(4»): 

(0,1; 1,0), 

«({J;;Sj) <0; 

(1,0;0,1), 

«((Ji;Sj) > - 2(rpi) (S); 
( 1,2;0,0), 

(rpi;({Jj;({Jk) > - 2(rpi) (rpj;({Jk); 

(1,1;1,0), 

«((Ji;rpj;Sk) < - 2(rpi) «({Jj;Sk); 

K. Kondo and Y. Sugiyama 

(AI) 

(A2) 

(A3) 

(A4) 
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(0,2;0,1), (0,2;0,2), 

(cp;;CPj;Sk)>- - 2(cp;;cpj) (Sk); (A5) (cp;;CPj;Sk;S/) > - 2(cp;;CPj;Sk) (S/) 
(0,1; 1, 1) - 2(cp;;cpj;S/) (Sk) 

(cp;;Sj;Sk)< -2(cp;;Sj)(Sk); (A6) 
- 2(cp;;CPj)(Sk;S/) 

( 1,0;2,0), 
- 4(cp;;cpj) (Sk) (S/); (AI6) 

(cp;;Sj;Sk)>- - 2(cp;) (Sj;Sk); (A7) 
(2,0;2,0), 

(0,0;2,1 ), 
(cp;;CPj;SkS/» - 2(cp;) (CPj;Sk;S/) 

(S;;Sj;Sk) >- - 2(S;;Sj) (Sk); (AS) 
- 2(cp) (CP;;Sk;S/) 

(2,0;0,1), - 2(cp;;CPj)(Sk;S/) 

(cp;;CPj;Sk) >- - 2(cp;) (CPj;Sk) - 4(cp;) (cp) (Sk;S/); (AI7) 

- 2(cp;) (CP;;Sk) (0,1;3,0), 

- 2(cp;;CPj)(Sk) (cp;;Sj;Sk;S/)< - 2 (cp;;S) (Sk;S/) 

- 4(cp;) (cpj) (Sk); (A9) - 2(CP;;Sk) (Sj;5/) 

( 1,0;0,2), - 2(cp;;S/) (Sj;Sk); (AIS) 

(cp;;Sj;Sk)>- - 2(cp;) (Sj;Sk) (0,1;1,2), 

- 2(Sj) (CP;;Sk) (cp;;Sj;Sk;S/)< - 2(cp;;Sj;Sk) (S/) 

- 2(cp;;Sj)(Sk) - 2 (cp;;Sj;S/ ) (Sk) 

- 4(cp;) (Sj )(5k); (AW) - 2 (cp;;S) (Sk;S/) 

(2,2;0,0), - 4(cp;;Sj) (Sk) (S/); (AI9) 

(cp;;CPj;CPk;CPr)>- - 2(cp;) (CPj;CPk;CPr) (0,0;2,2), 

- 2(cpj) (CP;;CPk;CPr) 
(S;;Sj;Sk;Sr» - 2(S/;Sj;Sk)(S/) 

- 2(cp;;cpj) (CPk;CP/) 
- 2(S;;Sj;Sr)(Sk) 

- 4(cp;) (cpj) (CPk ;cp/); (All) 
- 2 (S;;S) (Sk;Sr) 

(2,1; 1,0), - 4(S;;Sj) (Sk) (Sf)' (A20) 

(cp;;CPj;CPk;5/) < - 2(cp;) (CPj;CPk;S/) 

- 2(cpj) (CP;;CPk;Sr) APPENDIX B: NEW CORRELATION INEQUALITIES 

- 2(cp;;cpj) (CPk;S/) 
(ISOTROPIC CASE) 

The correlation inequalities are obtained for the matrix 
- 4(cp;) (cpj) (CPk ;S/); (AI2) T (4.11) that allows us to include the external field (h,H), 

(0,3;1,0), provided that H>h >0. However, the full form is rather com-

(cp;;CPj;CPkSr) < - 2(cp;;cpj) (CPk;Sr) 
plicated. So, in the following, we present them in the case of 
h=O,H>-O: 

- 2(CP;;CPk) (cpj;St) 
(0,1,1,0), 

- 2(CPj;CPk) (CP;;Sr); (A13) (cp;CPj) >- (S;;Sj); (Bl) 
(1,1;1,1 ), 

(cp/;CPj;Sk;Sr) < - 2(cp/;CPj;Sk) (St) 
(1,0,0,1), 

- 2(cp;) (CPj;Sk;St) 
(cp;CPj)«S;;Sj) + 2(S/)(Sj); (B2) 

- 2 (CPj;5k ) (cp;;St) (0,1,1,1), 

- 4(CPj;Sk) (cp;) (5/); (AI4) (s;;Sj;Sk)< - 2(S;;Sj) (Sk) 

(0,2;2,0), - (s;;CPj;CPk) 

(cp;;CPj;SkS/)>- - 2(cp/;CPj)(Sk;St) + (CP;CPj;Sk) 

- 2(CP;;Sk) (CPj;5t) + (CP;CPk ;Sj) 

- 2 (cpj;St ) (CPj;Sk); (AI5) + 2(cp;CPj)(5k); (B3) 
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(1,1,1,0), (1,0,0,2), 

(S;;Sj;Sk)<' - 2(51) (Sj;Sk) (s;;Sj;Sk» - 2(SI;Sj) (Sk) 

+ (S;;lPjlPk) - 2 (SI;Sk ) (Sj) 

- (lP;lPj;Sk) - 2 (Sj;Sk ><5;) 

+ (lP;lPk ;Sj) - (SI;lPjlPk) 

+ 2(5;) (lPjlPk); (B4) + (Sj;lP;lPk) 
(1,2,0,0), + (lP;lPj;Sk) 

(S;;Sj;Sk» - 2(SI)(Sj;Sk) + 2 (lP;lPj ) (Sk) 
- (S;;lPjlPk) + 2 (lP;lPk )(Sj) 
- (lP;lPj;Sk) - 2 (lPjlPk ) (5;) 
- (lP;lPk;Sj) - 4(S;)(Sj) (Sk); (BlO) 
- 2(5;) (lPjlPk); 

(1,0,2,0), 

(B5) 
(0,0,0,3), 

(S;;Sj;Sk) > - 2(5;) (Sj;Sk) (s;;Sj;Sk» - 2(5;;5) (Sk) 

- (S;;lPjlPk) - 2 (S;;Sk ) (Sj) 
+ (lP;lPj;Sk) 

- 2 (Sj;Sk ) (5;) + (lPllPk ;s}) 

- 2(5;) (lPjlPk); (B6) - (S;;lPjlPk) 

(0,2,0,1), 
- (Sj;lP;lPk) 

(S;;Sj;Sk) > - 2 (S;;Sj ) (Sk) 

+ (S;;lPjlPk) - (lP;lPj;Sk) 

- (lP;lPj;Sk) - 2 (lPllPj ) (Sk) 

+ (lP;lPk;Sj) 
- 2(lP;lPk) (Sj) 

- 2 (lP;lP) (Sk); (B7) 

(0,0,2,1), - 2(lPjlPk) (51) 

(SI;Sj;Sk» - 2(SI;Sj) (Sk) - 4(5;) (Sj) (Sk); (Bll) 

- (S;;lPjlPk) (1,1,1,1 ), 
- (lP;lPj;Sk) 

(lP;;lPj;lPk;lP/) + (lP;;lPj;Sk;S/) 
- (lPllPk;Sj) 

- 2(lP;lPj) (Sk); (B8) - (lP;;Sj;lPk;S/) - (lP;;Sj;Sk;lP/) 

(2,0,0,1), - (S;;lPj;lPk;S/) - (S;;lPj;Sk ;lP/) 

(S;;Sj;Sk) > - 2(S;;Sj )(Sk) + (S;;Sj;lPk;lP/) + (S;;Sj;Sk;S/) 
- 2(S;;Sk) (Sj) 

- 2(5;) (lPj;Sk;lP/) + 2(5;) (Sj;lPk;lP/) 
- 2 (Sj;Sk ) (5;) 

+ (S;;lPjlPk) - 2(SI)(lPj;lPk;S/) + 2(s;)(Sj;Sk;S/) 

+ (Sj;lPllPk) + 2(lP;;lP;;Sk) (51) - 2 (lP;;Sj;lPk ) (51) 

- (lP;lPj;Sk) 
- 2(s;;lPj;lPk) (51) + 2 (S;;Sj;Sk ) (51) 

- 2(lPllPj)(Sk) 

+ 2(lP;lPk) (Sj) 
+ 2(lP;;lP/) (lPj;lPk) - 2(lP;;lPj) (Sk;S/) 

+ 2 (lPj lPk ) (51) - 2(5;) (51) (lP;;lPk) + 2(S;;S/)(Sj;Sk) 

- 4(5;) (Sj) (Sk); (B9) - 4(51) (lPj;lPk) (5/) + 4(5;) (Sj;Sk) (5/)<.0; (B12) 
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(0,2,2,0), 

(f{Ji;f{Jj;f{Jk;f{JI) + (f{Ji;f{Jj;5k;51) 

- (f{Ji;5j;f{Jk;51) - (f{Ji;5j;5k;f{JI) 

- (5/;f{Jj;f{Jk;51) - (5i;f{Jj;5k;f{JI) 

+ (5/;5j;f{Jk;f{JI) + (5/;5j;5k;51) 

+ 2(f{Ji;f{Jj) (f{Jk;f{JI) + 2(f{Ji;f{JI) (f{Jj;f{Jk) 

+ 2(f{Ji;f{Jk) (f{Jj;f{JI) 

+ 2 (f{Ji;f{Jj ) (5k;51) - 2 (f{Ji;f{Jk ) (5j;51) 

- 2(f{Ji;f{JI) (5j;5k) - 2(f{Jj;f{Jk) (5i;51) 

- 2(f{Jj;f{JI) (5i;5k) + 2(f{Jk;f{JI) (5i;5j) 

+ 2(5i;5j) (5k;51) + 2(5i;5k) (5j;51) 

+ 2(5i;51) (5j;5k) >0. 

Other cases are omitted. 

(B13) 
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A formalism to study the semiclassical vacuum problem is introduced. Using this formalism 
we try to satisfy two competitive natural hypotheses: HI, the vacuum definition must assure 
the absorption of the infinities, coming from the vacuum expectation value of the energy
momentum tensor of the matter fields, in the bare constants of the gravitational classic action; 
H2, the vacuum must be the ground state. It is proved that the system of equations yielded by 
these two hypotheses is, in general, incompatible. With this formalism, the vacuum problem in 
curved space-time is stated. It is hoped that this formalism could eventually be used to solve 
the problem. 

I. INTRODUCTION 

As with quantum electrodynamics with time variable 
background fields, quantum field theory in curved space
time presents a nontrivial problem for its vacuum defini
tion. 1 This paper is devoted to the introduction of a general 
formalism to study this problem. Even if we do not find a 
new solution, we believe that the method introduced sheds 
light on the main difficulties and could eventually either 
yield a solution, or rigorously prove that no solution exists. 

Let us first review the problem from an historical point 
of view. 2 

A. Vacuum structure of flat space-time 

There is experimental evidence that the vacuum struc
ture in bounded space has several components of a different 
nature. 

The first experimental sign that the vacuum structure 
was not at all trivial was observed in the last century. If we 
extract all the gas from a receptacle, we do not obtain an 
empty space devoid of all physical phenomena, as radiation 
pressure is still present. This pressure is a function of the 
temperature and exists in the best vacuum. It can only be 
eliminated ifthe absolute temperature vanishes. But even at 
zero degrees the vacuum is not trivial. In the late 1940's 
Casimi~ suggested a set of experiments to see if there is an 
interaction among two uncharged metallic plates in the 
vacuum. The experiment showed that a residual attractive 
force remains, even at zero temperature. This forfe, known 
as the Casimir or polarization force, is of a different nature 
than the normal gas pressure or radiation pressure. It is inde
pendent of the temperature, proportional to the plate area 
and inversely proportional to the fourth power of the dis
tance between the plates. Thus we can only eliminate this 
residual force moving the plates apart to an infinite distance. 
Therefore we finally obtain a trivial vacuum when we trans
form our receptacle in an unbounded space. In fact this place 
must also be flat to eliminate gravity, too. (From the equiv
alence principle gravity is equal to acceleration, thus to 
eliminate gravity means also to work with inertial observers 

only.) Therefore we obtain a structureless vacuum only if we 
remove all the matter, the temperature, the curvature, and 
make the topology trivial, i.e., eliminate the boundaries as 
well. We shall see how these physical facts playa central role 
in the quantum vacuum problem. 

B. The semiclassical vacuum problem 

If we would like to define a partial vacuum, i.e., remov
ing some elements of the above list and leaving the others, we 
shall have an impure vacuum notion that logically has a non
trivial structure. That is the case of the semiclassical vacuum 
where all the matter and temperature are eliminated but we 
leave gravity-as a curved space-time or a noninertial refer
ence system-or a nontrivial topology (as boundaries, point 
identification, etc.). 

Thus it is not surprising that this partial unconventional 
vacuum would be ill-defined and nontrivial. 

In this paper we only study the problem of the vacuum 
definition in curved unbounded space-time using inertial or 
geodesic observers. We believe that if the problem could be 
solved, in this case, the other cases would also be solved by 
using the same method. 

As we know we need a ground state of vacuum to build 
the Fock space of a quantum field theory. Thus we must 
define a vacuum in our semiclassical case, and it is necessary 
to give some criterion to choose this quantum state. An obvi
ously necessary hypothesis, which we shall call the "funda
mental hypothesis," is that the vacuum must yield a predic
tive theory, i.e., finite renormalizable physical quantities. 
This hypothesis is normally focused on the most important 
object in a curved space-time theory, the energy-momentum 
tensor. But there are several methods of renormalization; 
thus, in order to make the hypothesis precise, we must single 
out one method or a class of methods and so we must precise
ly state the following: the vacuum must yield a finite energy
momentum tensor when it is used with the chosen method or 
the chosen class. We shall choose our renormalization class 
among those renormalizations satisfying the Wald axioms 
(this choice being more general than in previous papers 
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where only the canonical renormalization was taken into 
account (Refs. 4 and 5). The Wald axioms are the following. 

( 1) The matrix elements of T,..v between any pairs of 
orthogonal states coincide with the formal (unrenorma
lized) expression, which is finite. 

(2) In flat Minkowski space-time the renormalized op
erator T is the normal ordered one, i.e., 

T (ren) -·T . ,..v -. ,..v·Mink . 

This axiom implies that 

lim (T,..v)(ren) = (OI:T,..v:Mink 10) . 
R .. _-O 

(3) The expectation value of T,..v is conserved, i.e., 

V,.. (T"'V) (ren) = 0. 

( 4) The causality axiom: For a quantum state defined in 
the far past (future), (T,..v) (ren>' at a pointp, only depends 
on the quantum state and the geometry of space-time inside 
the past (future) null conoide ofp. [Originally there was a 
fifth Wald axiom (cf. Ref. 57) that we do not use (refer to 
Ref. 6 or Ref. 1 to see why we eliminate this axiom).] 

From the Wald axioms we can deduce the different 
components of (T,..v) (ren) (which would reproduce the fea
ture of the vacuum structure of Sec. I A). Precisely, giving 
two energy momentum tensor operators (renormalized us
ing any method that satisfies the Wald axioms) T,..v wand 
T,..v w', if la) and Ib) are two orthogonal quantum states 
then, from axiom 1, 

(aIT,..v Wlb) = (aIT,..v W'lb) . 

Calling t7,..v = T,..v W - T,..v W' we have that (al t7,..v Ib ) = ° 
for every pair such that (alb) = 0. Then calling 
Ie ± ) = 21/2( la) ± Ib » we have 

(e + I t7 ,..v Ie - ) = ° , 
thus 

Therefore t7,..v = It,..v' where I is the identity operator and 
t,..v is a e number. We have reached this conclusion using 
only Axiom 1. Now it is well known that, from Axiom 4 
(causality), it turns out that T,..v is a local term, i.e., a point 
function (cf. Ref. 4). In fact if we consider the vacuum 
10,in) (i.e., the vacuum 10,T) when T-+ - 00, then 
(O,inl t7,..v 10,in) = t,..v must only depend on the geometry of 
the interior of the past null conoide of p and if we consider 
10,out) (i.e., T-+ + 00), (O,outl t7 ,..v 10,out) = t,..v must only 
depend on the geometry of the interior of the future null 
conoide ofp. Thus t,..v is only a function of the geometry of 
the interception of the past and future conoides, i.e., the 
point t, therefore t,..v = t,..v(p). 

Let us now suppose that we make a foliation of space
time by spacelike hypersurfaces. Each surface is defined by 
an arbitrary time parameter T, and let us suppose that we 
define somehow a vacuum state 10,T), i.e., for each T. Thus 
creation and annihilation operators and a normal ordering 
can be defined on each hypersurface that we shall call: :,.. It 
can be proved (cf. Appendix A) that a normal orderer 
:T,..v:,. is an operator that satisfies Wald's Axiom 1, thus, 
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every operator T,..v W (obtained by a Wald renormalization) 
can be written as 

T,..v W = :T,..v:'" + It,..v , (1.1) 

where t,..v is a e number (but in general it is not a point 
function). Therefore the vacuum expectation value (VEV) 
for the vacuum defined on another surface T will be 

In addition, it is easy to prove (cf. Appendix A) that 

(O,TI :T,..v (T',X):." 10,T) 

= (O,TIT,..v (T',X) 10,T) - (O,T'IT,..v (T',X) 10,T') . 

Then if T = T' we have 

(O,T'I:T,..v(x,T'):." 10,T') = 0, 

thus 

W 

(O,T'I T,..v (T',X) 10,T') = t,..v . 

(1.3 ) 

This equation gives the physical interpretation of t,..v: it 
W 

is the VEV of the renormalized operator T ,..v ( T',X) using the 

vacuum at T'. Here too can thus be identified as the energy 
density, of the vacuum at T', i.e., the vacuum polarization 
density. 

Thus for every vacuum 10,T) and for every renormaliza
tion method W that satisfies the Wald axioms we can per
form the canonical decomposition (1,2) where the compo
nent t,..v (T',X) is a e number. Moreover, even if we use as the 
quantum state of the vacuum state at T': 10,T'), i.e., we con
sider a state with neither matter nor temperature at T', we 
have a nonvanishing component of the energy-momentum 
tensor t,..v that must be identified with the Casimir or polar
ization term that remains when there is neither matter nor 
temperature. This term is originated by a nontrivial geome
try or topology and it vanishes in unbounded flat space-time. 
The definition of a vacuum at T' is essential to single out this 
component. The other term in decomposition ( 1.2), 
(O,TI :T,..v:1' 10,T), must contain a component due to the pres
ence of matter (particles created by the evolution of the uni
verse) and a component of radiation (created by the same 
cause). We shall try to single out these two components be
low. In fact, if we compute (O,TI:T,..v:1' 10,T) we shall find an 
analytical component that can be expanded in powers of (Uk' 

the energy in mode k and a nonanalytical component that 
vanishes faster than any power of the energy. We shall iden
tify the first component with the matter term and the second 
one with the radiation term because in a thermal spectrum 
the densities vanish faster than any power of (Uk' Thus the 
three elements that we must eliminate in order to obtain a 
trivial vacuum matter, radiation, and nontrivial geometry or 
topology, are related with the different canonical compo
nents that can be found in the expectation value of the renor
malized energy-momentum tensor operator using any renor
malization method that satisfies the Wald axioms. 

Thus we shall implement our fundamental hypothesis 
asking that our semiclassical vacuum yield a finite renorma-
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lizable VEV of the energy momentum tensor using a Wald 
renormalization and we shall study the convergence of this 
VEV studying the convergence of its canonical components 
separately. 

But there is yet another different hypothesis that is sel
dom used to define the vacuum (see Refs. 7 and 8): at each 
time the vacuum is the quantum state that minimizes the 
renormalized VEV of the energy, i.e., the vacuum is the 
ground state. This is a very old idea that we shall call the 
"ground state hypothesis." The fundamental hypothesis is 
completely compelling, because the theory must be predic
tive. On the contrary the ground state hypothesis, in fact, is 
only a natural and convenient condition. The aim of this 
paper is to study how and when we can implement one of the 
two conditions, using a general Wald renormalization. 

c. Organization of the paper 

In Secs. II and III we shall analyze the restrictions im
posed on the vacuum by the fundamental hypothesis. In Sec. 
II we shall compute the polarization terms for spin-O and 
spin-l fields and in Sec. III the matter-radiation term. 

In Sec. IV we shall study the ground state hypothesis 
and how this hypothesis allows to introduce the elementary 
particle notion in our problem. We shall use the following 
conventions c = 1, h = 1, and space-time will have signa
ture+---. 

II. THE FUNDAMENTAL HYPOTHESIS 

A. The problem In a globally hyperbolic space-time 

The essential feature of every exact science, such as 
physics, is that its methods must foresee the outcome of the 
measurement of parameters known as observables. Thus 
these methods must necessarily yield finite quantities. 
Therefore, the fundamental hypothesis of our theory, as the 
one in every physical theory, is that the values predicted by 
the theory ought to be finite. In quantum field theory in 
curved space the most important object is the VEV of the 
energy-momentum tensor operator. Thus we choose this op
erator as the first one where our fundamental hypothesis 
must be verified. In this context we shall state our first hy
pothesis. 

HI: The total VEV of the energy-momentum tensor op
erator must be devoid of divergent terms. 

A consequence of H 1 is the following. The (Tp.y) of the 
matter field can only have divergent terms that can be ab
sorbed by the classical gravitational action via the redefini
tion of the coupling constants. 

It is now convenient to mention a technical point. Fre
quently a different criterion is used instead of HI: to ask that 
the expectation value of the symmetric two-point function of 
the quantum field should have Hadamard form. This is, in 
fact, a stronger hypothesis than HI. On one hand, it is well 
known that all the Hadamard vacua yield finite renormal
ized energy-momentum tensors. On the other hand, in Ref. 9 
(p. 188) it is demonstrated that the expectation value of the 
energy-momentum tensor is a non-Hadamard vacuum 
could be finite (this is the case of a minimum-energy vacu
um, for a massive spin-O field in a Robertson-Walker uni
verse with coupling; = V. 
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The gravitational action that we shall use is 

Sg = J JlKT dx4 (a l + a 2R 2 + a~ 2 

+ a 4R afJRafJ + asR aPr6RafJr6) . (2.1) 

The "dressed" constants al, ... ,as after renormalization 
must be finite and must be fixed by experiments (they must 
satisfy some restriction if we want to reobtain the flat space 
limit, cf. Ref. 10). 

The variation of action (2.1) with respect to gp.y yields 
the terms 

_2_ 8Sg _ A. A. G A. (I) (2) 
tT::f ~ - Igp.y + 2 p.y + 3 Hp.y +,14 Hp.y, 

"Igl ugp.y 

where 

,11= -ai' ,12 = 2a2 , 

,13 = 2(a3 - as), ,14 = 2(a l + as) , 

and 

Gp.y = Rp.y - !gp.yR , 

(1)Hp.y = 2R;p.y - 2gp.yDR - !gl-'yR 2 + 2RRp.y , 

(2)Hp.y = R;p.y - !gp.yDR - DRp.y 

- !,gp.yR P RaP + 2R aPRapp.y . 

Every term of (2.2) turns out to be divergenceless. 

(2.2) 

As a model for matter we shall use a neutral scalar field 
tp (we shall also use a vector field tpI-' below) and we shall 
define some matter action S m [ tp ]. The total action will be 
Sg + Sm and the field equation for gp.y is 

_2_ 8Sg = __ 2_ 8Sm 

JlKT 8gp.y JlKT 8gp.y 

As the lhs is divergenceless so must be the rhs. We shall 
quantize Sm and leave Sg unquantized because we are deal
ing with a semiclassical theory. Thus the rhs will not be Tp.y 
but the unrenormalized values of (Tp.y ). We must consider 
the variation of the total action with respect to tp to compute 
this quantity, i.e., 

(2.3 ) 

the field equation of field tp, and find an orthonormal basis of 
solution {tpk} u {$k} of this equation, in the inner product: 

(u,v) = iL (tVp.v - vVp.t)dol'. 

We shall work in a globally hyperbolic manifold so l: is a 
Cauchy surface and the inner product is invariant if we per
form the integration on other Cauchy surfaces. Here the k 
are the labels of the basis functions. If we foliate our mani
fold by Cauchy surfaces, labeled by a time parameter-as in 
Sec. I, we can choose a different basis at each surface that we 
shall call {cpnU{¢k}. We can expand the field operator in 
these bases as 
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where ak and a;'" are annihilation and creation operators, 
that allows us to define a vacuum at T, 10,T) such that 

ak 10,T) = 0, Vk (2.5) 

and build a Fock space at T as 

11k,T) = a;'"IO,T), etc. 

A Bogoliubov transformation allows us to go from one basis 
at time T, {t,6nU{~n, to another basis at time 

T', {t,6nU{¢k'}. As we said in Sec. I the VEV of the energy
momentum tensor can be decomposed as (cf. Appendix A) 

(O,TI Tv (T',X)10,T) = (O,TI:Tl'v(T',x):",IO,T) 

+ (O,T'ITl'v(T',x)IO,T'). (2.6) 

The first term corresponds to the created matter and radi
ation. It must be finite and we shall study this requirement in 
the next section. We shall call the second term the polariza
tion term 

Pl'v(T,X) = (O,TITl'v (T,X) 10,T) . 

It will contain finite and infinite terms and thus it can be 
decomposed as 

PI'V = PI'Vftn;", + PI'V";v . 

As a consequence of H 1 we must have that 

P -'La +"- G +"- (I)H +"- (2)H (27) I'V,,;v - rlbl'V r2 I'V r3 I'V r4 I'V , . 

where the J.L will be infinite constants that must be absorbed 
in the bare constants of action (2.1 ). The terms of P I'Veru", will 
be finite and have a different form, i.e., they are not propor
tional to gl'v' G I'V' (1) H I'v' nor (2)H I'v' Thus the decomposition 
is unique and 

PI'Vftn;'" = (O,T'I Tl'v (1"',x) 10,T') - J.LIgI'V 

G (I)u (2)u (28) - J.L2 I'V - J.L3 nl'V - J.L4 nl'V' . 

Therefore a sufficient condition to satisfy HI is to 
choose the vacua 10,T) and 10,1"') such that (i) PI'V,,;v would 
satisfyEq. (2.8); (ii) (O,TI:Tl'v(T'):",IO,T):;6oo. 

Conditions (i) and (ii) are the starting points of our 
analysis about the way to choose the vacuum. We shall study 
these conditions in the Robertson-Walker universe using as 
examples the massive field of spin ° and spin 1. We shall also 
see how and when we can impose the ground state and other 
similar hypotheses. 

B. Robertson-Walker universe 

In this section we shall study condition (i) in a spatially 
flat RW universe with metric: 

(2.9) 

We shall develop a formalism to solve the problem in the 
cases of spin ° and spin 1. 

1. Scalar field 

We shall study the massive scalar field with an arbitrary 
coupling. The action is 

S = J../lif dx4 (a!, q; al'q; + ~Rq; 2 + m2q; 2) , (2.10) 

where Igl is the absolute value of the determinant of the 
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metric tensor. From this action we can obtain the classical 
energy momentum tensor 

Tl'v = (lI../lif)(cSS /cSgI'V) . 

The corresponding operators as a function of q; is 

Tl'v =!(l - 2S){VI'q;,Vvq;} 

+ ! (2S - !)gl'v {VA q;, VAq;} - S{V I' V vq;,q;} 

(2.11 ) 

+ [(s /2 )Rl'v + gl'v (SR + m2) (S -1) ] {q;,q;} , 
(2.12) 

where { , } is the anticommutator. 
Now we can quantize the field using Eq. (2.4) and we 

find a basis. We shall obtain such a basis by variable separa
tion writing t,6k (x) as 

t,6'1" (x) = 1 
k (217a)3/2(2.ok ) 1/2 

X exp ;( - [ .ok dt' + k.X) (2.13) 

(in this way we automatically assure that the basis should be 
orthonormal), where .ok = .ok (t) is a function ofthe coor
dinate time only. Substituting Eq. (2.13) in Eq. (2.12) we 
can obtain 

(O,TI T ()()( T,X) 10,T) 

1 J dk
3 

1 
="4 (217a)3 .ok (T) 

X [.or(x) + co~ + (: - 12s )n2 
_ (6S _ 2.)Ho'k (T) + ~ (o'k (T»)2] , (2.14) 

2 .ok(T) 4 .ok(T) 

where H = a/a is the Hubble coefficients, co2 = (m2 + k 2/ 
a2

) is the particle "energy," and Ok is a solution of the equa
tion 

.. • 2 

1 .ok 3 (.ok) r 2 ( 1) 3 2 ---- - +.ok =COk + s--R+-H 
2 .0'1" 2 0'1" 4 4 ' k k 

(2.15 ) 

where R is the scalar of curvature that we can compute as 

R = 6(2H 2 +H). 
Each different function .ok yields a different basis at 

time T and each different basis corresponds to different vacu
um 10,T). Thus .ok' or better the Cauchy data of .ok at T, 

defines the vacuum. 
Let us brieft: review what happens if we have another 

time T': {t,6nU{t,6k'}. The bases will be related by 

t,6~ = L (ak';. t,6k' + /3 k';. ¢I;, ) (2.16a) 
k' 

and the annihilation and creation operators by 

(2.16b) 
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Due to the orthogonality properties of the bases we must 
have 

~( 1"'".!.r". p1"'". "1"'".) £ 
,£.. akk" ut.'k" - kk" P k'k" = Ukk' , 

k" 

~( 1"'". A'1"'". P 1"'". *"...".) ° ,£.. a kk" Pk'k" - k'k" llk'k" = . 
k" 

In the new basis we can define a new vacuum 10,7"') such that 

atIO,7"') = 0, Vk, 

and a new Fock space. Both bases depend on their Cauchy 
data at 7": O~, ot or at 7"': Ot. ot. This data must be a 
function of the local geometry and therefore oflocal geomet
ric objects such as H 2 or R. We can also use the particle 
energy, in mode k, w = (m2 + k 2/a2)1/2. Thus if we study 
the problem only up to the fourth order in the metric deriva
tives (and this fact also introduces the objects H 4

, 

H2R, R 2, HR., and R because all other objects with fourth 
derivative can be expressed as linear combination of these 
five) we can write the Cauchy data at 7" as 

[ 
H2 R H4 H2R 

0"'(7") =W fa +rl-2 +r2-2 +r3-4 +r4--4-
W w w W 

R2 HR. R m2 2 
+rS-4 + r6-4-+r7-4 +al - 4 H 

w w w w 

(2.17a) 

m
2
H (1 ) +a3 -;z+tJ -;;;:;: (2.17b) 

(from now on we shall suppress the label k). 
These are the most general expressions with the correct 

dimensionality and the correct Minkowski limit, the r, a, 
and ~ are dimensionless coefficients. Equations (2.17) are 
the basic equations of our formalism. In fact, changing the 
coefficients we can obtain all kinds of vacua, and we shall see 
how the hypotheses of Sec. I determine some coefficients and 
fix some relation between the others. Furthermore Eqs. 
(2.17) contain all the terms that yield divergencies in the 
energy-momentum tensor. We shall see how the hypotheses 
fix these coefficients in a unique way. Really, in a complete 
treatment, all coefficients up to orders higher than the 
fourth, and also the nonanalytical component of (2.17) 
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must be defined. We cannot reach this goal in this paper, we 
merely give a formalism to study the problem. It might even
tually be used to obtain the final solution in the future. 

We have taken into account the following facts to write 
Eq. (2.17). 

(a) The Cauchy data (2.17) must contain only even 
terms in the derivatives to yield divergencies that can be 
absorbed in the bare constant ofEq. (2.1). Thus these are the 
only relevant terms. 

(b) Furthermore, all terms that yield a divergency that 
cannot be absorbed in the bare constants must be multiplied 
by a null coefficient in (2.17) (which is also the case of the 
odd powers of w - I ). 

(c) Terms proportionalto w-4 in (2.17a) and tow- 2 in 
(2.17b) are the ones of smaller power in w that yield ultra
violet divergencies. All terms up to tJ (w- 6

) in (2.17a) and 
tJ (w -4) in (2.17b) will produce finite contributions. 

(d) The mass m eliminates the presence of infrared di
vergencies. 

(e) For a general treatment terms tJ(w- 6
) and 

tJ (w -4) must be explicitly written. We only study the ones 
that appear in Eq. (2.17) because at this level we are interest
ed in the absorption of infinites only. 

Let us now choose the Cauchy data (2.17) among the 
ones that satisfy condition (1). Thus we must compute 
(O,r'l Tp.v (7"',x) 10,7"') as a function of the coefficients of Eq. 
(2.17) and also the terms in Eq. (2.8) that may be indepen
dent of these coefficients r, a, and ~ must satisfy a system of 
equations obtained via this computation. 

For the RW metric we have 
(2)H = l(l)H 

/-LV '] p,v , 

thus we can define a new constant in Eq. (2.8) as 

U=A 3 +jA4 • 

Then the 00 components of Pp.v are 

Poo = (O,r'l T oo( r',x) 10,r') - Al + 3H 2A2 

+ u(6H 2R -!R 2 + 6HR.) , 

and we can make the decomposition 

(O,r'l T oo( r',x) 10,7"') = (O,r'l T oo( r',x) 10,r')finite 

(2.18 ) 

+ (O,r'l T oo( 7"',x) 10,r')div . 

The ultraviolet divergent terms are 
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where we have introduced the following divergent integrals: 

1 reo 
II = 8~ Jo p2(p2 + m2

) 1/2dp , 

I 1 reo p2 dp 

2 = 8~ Jo (p2 + m2)1/2 ' 

I _ 1 reo p2 dp 

3 - 8~ Jo (p2 + m2)3/2 ' 

where p = k la. 
In Ref. 7 it is shown that the absorption of the divergen

cies in the bare constants of the component 00 of the energy 
momentum tensor is sufficient to assure the same absorption 
for the other components because all the components are 
linked by the conservation equation. Therefore the divergen
cies will be absorbed if 

Al = ,,1,\0) - Yo( 1 + lifo )11, (2.20a) 

,,1,2 =,,1, iO) + _1_ {[ (yI /2)(1-lIfo) + t - 125 
3yo 

- (65 - ~)~I + g-i]I2 + (m2/2) [al (1 - lifo) 

- 2a3 (65 -~) + ~la3]I3}' (2.20b) 

a2(1 - lifo )lyo = 0, (2.2Oc) 

Y2( 1 - lifo )Iyo = 0 , (2.2Od) 

l.-[Y3 (I __ 1 ) + l.-li (~_ 1) 
Yo 2 fo 8 fo fo 

- -.IL (~- 125) - (65 -~) (~3 _ YI~I) 
2fo 4 2 2fo 

+ ~1~3 _ YI~ i ] = 0 (2.20e) 
2 c5fo ' 

u = dO) + _I [Y4(1 __ 1 ) 
6yo 2 fo 

(2.20g) 

(2.20h) 
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(2.19) 

j 

r{l- ~ )(ro)-I =0, (2.20i) 

where A \0), A iO), and dO) are the bare constants. 
From Eq. (2.20) we can see that condition (i) relates 

the 15 coefficients of Eq. (2.17) with nine equations. We 
shall find new restrictions from condition (ii) in the next 
section. 

2. Spln-1 massive field 

In this case the action is 

s = J ~{- !FP."F,.w + !m2tpp.tpp.}, 

with 

Fp." = ap.tpv - a"tpp. . 

(2.21 ) 

Following the same procedure as in the previous section 
we obtain 

1 3 J dk 3 

(0,1'1 T 0010,1') = - L --3 DOT' 
4 U= I (21Ta) 

(2.22a) 

(0,1'1 Tn 10,1') = l.-J dk 3
3 

Do, withj;i: 3 , 
2 (21T) a T 

(2.22b) 

1 J dk
3 

(0,1'IT3310,1') = - --3- (D3 + D3 ) , 
2 (21T) a T L 

(2.22c) 

where T and L correspond to the transversal and longitudi
nal modes, and 

D _ H~ Hu ilu _1_ (ilu)2 .!!!.- 0 
0" - 40 + 2 0 2 + 40 0 + 0 + u' 

U u (T (T CT 

(2.23a) 

(2.23b) 

(2.23c) 

where 

h = H (3 _ 2,~2), H = {h, if u = L , 
.., u H, if u=T. 

(2.23d) 
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The function nu satisfies 

Note that fors = A Eq. (2.15a) has the same functional 
form as Eq. (2.23a),andEq. (2.16) the same as Eq. (2.25) if 
we replace H by h and nu by nL in the first one. 

For the spin-I field we can also write Eq.(2.18), but we 
shall do so showing explicitly the polarization modes, to see 
how the divergencies are absorbed by the bare constants, 

Poo(l",x) = 2[ (0,1"1 TOOT (l",x) 10,1") -A \~) + 3A ~;H2 

+ u~)(6H2R -!R 2 + 6HR)] 

The only dUference between this equation and Eq. 
(2.19), for the scalar field with conformal coupling, is the 
term - (m2/YO)(tl + 3)13 that is absent in the scalar case. 
This fact only modifies A2' Thus the dressed constants are 

AIL = A \~) - Yo( 1 - lifo )11 , (2.28a) 

A2L=Ai~)+(6~J{[Y{I- ~)+t2i +~ +3tl]12 

+m2[a{l- ~)+a3(tl+3)-2(3+tl)]13}' 
(2.28b) 

and all the rest of the equation is similar to the one of (2.20) 
withs= O. 

Thus we have 

(0,1'1 T OOT( 1',x) 10,1') = (0,1'1 T oo( 1',x),= 11610,1') div , 

(0,1'1 TOOL (l',x) 10,1') div = (0,1'1 T OO( 1',x) , = 010,1') div 

- (m 2/Yo)H 2(tl + 3)13 , 

(2.29) 

Therefore, in the limit m 2 
..... 0, the longitudinal mode has 

the same divergencies as the scalar mode with minimal cou
pling. 

We shall now analyze the constraints imposed on the 
vacuum by condition (ii), i.e., the condition that the created 
number of particles and the created energy must be finite. 
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+ (0,1"1 TooJr',x) 10,1") -A \~) 

+ 3A i~)H2 + uiO) (6H2R -!R 2 + 6HR) . 
(2.25) 

We can see that the equations for the constants of the 
transversal mode are similar to Eqs. (2.20) with s = A, thus 
we must study the longitudinal mode only. We begin by 
computing 

(O,l"IToo (l'"x)IO'l")=~J dk
3

3Do , 
L 4 (211'a) L 

(2.26) 

where DOL is given by Eq. (2.23a). Now, using the generic 
Cauchy data introduced in Eq. (2.17) we have 

(2.27) 

III. THE ENERGY AND MOMENTUM OF THE CREATED 
PARTICLES 

The fundamental hypothesis also yields condition (ii); 
the VEV of the normal ordered energy-momentum tensor 
operator (0,1'1 :Tl'v (l",x):T' 10,1') must be finite, we can com
pute this quantity as follows. 

(i) We compute the classical expression ofthe energy
momentum tensor, 

(3.1) 

In the cases we are studying, this expression has the form 

(3.2) 

where the index r shall only have one value for a scalar field 
or four for a vector field and where DI and D2 are linear 
operators defined in Appendix A. Precisely, linearity is the 
only property of these operators that we shall use. 

(ii) We trans~rm the classical functional Tl'v into a 
quantum operator Tl'v (we shall only ~e the caret when we 
need to specify the operator nature of Tl'v ), 

(3.3 ) 

"'-
(we neglect index r if it is not necessary), where ({J is the 
quantum field operator, that can be expanded in a basis of 
solutions defined by its Cauchy data at a time 1" that we shall 
call {¢, ,k} as in Eq. (2.4). 

(iii) We normal order the operator :Tl'v:T' using the 
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same definition as in fiat space-time, i.e., we put in the first 
place the creation operators. 

(iv) We change the basis to another basis related with 
time r: {1,60U{¢k'} .... {I,6;}U{¢;} via a Bogoliubov trans
formation, like (2.16), and we obtain the operator transfor
mation, like (2.16b) (with rand r' interchanged) and we 
obtain 

.AT • _.A • ["'1' 11' 'T 71"] 
• 1 .... ·1' - .Tl'v·1' oy ,oy ,a ,a . (3.4) 

A 

(v) We compute the VEV of :Tl'v:1' as 

for the isotropic universe that we considered; we can drop 
one of the k ' integrals because the spatial phase produce a 
delta function. 

The second term represents the component correspond
ing to the particles created between times r and r' because 

(O,rlNrIO,r) = 1,8;"'12, 

where N r = art ar is the particle number operator for mode 
k at time r'. 

We shall compute Eq. (3.5) for the cases of spin 0 and 1, 
to identify the divergencies and see how we can eliminate 
them by choosing an adequate vacuum. 

(O,rl :TijS- (r'):1' 10,r) 

A. Scalar field 

We can obtain the field equation ofthe scalar field tak
ing the variation of the action (2.10): 

(0 + m2 + sR)'Ps- = 0, (3.6) 

where 0 = - V I' VI' and S is an arbitrary dimensionless 
coupling constant that we also use as an index of the field 'P3' 

By variable separation in the R W metric (2.9) we can 
find an orthogonal basis 

1,63= [1I(21T)3/2a ]Xs-e,k.X (3.7) 

where we have suppressed the index k and introduced the 
"conformal time" 7J defined as 7J = Hdt fa). 

The new function X s- must satisfy the equation 

d
2Xs- 2 

-2- + k Ps-Xs- = 0, (3.8) 
d7J 

with 

Ps- = 1 + (a2/k 2)m2 + (s - i> (a2/k 2)R 2 • 

Besides, we can write function X s- as 

X s- = _1_ exp( - if Vs- d7J') 
~2Vs-

with 

(3.9a) 

Vs- = a0s- ' (3.9b) 

i.e., in a "WKB way." Function Os- must satisfy Eq. (2.16). 
Replacing Eq. (3.7) in (2.12) and making a Bogoliubov 
transformation between {XPU{it'} and {XHU{yH we 
have an equation similar to (3.5), 

(3.10) 

= 2g .. J dk
3 

{1,8ITI2[lx1'12(2(s - ~)(sR _2.H2) + ~£+ 2(s-~){J/) 
I] (21T)3a2 6 2 3 a2 4 

- 2(s - ! )ii1'12 + 2Hci<i' + X"'X1')(s - +)] 
+ Re{aITprr [XT'2(2(s - ! )(sR - ~ H2) + + ~: + 2(3 - ! )(d2) - 2(s - ! )iT'2 + 4H(s - + )iT'XT']}} . 

The terms with factor 1,8 IT 12 in these equations are related 
with the particle creation, they have a factor k, thus they will 
be convergent if either limk _ co k 31,81 2 = 0 or 1,812 ~ 11k s 
from a certain value of k onwards. In fact, these are two 
sufficient conditions for the convergence of the expression. 

From Ref. 11 we can see that the terms ofEqs. (3.10) 
and (3.11) with products like a/J do not introduce divergen
cies if the terms with 1,8 12 do not. In fact, it is sufficient to 
expand functionxs- ofEq. (3.9a) in a WKB series, to take 
the lowest order of the expansion and to study the terms that 
grow faster for high energies. Thus the conditions stated for 
the terms with 1,81 2 are the only conditions to fulfill condi
tion (ii) in the scalar case. 
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(3.11 ) 

I 
B. Massive vector fields 

From action (2.22) we can obtain the field equation 

(3.12) 

In Appendix B we find a basis of solutions of the field 
equation {Ku}u{ku} where index u symbolizes the po
larization modes, k is the linear momentum, and f.L the world 
index. This basis is orthonormal under the inner product (;), 
i.e., 

(l,6t,u;I,6~·,o') = i L (4t.:VAl,6k'.jl - 1,6t. VA~ )duA 

= 8uo'8(k - k'). 
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As in the scalar field case we can expand the field as 

The basis of solutions of the field equation is 

(It ~ (2:)'" m X,..-, 

AJ.< 1 (~) ,k'x 
'1'2 = (21T)3/2 ~ XTe , 

(It ~ (2,,~I'm (W ro) XLr, 

where 

W=i~ln(mXL) . 
dt 

(3.14 ) 

In fact, we have chosen a basis such that the z axis is parallel 
to vector k (see Appendix B). Function Xu with u = T, L for 
the transversal or the longitudinal mode, respectively, satis
fies an equation similar to (3.13) but with a new p u in the 
place ofps' 

0
2 

2 ( 1) 0
2 

P = 1 +-m + /:' -- -R 
u k2 ~u 6 k2 

where 

ifu=T, 
if u=L. 

(3.15) 

In the first case the equation coincides with the one for 
the scalar field with conformal coupling. 

In order to obtain an orthogonal basis, function Xu must 
satisfy 

* dXku * dXku . 
d1J Xku - Xku ~ = I , 

(3.16) 

thus we can chose them as 

X~ = 1 exp( - if I .o~ dt') , 
~2a.o~ 

(3.17) 

where function .0; is a solution of Eq. (2.24). The index 
makes explicit the time when the Cauchy data of the basis 
was stated. 

With the change of variables XL = (m/ m )IL and 
XT = IT the nonvanishing components of the energy-mo
mentum tensor tum out to be 
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(O,rl T oo(-r') 10,r) 

= 2a2(~1T)3 f dk 3{2[ li;'1 2 
+ m

2
1/;'12] 

2 

+ m2 [IiI 12 + m21/I 12]}, 
m 

(3.18a) 

(O,rl Tjj (r') 10,r) 

= _1-3 fdk 3{li;'1 2 + m21/;'12} with j = 1,2, (21T) 
(3.18b) 

(O,rl T33 ( r') 10,r) 

= (2~)3 f dk 3{ li;'1
2 

+ (~: - m
2
)1/;'1 2 

+ m
2 

(1-2.. m2)liII2+ m
2 

I/II2}. (3.18c) 
m2 2 m2 2 

Via a Bogoliubov transformation from {f1"}U{/'7} to 
basis {F'}U{/""} we can obtain an expression like Eqs. 
(3.16) and (3.17) for the massive vector field, and also using 
Eq. (2.6) we can obtain 

(O,rl:T oo( r') :1",IO,r) 

= 02(~1T)3 fdk3{21.81(r')1 2 (lifl +m
2
lffI2) 

+2Re[a1.81(i~2 +mzf~2)] 
2 

+ m
2 

[1.81(r'W(m21/i 12 + liil2) 
m 

+ Re[ aZ.81(ii
2 + m2/i2)] ]}, 

(O,rl :Tjj (r') :.,..IO,r) 

(3.19a) 

= (2!)3 f dk 3{1 .81 (r') 12( lifl 2 + m21/f12) 

+ Re[ a1.81(i~2 + m2/~2)]}, (3.19b) 

(O,rl :T33 (r'):r' 10,r) 

= (2!)3 fdk3{1.81(r'W[lifI
2 

+ (:: - m2)i/fI2] 

+ 1.81(r')1
2
[:: (1- ~ ::)liiI2+ ~21/iI2] 

R { 
Tr' ~ r/, 1',2 ( k 2 2) .2] + e aT Pi t T + --;;z:- - m I;. 

+ :: aZ.8Z[(2-3::)i( +m:fiz]}}. 

(3.19c) 

As we can see from these equations, for the vector field 
we obtain the same rule (to assure that we have no diver
gency), i.e" 

(O,rl :Tpv (r') :.,..IO,r) # 00 <=> 1.8 IT (r'W $ d (11k 5) • 

(3.20) 

Thus this is the mathematical form of condition (ii) of 
the fundamental hypothesis HI. Next, we shall see how this 
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condition constraints the coefficient introduced in the vacu
um definition. 

C. Constraint to obtain a finite energy and moment of 
the created particles 

We shall study the problem in a unified way for both 
spin 0 and 1. We begin by the system of equations 

T _ rr'''' P rr'!7' Xu - au Xu + u,{u' (3.21a) 

dX~ rr' dX~ P rr' dk 
d'l] = au d'l] + u d'l] , (3.21b) 

where (T = T ,L, because as we have shown we can indepen
dently treat both polarization modes and (T = S for spin O. 

From system (3.21) we can obtain 

Iprr'(7"W= Ix"'(7") dX
T 

(7") -XT (7") dX'" (7")1
2

• 
d'l] d'l] 

(3.22) 

To study the convergence of Eq. (3.22) we use a 
theorem of Ref. 12 that gives us an upper bound for the 
particle production. 

Theorem: Ifk>O,p = p(k,'I]) is a positive defined func
tion and d 2pld'l]2 is a continuous function of '1], then Eq. 
(3.13) has two solutions t/J and ~ given by the formula 

t/J(k,'I]) = ~[exp(ik [pl/2d'l]) + E(k,'I])] , 

(3.23) 

with derivatives 

where E(k,'I]) and t(k,'I]) are functions with their modulus 
bounded as 

IEI,lt I <exp(F Ik) - 1 , 

where 

F(k,'I]) = [ Jp-I/4 ~ p-I/4Id'l]' . 
o d'l]2 

(3.24) 

(3.25) 

To use the theorem, p must be positive defined. Then, 
for high energies, Eq. (3.21) yields 

(3.26) 

Thus we cannot use the theorem at low energies, but this 
is unimportant as we only want to study the high energy 
behavior. 

So let us use the theorem computing Eq. (3.28). We 
must take into account that an arbitrary solution of Eq. 
(3.13) is the linear combination 

* t/Ju(t) =AX~(t) +BXu(t), (3.27a) 

dIP d T dX;; 
_u (t) =A Xu (t) +B_u (t). (3.27b) 
d'l] d'l] d'l] 
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Also using Eqs. (3.22) and (3.26) and the conjugated 
expression of (3.27) corresponding to times 7' and 7" we ob
tain 

IP;'(7"W 

(3.28) 

This expression is useful because it relates [P rr' 12 with 
the Cauchy data ofthe vacuum we are using. We can com
pute these data from 

X~ (t) = 1 exp( - iitn~ dt') , 
~2an~(t) "Q 

(3.29a) 

Xu (t) = - ~ H + ~(t) + 2in~(t) X~(t) , d t [ot ] 
d'l] 2 n~ 

(3.29b) 

where n~ (t) and o~ (t)/n~ (t) are given by Eq. (2.17). 
As we shall analyze the behavior for high energies we 

can consider that the particles kinetic energy is much bigger 
than their mass: k 21 a2 > m2. Then we can compute function 
F(k,'I]) as a power expansion in k -I, and we obtain, at the 
lowest order, that 

where G is a function of 'I] only. Then for high energies Eq. 
(3.24) turns out to be 

It 1,IEI<IG('I])llk 3 + &(llk s ) • (3.30) 

From this equation we can study the high energy behav
iorofthe terms ofEq. (3.23). In fact, from Eqs. (3.23) and 
(3.24) we can compute the mean value of the created parti
cles Iprr'1 2 as a function of the Cauchy data: 
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* . 
IP;; (1"') 12 = 1 I Re[ di/Ju (1") dtPu (1"')] + a( 1") [H( 1") + 0: (1") + 2iO: (1")] 

2a(1")a(1"')O:(1")O~(1"') dll dll 2 0:(1") 

XRe[~u(1") dtPu (1"')] + a(1"') [H(1"') + n~(1"') + 2iO~(-r')] Re[~u(1"') d~u (1")] 
dll 2 O~ (1"') dll 

+ .1- a(1")a(1"') [H(1") + n:(1") + i 0;(1")] [H(1"') + n~(1"') + 2i 0~(1"')] 
4 0;(1") 0~(1"') 

XRe[~u(1")tPu(1"')] n Im(tPu(1") ~ (1"»)] -2 . (3.31) 

If we now use Eq. (3.29) in Eq. (3.37) and we only write the lowest powers in k -1 we have 

1PT1"(.,-'W 1 1[1 a(1")a(1"')O;(1")O~(1"') ] k[ I/2d " 
u - 2a(1")a(1"')O;(1")O~(1"') - k2pI/4(1")pI/4(1"') cos./ 11 

+ ~ [a(1")O;(1") - a(1"')0~(1"'>]sink[pI/2 dll" + _1_{a(1") [H(1") + n;(1")] - a(1"') 
k ",' 2k 0;(1") 

X [H( 1"') + n:( 1"') ] } sin ki"'pI/2 dll" + a( 1")a( 1"') {[H( 1") + n; (1") ] [H( 1"') + n~ (1"') ] 
0;(1"') ",' 4k2pI/4(1")pI/4(1"') 0;(1") 0;(1"') 

+ 2i[H(1"') + n~(1"') ]0:(1") + 2i[H(1") + n:(1") ]0~(1"')}COSk[pI/2 dll" 
0~(1"') 0;(1") ",' 

+ T [lE(k,ll) 1,IE(k,ll') 1,ls(k,ll) 1,ls(k,ll')] n Im(tPu (1") ! (1"»)] - 2 • 

Introducing the new functions cp(t) and r(t) as 

E(t) = IE(t) lexp icp(t), ;(t) = I;(t) lexp ir(t), 

we obtain 

T [IE(k,ll) 1,IE(k,ll') 1,1 ;(k,ll) 1,1 ;(k,ll') I] 

= 1;(k,ll)lsin[r(ll) -k i"'~I/2dll"] 

(3.32a) 

+ 1;(k,ll') sin[r(ll') - k[pI/2 dll'] - a( 1") [H( 1") + n: (1") + 2iO; (1")] IE(k,ll) ISin(cp( 11) _ k ("'~I/2 dll ") o 2k 0;(1") Jo 

(3.32b) 

where 

* 
Im[ tPu(k,ll) d; (k,ll)] = - ~ - ~ IE(k,ll)lcos(cp - k i"'pI/2 dll ') + &(l/k4). 

WemustreplaceEq. (2.27) inEq. (3.32) to analyze the 
behavior of IP 12 for high energies. Then, for the lowest order 
in powers of k -1 (which we shall call the zeroth order) of 
the Cauchy data, Eq. (3.20) yields the constraints 

(3.33a) 

(3.33b) 
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(
n;(1"»)(O) 

H(1")+ -- =0, 
0;(1") 

and a similar equation for 1"' . 

(3.33c) 

The restriction in the parameters of Eq. (2.17) is then 

l-r~r~ =0, (3.34a) 

r~ -r~ =0, (3.34b) 
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1 +'I =0, 

1+'f=O. 

(3.34c) 

(3.34d) 

Thus these equations are the conditions that must be 
satisfied to fulfill point (ii) of hypothesis HI. They may be 
written as 

r:/ = 1 , (3.34e) 

,~ = - I, "t, (3.340 

i.e., at the lowest order O~ must coincide with £i)~ and 
Ok/Ok with - H [cf. Eq. (2.17)]. In the next section we 
shall analyze the physical consequences of (3.34). 

Finally we can remark that when Eq. (3.34) is fulfilled 
P" is bound by 

IP,..,.. (T'W<IG(1J) 121k 6 + dOlk g
) (3.35) 

(see Ref. 13) and thus the VEVofEq. (3.25) tumsoutto be 
finite. 

IV. THE VACUUM AND THE PARTICLE MODEL: THE 
GROUND STATE HYPOTHESIS H2 

A very natural criterion, and also a natural generaliza
tion of one of the most important properties of flat space 
vacua, is to state that the VEV of the energy must be a mini
mum: i.e., the ground state hypothesis H2. We shall compute 
the restrictions that the parameters ofEq. (2.17) must fulfill 
in order that H2 should be valid, as well as the relation 
between HI and H2. As we shall see, H2 will coincide with 
the diagonalization of the Hamiltonian (see also Refs. 13 
and 14). The VEV of the metric Hamiltonian K' can be 
defined in R W universes from the 00 component of the ener
gy-momentum tensor as 

K'= Ja3 dx3 (O,TITooIO,T). (4.1) 

(For a definition in more general cases see Ref. 15.) 
We shall use a notation that allows us to simultaneously 

analyze the scalar field with arbitrary coupling and the mas
sive vector field. Thus for the RW metric (2.9) we can write 
the VEV of the energy for the scalar field or for each mode of 
the vector field as 

TABLE I. Definitions of quantities found in Eq. (4.2). 

u Field fl" 

transversal mode of the vector 
massive field; it coincides it satisfies 
with the scalar field Eq. (2.24) 

T with conformal coupling 
(5'= 1/6) 

L longitudinal mode of the 
massive vector field 

t scalar field with it satisfies 
arbitrary coupling Eq. (2.15) 
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For the scalar field we shall have K' = K's and for the 
massive vector field we shall have K' = 2K'T + K'L' This 
last decomposition can be used to minimize each mode sepa
rately. The meaning of each quantity in (4.2) is shown in 
Table I. 

In Eq. (4.2), v = S a3 dx3 is an infinite constant, because 
we are working in a spatially flat universe. We neglect this 
constant because what we shall really minimize is the energy 
density. 

Thus we shall derivate K' u with respect to its Cauchy 
data O:(t) and O:(t) at t = T, and compute these data to 
obtain vanishing derivatives. 

If we call Do" theintegrandofEq. (4.2) we can see that 

aDo" aDo 
-----"--= . " =0, j= 1,2,3, 
a(aO:lakj ) a(aO:lakj ) 

then 

6K'q aDo" 6K' a aDo" 
601" = a01"' 6ir = air 

q u u u 

Then an extremum must satisfy 

6K'q I 6K'u I 
60: T = 60: T = 0 

or 

aDo" I = aDo" I =0 
a~: Tao: 1" . 

From these equations we obtain 

O~(T) =!H~(T)(J.tu -p~) +£i)2, 

0: (T)/O:(T) = -PuHa. 

(4.3) 

(4.4a) 

(4.4b) 

These are the constraints that assure the fulfillment of H2. 
They completely fix the Cauchy data. Now we can study the 
relation ofH2 with the conditions coming from HI. In fact if 
(3.4Of) and (4.4b) are fulfilled simultaneously we must 
have 

H p.., p" 

H=a/a 
Hubble coefficient 

h H(3 - 2m2/ai) 

H 3(3 - 165) 3{l 45) 
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(4.5) 

In the scalar case this relation only holds for S = i. It is also 
valid for the transversal mode of the massive vector case, but 
for the longitudinal one, we have 

p"Hu = (3 - 2m2/0)2)H =H + tJ(H 2). (4.6) 

Thus both hypotheses can be satisfied only if H = 0. This 
problem with the massive spin-I case has already been no
ticed by other authors (see Ref. 14). 

We conclude that we have a good vacuum in the scalar 
case if S = i. In this case we can satisfy hypotheses HI (ii) 
and H2. HI (i) can also be satisfied in this case (see Ref. 9). 
Thus we have a satisfactory vacuum that fulfills both hy
potheses HI and H2. But in all other cases, the scalar field 
with S ;6! and the massive vector field, we can only fulfill 
both hypotheses if H = ° at least at the time when the vacu
um is defined. 

But let us continue our analysis of hypothesis H2, taking 
second derivatives of K u to see the role played by the cou
pling constant s. If we call 

the necessary condition for the existence of an extremum is 
that 

(4.7) 

Moreover if A > ° we have a minimum and if A < ° we have a 
maximum. 

With our notation we obtain 

(4.8) 

thus because 0 is a real function, A is always positive and it 
satisfies Eq. (4.7); so we have an extremum. 

Moreover, from (4.4) for the scalar field is 
0 2 = 0)2 + 6s( 1- 6$)H 2

, therefore we must have S <3' to 
avoid imaginary values of O. Ifwe choose the positive root of 
0, we have a minimum, because 

(4.9) 

then A >0. 
For the massive spin-l case we can use the same equa

tion to study the extremum, making S = i for the transversal 
and longitudinal modes, but changing in the last case H by h 
(defined in Table I). Then 

AlI6 = AT = AL , 

but 

AJ/6 =AT;6AL' AL = 2(0)2 + h 2/4)0-3
• 

Then also for the longitudinal case, we have a minimum 
K L , if we choose the positive root of 0 L . 

Let us now study the physical meaning of the Hamilto
nian minimization. As we have shown H2 is not always valid 
and we would like to know what we lose in that case. In flat 
space-time in the expectation value of the energy of a many
particle state a term l'.kO)kNk appears, where O)k is the ener
gy of mode k and Nk is the particle number in this mode. 
Thus total energy turns out to be the sum of the energy of 
each particle. We eventually lose this interpretation because 
H2 could not be valid in a curved space-time. In fact, let us 
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suppose that we want to retain the particle interpretation in 
curved space, then we must have 

(O,TI:Too(-T'):,..lo,T)=J dk
3

30{(T')I.Br'(T'W, 
(21Ta) 

(4.10) 

where O~ ( 1") is some unknown coefficient that will be inter
pretated as the energy of the particle with k mode. Let us see 
what happens in the scalar case for arbitrary coupling. If we 
impose condition (4.10) to Eq. (3.10) we obtain 

Ix}"')(r'W + 2 Retrr (r')i}( T'»)(6s l)H 

+ IXr(T') 12(0)2 + (1 - 6$)H 2
] = 01"(T')/a, 

(4.l1a) 

[Xr(T') + Xr(T')(6$ - 1)H]2 + 0)2X?(T') 0. 
(4.l1b) 

With no loss of generality we can have 

Xr(T') = 1 eXP(i[01"(t)dt) , (4.12a) 
,)2001"(1") '"0 

Xr(T') =i1Ps(T')Xr(T'). (4.12b) 

Then from Eq. (4.11 b) we obtain 

1Ps(r')O) + i(6$ -l)H(T') . (4.13a) 

Then written in terms of 0'" ( 1"), and taking into account Eq. 
(4.12a),itis 

(4.13b) 

where the factor that multiplies H is, in fact, Ps that we have 
previously defined. Replacing Eqs. (4.12) and (4.13) in Eq. 
(4.11a) we obtain 

0,"12 ( 1") = 6$(1 - 6s)H2( 1") + 0)2 ( 1") . (4.13c) 

Equations (4.13b) and (4.13c) are identical to Eq. (4.4) 
obtained from H2. Moreover the polarization term has the 
same form as in flat space-time: 

(0,1"1 Too (T',X) 10,1") =..!.J~O"'(T'). 
2 (21Ta)3 

(4.14 ) 

Then, from Eqs. (2.6), (4.10), and (4.14) we have 

(0,1'1 Too (T',X) 10,1') =..!.J dk
3 

3 0~(1") 
2 (21Ta) 

+ J~{l'"·(T')I.B"""(T')12. 
(21Ta)3 k k 

( 4.15) 

We can identify O~ ( 1") as the natural generalization of the 
energy in mode k. 

For the massive spin-l case the analogous equation to 
Eq. (4.10) is 

(O,1'I:T 00 (T',X) :,..10,1') 

( 4.16) 

We reach the same result if we repeat the computation in 
this case. Then the last solution is valid if H2 holds and then 
we can reobtain the interpretation that the created energy is 
the sum of the energy of each particle. 
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All these facts show that H2 is a very natural hypothesis. 
If we try to make a theory without this hypothesis we shall 
have to deal with a theory with no particle interpretation. 

Going back to the technical point of Sec. II A about the 
Hadamard vacua, we can ask the following question: Can 
the failure, in general, of the energy-minimization scheme to 
satisfy their finiteness criterion HI be interpretated as saying 
that this scheme produces a two-point function of non-Ha
damard form? The answer is no, because there is at least one 
example (cf. Ref. 9) where the minimization scheme yields a 
non-Hadamard vacuum with a finite renormalized energy
momentum tensor. We do not know if this is only a very 
peculiar case or if it really shows a general feature of the 
problem. 

V. CONCLUSIONS 

We have introduced a parametrization method that al
lows us to present the vacuum problem in curved space-time, 
simply and precisely. 

Two natural but competitive hypotheses are introduced: 
HI, the fundamental hypothesis; and H2, the ground state 
hypothesis. We have shown that to fulfill these hypotheses 
the coefficients of Eqs. (2.17) must satisfy certain con
straints. All of the problem is embodied in these coefficients 
and these constraints. 

We have shown that the set of the two hypotheses HI 
and H2 yields a set ofincompatible constraints in the general 
case. This system of equations is only compatible in the sca
lar case whens = i orin all cases whenH = 0. We have also 
shown that both hypotheses are natural and necessary, thus 
the vacuum problem is stated for the general case. 

We shall try to solve the prOblem or at least make a 
deeper study of it, using our formalism, in a forthcoming 
paper. 

APPENDIX A: PROPERTIES OF THE OPERATOR: :T 

The classical expression for the energy-momentum ten
sor, valid for different matter fields, is 

T/Lv = {D1l{JP ,D2l{JP}/LV (At) 

(where the p index may in general be scalar, vectorial, or 
tensorial), and { , } is the anticommuter. 

The operators D 1 and D2 are linear differential operators 
that act on the l{J field. For example, in the spin-O case with 
arbitrary coupling S, they are 

- S,sg/Lv,Hs (R/Lv - (R 12) g/Lv) + !m2g/LV Pl{J , 
(A2) 

D2l{J = {VV ,V" ,Vv V/L ,0,t}l{J, 

with 

0= -V"V", 

and, for the spin-l field case, we have 
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(A3) 

with 

H/Lvat..ty = ! (J g/Lvg'" - gIL bgv")gy6, 

M/Lvat = ~(g/L "g} - ~/Lvg"b) . 

(A4) 

(A5) 

We drop the indices p, 1", v because they are irrelevant 
for the demonstration that we shall make below. 

From Eq. (AI) we can obtain the VEV replacing the 
quantized field 

l{J = J dk 3(a~t/>~ + a~t&) (A6) 

with 

a~ 10,T) = 0, a~tIO,T) = Ilk,T), etc., \fk. 

By the substitution in (AI) we set 

(O,TIT(T') 10,T) = {dk 3Re[ Dlt/>~ (T') 'D2¢k (T')] . 

(A7) 

We can relate Eq. (A7) with the particle creation by means 
of Bogoliubov's transformation that goes from the basis 
{t/>",~T} to the basis {(r,~1} (we omit the indices k and k '); 
and, for simplicity, we suppose that 

t/>T=arr't/>T +f3rr'~T, (AS) 

where arr' ,/3 rr' are matrices with elements a~. and f3 ~" 
Replacing (AS) in (A7) we obtained 

(O,TIT(T')IO,T) - (O,T'IT(T')IO,T') 

= 4f dk 3{VJrr'(T') 12Re[Dl~T(T') 'D2t/>"(T')] 

+ Re[arr'(T'),8rr( T')Dtr(T') ·DiV(T')]}. 

(A9) 

We shall normal order Eq. (A9). We express the field l{J 
in terms of the basis {t/>",~T}, then 

with the corresponding operators defined by 

arIO,T') = ° and artIO,T') = 11k,T'), \fk. 

(AIO) 

Replacing expression (A 10) in (A I) and using the de
finition of normal ordering for the primed operators, drop
ping also the operators that produced orthogonal states, we 
have that the normal ordered-momentum operator is 

:T:T = 2 J dk 3(ara'D~ 'D1t/>' + a(a(Dl¢k' ·D2 ¢k' 

2aT,t 1" [ ",1" "'1" + k ak Re D1'f'k' D2 if{ ] ) . (All) 

Taking into account the transformation among the op

erators {aT,aTt} and {aT,aT,t}, 

aT =arr'aT +prraTt , aT,t =f3rr'aT +~aTt, (AI2) 
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replacing (A12) in (All) we obtain 

(O,rl:T:TIO,r) = 4J dk 3{lp'N"1 2 Re[D1tPT 'D2¢T] 

+ Re[aPD1r'D2rn, (A13) 

then by comparison between (A13) and (A9) we obtain 

(O,rl:T(r'):TIO,r) 

= (O,rIT(r')IO,r) - (O,r'lT(r')IO,r'). (A14) 

Now we shall show that :T:T is an operator that satisfies the 
first three Wald axioms. 

( 1) The off-diagonal elements must coincide with the 
expression without normalization. 

Avoiding the unnecessary indices, the operator without 
normalization has the form 

T= Jdk3dk'3[a~a~(DltP~'D2tP~ +D2tP~'DltP~) 
T ,t T "'T D ,/,T' D ,.T ) + aka);, (D1tPk ·D2 ¢{., + 2'1'k' l'l'k' 

+a(a~(DliK'D2tP~ +D2iK'DltP~) 
+ a);'ta~t (D1iK . D2 iK + D2 ¢;;: + D2 iK . D1¢;;: >] . 

(A1S) 

Let (alb) = 0; then we see that 

(al [a~,a(] Ib) =8kk , (alb) = ° 
so 

(ala~a);:tlb ) = (al a(a~ Ib ) . 

Thus from Eq. (A1S) 

(aITlb) = (al:T:Tlb) , 

which proves Axiom 1. 

(A16) 

(A17) 

(2) In the Minkowskian limit we must reobtain the nor
mal ordering of the flat space-time. This is true because: :T 
is the natural generalization of the normal ordering. 

(3) The normal ordering must give us a conserved cur
rent. We can show this property using the expression (A 14 ) : 

VI-' (O,rl:Tl-'v:TIO,r) 

= (O,rIVI-' TI-'v 10,r) - (O,r' I VI-' TI-'v 10,r') = 0. (A18) 

( 4) Causality: In general, normal order does not satisfy 
the causality axiom. 

APPENDIX B: CALCULATION OF A BASIS OF 
SOLUTIONS FOR SPIN 1 

The massive spin-1 field equation in a Robertson-Walk
er metric, called Proca's equation, is 

al-'al-'tPv - aval-'tPl-' + H(a<I/Jv - avtPo) + m2tPv = ° 
(B1) 

(see Ref. 16). 
We can separate in temporal and spatial variables by the 

following ansatz: We propose 

tP~ =i~ (t)~.x, (B2) 
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where thei~ are four vectorial functions of the time and the 
linear momentum kla. Replacing Eq. (B2) into Eq. (B1), 
we obtain 

w~ ikO + U/a2 )k-rk = ° , (B3a) 

fk + Hfk + W2fk 

- k[ (lIa2 )kof k + i(fkO + HikO)] = ° , 
(B3b) 

where the fk are the spatial components of A" and 
Wk = (k 2/a2 + m2

) 1/,S the energy of the particle in the flat 
limit. From Eq. (B3) it is clear that we only need three vec
tors for the basis. Each element of the basis is identified by 
the subindex q = 1,2,3. For the separation in transversal and 
longitudinal modes of polarization, we propose 

fku(t) =~uilw(t), (B4) 

where the time dependence is only iniku and the trivectorial 
behavior in ~u' 

For the decoupling of (B3), we choose one ofthe vec
tors parallel to k and the others two orthogonal to k, i.e., 

~311k and ~I ,~lk . (BS) 

Replacing (B4) into (B3) we obtain 

~u (Au + Hilw + W2jIw) 

k(k<;'u) r·· ( ti» . 2] 
- a2w2 lAu - H + 2 -; Au + w'f...u = ° . 

(B6) 

Using (BS), Eqs. (B6) are equivalent to 
.. • 2 
Au + Huhu + wkAu = 0, (B7) 

where It =h.=iu (transversal polarization modes) with 
HT = H andi3 =iL with HL = H(3 - 2m2/(2). 

If we change the variables as 

1 Wk 

iT = (217')3/2 XT' iL = (21T)3/2mXL , 

we obtain 

d
2
Xu 2 --+k'nx =0, drl Yu u 

(B8) 

withpu given by Eq. (3.15). 
The orthogonalization of the basis is done under the 

inner product 

(tpl-';rpv) = i L (q;I-'V;..tPl-' - rfl"V;..q;I-')dif, 

with the requirement 

(rf;tu;tP~'o') = 8(k - k')8uo' . 

The result is the basis {rf;to"k,.} with 

1 ( ~2) e'k'x 
rf;tdx) = (21T) 3/Vki+ k i -ok1 XT , 

(B9a) 
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(B9b) 

(B9c) 

W=i~ln(~XL) , 
dt m 

where the function X.,. is a solution ofEq.(3.16) (orthogo
nality) with the functional form (3.17). Due to the fact that 
the universe is spatially fiat, there is an invariance under 
rotations in R3

, so therefore we can obtain a simpler basis 
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doing two successive rotations. Thus we finally have Eq. 
(3.14). 
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It is shown that the Thirring model has an infinite number of local conserved quantities, 
explicit forms of which are presented. These quantities are shown to be expressed in terms of 
scattering parameters. It will be shown that in this model there exists an extended symmetry 
algebra that includes the Virasoro algebra as its subalgebra. 

I. INTRODUCTION 

The inverse scattering method I has provided a unified 
framework for the investigation of classical completely inte
grable field theories. By this method we can systematically 
obtain an infinite number of conserved quantities that corre
spond to action variables of the system. 

Based on these successes the quantum versions of the 
inverse scattering problem [the quantum inverse scattering 
method (QISM)] had been proposed in order to study com
pletely integrable quantum field theories,2 especially the 
nonlinear SchrOdinger model. The QISM supports the re
sults obtained by the Bethe ansatz approach to these models. 
It also gives creation and annihilation operators of the Bethe 
states. 

In spite of these interesting results, the formulation of 
the QISM includes some troubles associated with the defini
tion of local products offield operators in the quantum field 
theory. As is well known the naive definition of the local 
product of the field operator, which has been used in the 
QISM and in the Bethe ansatz approach, leads to contradic
tory results. For example, in the Bethe ansatz approach to 
the fermionic model the definition is inconsistene since it 
does not give the nontrivial Schwinger terms of current com
mutation relations.4 For another example it was shown that 
in the nonlinear SchrOdinger model the eigenvalues of quan
tum operators corresponding to the action variables are di
vergent and then that we cannot obtain a quantum version of 
these conserved quantities.5 

The problems of defining the local products of operators 
in quantum field theory have been studied perturbatively in 
various models,6 but nonperturbatively only in the Thirring 
model. In the quantum theory of the Thirring modef it is 
shown that the local product offield operators, current oper
ators in this case, is defined nonperturbatively and that this 
model can be solved completely in a well-defined Hilbert 
space. 

These results suggest that in the Thirring model there is 
a hint of how to define operator products in the formulation 
of the inverse scattering problem. From this point of view, 
we think it is worthwhile to rediscuss the quantum theory of 
the Thirring model in terms of the inverse scattering meth
od. To establish the quantum inverse scattering method in 
this model may help us to study other completely integrable 
quantum field theories in the framework of the QISM. 

In the model, unfortunately, the classical version of the 

inverse scattering method has not been well discussed yet, 
and no one has found an infinite number of conserved quan
tities that are necessary to specify all states completely in the 
quantum theory. 

The purpose of this paper is to formulate the classical 
inverse scattering method in the model. In Sec. II we show 
that this model has the Lax pair from which we can obtain 
explicit forms of the infinite number of conserved quantities. 
In Sec. III the scattering problem will be studied with this 
Lax pair and the conserved quantities are expressed in terms 
of the scattering parameters. The expression suggests that 
the scattering parameters may be related directly to the 
asymptotic field in the quantum theory. Finally, in Sec. IV 
we will show that the model has an extended symmetry alge
bra constructed from a large class of conserved quantities 
and that the algebra includes, as its subalgebra, the usual 
conformal algebra. 8 

The quantum theory of the Thirring model in terms of 
the scattering parameters will be discussed in a separate pa
per.9 

II. THE LAX PAIR AND INFINITE NUMBER OF 
CONSERVED QUANTITIES 

The Lagrangian density of the Thirring modello is given 
by 

L = iWB"t/I - (g/2)~,.t/lWt/I, (2.1) 

where ~ = t/ltyJ, (XO ,xl) = (t,x), and theymatrices are giv
en by 

~ = Yo = (~ ~), yl = - Yl = (~ 

In the classical theory, t/lt and t/lfields satisfy the anticommu
tation relations 

[ t/lj (xt),t/lj (x't ')] + = [t/I; (xt) ,t/lJ (x't') J + 

= [t/lj(xt),t/lJ(x't')] + =0, (2.3) 

so they are odd elements of the Grassmann algebra. 
In this model we find the Lax pair, the consistency con

dition of which gives the field equation. In a previous pa
per, II we have shown that the Lax pair of the system with 
fermionic fields and its scattering problem can be well for
mulated in the superspace (t,x,e), where e is the Grassman 
number e 2 = 0. 12 
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In the superspace formulation the Lax pair of the Thir
ring model is given by 

; ax <I> (i) (f,x,O) = L (i)<I>(i) (f,x,O) 

; at <I>(i) (t,x,O) = M (i)<I>(i) (f,x,O) 
(i = 1,2) , (2.4) 

where <I>(i) (f,x,O) is a superfield and is expanded into the 
component fields S (i) (f,x) and 7J(i)(t,x) as 

<I>(i)(t,x,O) =s(i)(t,x) +07J(i)(t,x). (2.5) 

In (2.4) L (i) and M (i) are operators in the superspace and 
are defined by 

L (i) = L \1) + L il) a(J + OL ~I) + OL ii) a(J 

M(I) =M\I) +Mii) a(J + OM~i) + OMii) a(J 

where 

L 1') = A. 2 + (gI2)1/Ii 1/12' L i l
) = ,1.1/11 , 

L (I) - 1.I.t L (I) - _ 2L (I) 
3 -/1.'1'1' 4 - I' 

L \2) = A. 2 - (gI2)1/Ir 1/11' L i2) = ,1.1/12 , 

L (2) - 1.I.t L (2) - _ 2L (2) 
3 -/1.'1'2' 4 - I' 

and 

(i = 1,2) , 

(2.6) 

(2.7a) 

M\O= _,1.2+ (gI2) 1/Ii 1/12' Mi l )= -,1.1/11' 

M (I) - 1.I.t M(I) - _ 2M (I) 
3 - - /1.'1'1' 4 - l' 

M\2) =,1. 2 + (gI2)1/Ir1/lI' Mi2) =,1.1/12' 

M~2) =,1.1/Ii. Mi2) = - 2M \2) . 

(2.Th) 

Here it should be noticed that component fields s(t,x) and 
7J(t,x) have a character different from that of the Grass
mann algebra. In the following we will assume that s (i) is an 
even element and 7J(i) is an odd element. 

The integrability condition of S (i), 

(2.8) 

(which is equivalent to the field equation), leads to the equa
tion of continuity 

where ,n(i) is defined by 

,n(i)=7J(i)/s(i), (2.10) 

and it is called the pseudopotential. Then conserved quanti
ties Q (i) of the Thirring model can be defined by 

Q(i) = f dx{L Ii) +Lii),n(i)}· (2.11) 

From (2.4) we can further show that ,n(i) satisfies 

;ax,n(i)=L~I)+Lii),n(i), (2.12) 

where the properties (,n (i) ) 2 = 0 have been used. In com
pletely integrable models with Bose fields, as is well known, 
pseudopotentials satisfy the Riccati-type equations that 
have nonlinear terms. In the Thirring model, on the other 
hand, the equation of the pseudopotentials is the linear one 
(2.12) because of the properties (,n (i) ) 2 = 0, so we can find 
explicit expressions of all conserved quantities. 

Now let us assume that ,n (i) can be expanded into a 
power series of A. -I such as 

,n(i)= i: w~i),1. -2n-l+ i:w~i),1. -2n. (2.13) 
n=O n=O 

Substituting (2.13) into (2.12), we obtain the following re
currence formulas: 

wbl
) = ! 1/Ir, w~!) = -!(i ax + K1/Ji 1/I2)W~12 1 , 

;:;(1)-0 ;:;(1)_ -l(;a +g."t.,. )W(I) 
""0 - , LVn - :2 x 'f/2 'Y2 n - 1 , 

(2. 14a) 

W(2) = 1 .I.t W(2) = _ 1(; a _ g.,.t .1. )W(2) 
o 2 '1'2' n 2 x '1'1 '1'1 n - I , 

n = 1,2, ... 
W(2) = 0 ;:;(2) = _ 1(; a _ g.,.t .1. )W(2) 

(2.14b) 
o , ""n 2 x '1'1 '1'1 n - I' 

The solutions of these recurrence formulas are 

w~!)= _(_2)-n-l(iax +g1/li1/l2)n1/lr, 

and 

W~2) = - ( - 2) - n -I(i ax - g1/lr 1/I1)n1/li , 

w~2) = O. 

(2.15a) 

(2.15b) 

From (2.7), (2.11), (2.13), and (2.15) it is shown that 
the conserved quantities Q (i) are written in the power series 
of A. -I, and that each coefficient of A. - 2n in Q (i) becomes a 
conserved quantity. Then we obtain an infinite number of 
conserved quantities: 

I ~I) = f: 00 dx 1/Ir (i ax + g1/li 1/I2)n1/lt> (2.16a) 

(2.16b) 

477 J. Math. Phys .• Vol. 29. No.2, February 1988 

r 
Moreover conserved quantities are shown to satisfy the Pois-
son brackets 

{I~i),l~)}=0, ;,j=I,2, n,m=I,2, .... (2.17) 

Some conserved quantities among the I ~i) have well
known physical meanings, 

N=lbo+1b2
)= f~oo '¢ryD1/Idx, (2.18a) 

NA = I bl) - I b2
) = f~ 00 '¢ryDy51/1 dx , 

H=lp) _1\2) 

and 

(2.18b) 

(2.18c) 

(2.18d) 

where N, NA , H, and P are the fermion number, chiral 
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charge, Hamiltonian, and momentum ofthe system, respec
tively. 

III. SCATTERING PARAMETERS AND CONSERVED 
QUANTITIES 

In this section we will investigate the scattering problem 
of (2.4). Assuming that", and ",t vanish at x = ± 00, we 
will define the Jost functions gli)(t,x,8).), g~i)(t,x,8).), 
fli) (t,x,8).), andf~i) (t,x,8).) of solutions for (2.4) with the 
following boundary conditions: 

X--+ - 00, g~i)(t,x,8).)-+e-iA.\ g~i)(t,x,8).)-+8eiA.'x, 
(3.1a) 

and 

x-+ 00, f\i) (t,x,8).) -+e - iA. 'x, f~i) (t,x,8).) -+ 8eiA. 'x • 

(3.1b) 

From the boundary conditions (3.1) we see that the Jost 
functions g\i) (t,x,8).) and f\i) (t,x,8).) [gii) (t,x,8).) and 
f~i)(t,x,8).)] have even (odd) characters. 

Sincef\i) andfii) constitute a complete set of solutions 
for the scattering problem, g\i) can be expressed in terms of 
linear combinations off\i) andf~i): 

g\i)(t,x,8).) =f\i)(t,x,8).)a(i)(A) + f~i)(t,x,8).)b (i)(A) , 
(3.2) 

where the coefficients a(i) (A) and b (i) (A) are called scatter
ing parameters. It can be shown that these scattering param
eters do not depend on x. The scattering parameter 
a(i)(A)(b (i) (A») is an even (odd) element of the Grassmann 
algebra. 

They have the following properties: (i) the normaliza
tion condition, 

aU)(A)*aU)(A) + b (i)(A)*b U)(A) = 1 ; (3.3a) 

(ii) analyticity, a(i) (A) is analytic in the region with 
ImA 2>0; 

(iii) aU) (A) = a (i) ( - A) ; 

and (iv) time dependence, 

~a(i)(A) = O. 
dt 

(3.3b) 

(3.3c) 

The property (iv) suggests that a(i)(A) can be expressed in 
terms of conserved quantities I~i) given by (2.16) and vice 
versa. In the following we will present these expressions. 

From the boundary condition (3.1) and (3.2), 
log ai (A) is expressed as follows: 

log aU) (A) = lim log{(g~i) (t,x,8).) )eeiA. 'x} 
x_ "" 

= - i f: "" i ax log{(g~i)(t,x,8).»)eeiA.'x}dx, 
(3.4) 

where (g~i» e means the component with even character giv
en by 

(g?) (x,t,8).»)e = f d8 8g~i) (x,t,8).) . (3.5) 

Since (g~i) e satisfies the integrability condition (2.8), we 
can rewrite (3.4), by tracing the same procedure from (2.8) 
to (2.15), in the form 

{

_..!-.(l';}) +gN/» -i i (_2)-n-IA -2nI~I), i= 1, 
2 n=O 

= - 2i (l62)-gI61)-i i(-2)-n-IA-2nI~2), i=2. 
n=O 

(3.6) 

Next, we will express I ~i) in terms of the scattering pa
rameters conversely. For the sake of convenience, new scat
tering parameters a(i) (A) are introduced by 

a(l)(A) = exp [ (i/2)(I 61) + gJ 62) >] a(l)(A) , 

a(2) (A ) = exp [ (i/2)(J 61) - gI ~2» ]d2)(A) . 

It is easily shown that a(i) (A) satisfies 

a(i)(A)*a(i)(A) + b (i)(A)*b (i)(A) = 1, 

and, from (3.6) and (3.7), 

lim ii(l)(A) = 1 . 
1-'1_0 

Im-">O 

(3.7) 

(3.8) 

(3.9) 

Since ii(i) (A) as well as aU) (A) is analytic in the region 
with 1m A 2>0, we find, with the help of the dispersion rela
tion, 

(3.10) 
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~I--------------------------------------
for realA. 2. By expanding the right-hand side of (3.10) into 
the power series of A -2, we have 

log a(i) (A 2) = ~ _1_ C (i) 
~ 12n n' 

n=O/L 

(3.11 ) 

where C ~i) is given by 

C~i) = -~f"" k211-2Iogla(i)(k2)ldk2, 
11T - "" 

n>l. 

(3.12) 

Then, from (3.8), (3.11), and (3.12) we arrive atthe expres-
sion 

J~i) = _ (- 2)11+ 1 f"" k2n-210gla(i)(k2)ldk2. 
1T - "" 

(3.13) 

Moreover, since the normalization condition leads to 

lii(i) (A 2)1 = ~1 - b U)(A)*b (i) (A) 

= (1 -!b U)(A)*bi(A»), (3.14 ) 
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it is shown that 

logla(i} (A 2) I = 10g(1 - ~b (i) (A )*b (i) (A ») 

= -!b (i) (A)*b (Il(A) , (3.15) 

where we have used the relation b (i}(A)2 = b °(i}(A)2 = O. 
Here new scattering parameters are defined by 
b(I)(A) =A -lb(l)(A). Then we get an interesting result 
that the infinite number of conserved quantities I ~I) can be 
represented in terms of the scattering parameters b (;) (A) 
with odd character; 

I~I) = - (-2)" Sao k 2"b (i)(k)*b (i)(k)dk 2 • 

11' - ao 
(3.16) 

Expression (3.16) suggests that the scattering param
eters b (I) (A) and b (l}t (A) play the role offundamental oper
ators in the quantum theory of the Thirring model. We will 
discuss these problems in a separate paper. 

IV. EXTENDED CONFORMAL ALGEBRA 

It is well known that in two-dimensional conformal in
variant field theories there exists the symmetric energy-mo
mentum tensors 0 - - and 0 + + that satisfy 

a+o ++ = 0, a_8 -- = 0, (4.1) 

wherex± = t±x,a± =alax±, and 

0++ = ~(8°O + 801 + 8 1o + 0 II) , 

0-- = !(8oo - 8°1 _ 8 1o + 8 II) . (4.2) 

Equations (4.1 ) mean that 8 + + (8 - ) is a function of x
(x+) only. 

Furthermore, it can be shown that the moments of these 
energy-momentum tensors, defined by 

L\+! = f(X-)"8++(X->dX, 
(4.3) 

L l ~ = f (x+ )"8 - - (x+ )dx , 

are constants of motion and that they constitute the Virasoro 
algebra without the central charge 

{L~±},L~±)}= (m-n)L~$;", 

{L~+),L~-}}=O. 
(4.4) 

Here we have to notice that Eqs. (4.1) and (4.4) can 
result from the conformal invariance, and that these equa
tions are shared by many conformal invariant field theories 
in two dimensions. 

The energy-momentum tensor 0 + + , 8 - - of the Thir
ring model is given by 

8 ++ = itP1 a-tPI' 0-- = itP~ a+tP2' (4.5) 
and the moments of 8 + + and 8 - - are obtained by substitut
ing (4.5) into (4.3). Since the Thirring model is invariant 
under conformal transformations, 0 + + and 0 - -, given by 
( 4. 5), satisfy the continuity equations (4.1 ). Then their mo
ments L,,+ and L ,,- constitute an infinite number of con
served quantities and satisfy the Virasoro algebra. 

On the other hand, in Sec. II we have shown that there 
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exists another set of the infinite number of conserved quanti
ties I ~i) that satisfy 

{I ~I}, I :.I)} = O. (4.6) 

Thus we find that the Thirring model has two kinds of 
sets constructed of conserved quantities {L,,; n 
= 0, ± 1, ± 2, .. .} and {J~I); n = 0,1,2, .. .}, the algebras of 
which are given by (4.4) and (4.6), respectively. 

In the following we will show that in this model there is 
an extended symmetry algebra that includes (4.4 ) and (4.6) 
as its subalgebras. In order to do so let us return to the con
tinuityequation (2.9). Making use of(2.12) and (2.13) the 
coefficients in the power series orA -I for (2.9) are shown to 
be the equations 

a+8 ~I} = 0, a_o ~2} = 0, n = 0,1,2, ... , 

where 

o ~ I) = tPt (i ax + gt/t~ tP2)"tPl , 
8 ~2) = tP~ (i ax - gtPltPl)"tP2 . 

(4.7) 

(4.8) 

Equations (4.7) mean that O! (O!) is the function of 
x- (x+) only. 

Furthermore, the field equations of tP and tPt yield 
. t ... t·... t - 'tPl a - = tPl (l ax + gt/t2 tP2) 

and (4.9) 
. t ... t·... t ,tPz a+ = tPz (I ax - gtPl tPt) . 

Using the method of mathematical induction, we obtain, 
from (4.9), 

tP1 ( - i a _)" = tP1 (i ax + gt/t2tP2) " 
and (4.10) 

tPi (i a+)" = tPi (i ax - gt/tl tPl)" . 
Hence substituting (4.10) into (4.8),8! and 8! can be ex
pressed in the simple forms 

o ~I) = tP1 ( - i a_ )"tPl' 8 ~2) = tPi (i a + )"tP2 . (4.11) 

It is obvious that 0 P) and 0 \2) reduce to 0 + + and 0 --, 
respectively: 

0ll)= -0++, 8j2)=O--. (4.12) 

Thus we have shown that in the Thirring model there are two 
sets of generalized densities {O ~1)(x-)} and {O ~2)(X+)}, 
n = 0,1,2, ... , which are associated with the complete integra
bility. 

Now we will introduce a higher-rank tensor density giv
en by 

OIW;. .. ·". = ~ 4y" A-(J .. 'Ar'tP, J = r" aa , (4.13) 

which is symmetric with respect to any pair of suffixes and is 
traceless 8p). .. ·p, .. ·". = O. It is easy to see that this tensor sat
isfies the continuity equation 

a 8afJ .. ·w .. ". = 0, 
I' (4.14) 

and that 8 ~I) and 0 ~2) are given in terms oflinear combina
tions of 0 1'''' •. ;. such as 

8 + + + ... + = firy+ 4y+ 4y+ .. ·4y+tP, 

8 - -'" = firy- 4y- J .. '4y-tP, 
(4.15) 
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where r± = f ± rl. 
Next let us define moments of generalized densities 

O~\)(x-) andO~2)(x+) by 

M~~l-/ = f dx-(x-)/O~\)(x+), 

M(2) = fdX+(X+)/O (2)(X+) 
~I-/ n' 

These moments include L /± and In as its subsets, 

L/+ = -M\Y, L/- =M\Y 
and 

( 4.16) 

( 4.17) 

I~\) =M~~{, I~2) +M~~{. (4.18) 

Moreover, it can be shown that M ~:L / U = 1,2) are con
stants of motions and that they satisfy the Poisson brackets 

{ M (i),M (j) } = 8·· [ -; ~ ( - 1 yru)r 
n,r m.k 'J ~ 

r=O 

(m) (1 - ') (j) X r r rIM n + m - r.k + / + r - I 

( ") ] XM /+m-r,k+/+r-I , 

where we have used the canonical Poisson brackets 

{tPi (x),tPj (x')} = 0, {tP;(x),'I'J (x')} = 0 , 

{tP;(x),tPj(x')} = -;8ij8(x-x'). 

(4.19) 

( 4.20) 

Then the sets of {M ~:l- /} constitute the extended algebra 
that we call the extended conformal algebra. The Virasoro 
algebra (4.4) and the algebra (4.6) are the subalgebraofthe 
extended conformal algebra. 
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Whereas the conformal algebra is associated with the 
space-time symmetry, it is not obvious what the physical 
meaning of the extended conformal algebra is. In spite of the 
obscurity for its physical meanings, we have to stress that the 
existence of the extended algebra is the characteristic feature 
resulting from the fact that the Thirring model has proper
ties of both conformal invariance and complete integrability. 
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N ormalizable zero modes of the Dirac operator are constructed for a class of self-dual, periodic 
SU(2) gauge field backgrounds characterized by two independent integer invariants. The 
integers are (ST/8~), where ST is the action over one period T, and the asymptotic winding 
number (q) in R 3, the solutions reducing to static "monopoles" for large spatial distances 
independently of the time. The spinor solutions are obtained for the simplest class of the 
hierarchy presented in Chakrabarti [Phys. Rev. D 35, 696 (1987) ], corresponding to q = 1 
and ST = 8~'2n (n = 1,2,3, ... ). The full number ofzero modes for such backgrounds is (STI 
8~) - q) = (2n - 1). They are all constructed explicitly. It is shown how these results can be 
obtained through a simple scaling limit by starting with special classes of instantons with finite 
action over R 4 • A derivation of ST is also given. 

I. INTRODUCTION 

The zero modes of Dirac spinors (forisospin p are con
structed for periodic self-dual Yang-Mills fields character
ized by two integer topological indices. 

Let us first recall the significance of such zero modes for 
standard instanton backgrounds with one index only. They 
have been studied by various authors. There are important 
reasons for doing that. In calculating quantum fluctuations 
their effect has to be separated out. Otherwise the fermionic 
determinant vanishes. The pioneering work of't Hooft1 

studies this aspect for one instanton. Results and references 
for multi-instanton backgrounds can be found in Ref. 2. The 
structure of the instanton fields themselves can be studied 
via the spinors. The inverse construction of the ADHM solu
tions using spinors3 furnishes a proof of the completeness of 
such instanton solutions. Linear classical fluctuations 
around instantons and their parameter space can be related4 

to Dirac spinors of isospin 1. Yang-Mill fields can be formu
lated5 in terms of multispinors, helpful in the study of the 
zero modes in question. (Anomalies and spinor zero modes 
have been studied6 also for other types of backgrounds in 
different dimensions for different types of manifolds and 
boundary conditions.) 

The index of the instanton background fixes the number 
of spinor zero modes. Thus for an index n and isospin ! one 
has exactly n Dirac zero modes. What happens to spinors 
when the background is characterized by two topological inte
gers? We discuss and illustrate this for a simple case through 
explicit construction. Both indices are found to playa role in 
fixing the number of zero modes. The next step should be to 
study carefully the implications of the new situation con
cerning anomalies, fluctuations, and reconstruction of the 
gauge fields in terms of the spinor solutions. I intend to study 
these aspects elsewhere. 

In a previous paper7 I have presented self-dual, periodic 
SU (2) gauge field solutions. A method was indicated for 
constructing a canonical hierarchy. Apart from periodicity 
and finite action over one period the technique leads to the 
following special feature. For large spatial distances (as
ymptotically in R3 and for any time) the solutions reduce to 

Euclidean versions of static Bogomolny-Prasad-Sommer
field (BPS) monopoles. The iteration ofpoles7 increases, at 
each step, this asymptotic charge (say q) by unity. The con
struction gives/or each value 0/ q, 

q = 1,2,3, ... , 

an infinite sequence of periodic solutions. Different members 
of each sequence have different types of pulsating core but 
reduce to the same static form asymptotically. The simplest 
type is briefly described in the Appendix. For this class (ST 
denoting the action over one period T), 

q = 1, ST = 8~'2n (n = 1,2, ... ). (1.1) 

Section II gives explicitly the normalizable zero modes of the 
Dirac operator for such a background. It turns out that 

number ofzero modes = 2n - 1 = ST/8~ - 1. (1.2) 

I have learned from HitchinS that, for the above-mentioned 
asymptotic conditions, one should have more generally (for 
arbitrary integer q) 

index ofthe Dirac operator = S T/8~ - q. ( 1.3) 

The second term ( - q) comes from the boundary S2 X S 1 as 
the three-distance r- 00. Thus the explicit construction of 
Sec. II succeeds in illustrating (for q = 1) the combined ef
fect of the two independent integer invariants of such gauge 
field configurations. The two invariants were already dis
cussed by Gross, Pisarski, and Yaffe. 9 Generalization of the 
construction ofthe Appendix following Ref. 7 will yield peri
odic fields with 

q= 1,2, ... , (ST/8~) =q'2n (n = 1,2, ... ) (1.4) 

[see the remarks following (All) concerning a modified 
choice of periodic functions]. But here spinor solutions are 
obtained only for q = 1. Even this would have been difficult 
in the absence of the very convenient forms1o (2.18) and 
(2.19). The rest of Sec. II is devoted to the delicate task of 
selecting, in (2.19), suitable!,s for a given g to assure regu
larity and normalizability. 

In a series of papers (cited for example, in Ref. 7) I have 
shown how multicharged BPS monopoles can be obtained 
very simply as scaling limits of sequences of instantons. This 
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is again possible for the periodic sequences ( 1.4) and for the 
corresponding spinor zero modes. This is briefly indicated in 
Sec. III. 

In the following sections I have tried to emphasize how 
the relation (1.2) arises inevitably from our constructions. 

II. ZERO MODES OF THE DIRAC OPERATOR 

The gauge field background is given by 

At = (ar~)O'3/2, Ar = - (at~)O'3/2, (2.1) 

Ae = - e'O'2/2, Atp = sin () e'O'1/2 - cos () 0'3/2, 

where 

e'=r(1-gg)-I(dg dg)1I2 (2z=r+it) (2.2) 
dz eli 

and g(z) is a holomorphic function. 
Choosing 

g(Z)=iI(a~+e~:kz) (k>O, laj l<1), (2.3) 
j=1 aj +e 

one gets a periodic self-dual solution with a finite action per 
period T ( = 21rlk), namely, 

ST = 4trT(2nk) = 8~'2n (O<t<T) (2.4) 

(see the Appendix). This is to be compared with the choice 
(Witten ll

) 

n (bj - 2z) -g = IT - (bj + bj > 0), 
j= I bj + 2z (2.5) 

giving a finite action over the entire R4 (tE [ - 00,00]), 

S= 8~(n -1). (2.6) 

The choice (2.3) can be generalized to include factors with 
different periods, if they are integer multiples of a basic one. 
Only the simple form (2.3) will be considered here. And 
since then one can go over, through a rescaling, to the case 
k = 1, only this last case will be essentially our concern here
after. [Note that in (2.4) ST is independent of k.] 

Consider the zero-mass Dirac equation in the back
ground (2.1). It is convenient to use the spherical Euclidean 
coordinates from the beginning. Let 

ds2 = dt 2 + d~ + ~(d() 2 + sin2 () dlp 2). (2.7) 

Define 
A A A A 

Y,=Yo, Yr=Y3' Ye=rrl' Ytp=rsin(}Y2' (2.8) 

where 

Yo=IO'oO'ol, Yj=liO'
j 

-iO'jl (j=1,2,3), 

and 

B,.. = (i/4) [YV,avY,..] , 
giviI1g 

482 

B, = 0 = B" Be = (i12)Y3YI' 

Btp = (il2)(sin () Y3 + cos () YI)Y2' 

The isospin-! Dirac equation is 
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(2.9) 

(2.10) 

Here A,.. corresponds to (2.1) and B,.. supplies the spin 
connections corresponding to (2.7). Our gauge fields are 
self-dual with definitions 

E,r8tp = 1, F,..v =a,..Av -avA,.. +i[A,..,Av]' (2.11) 

so that defining 

(2.12) 

with upper ( U) and lower (L) helicity indices, only '11 u has 
normalizable zero modes. 

Let 

(2.13 ) 

where ± are isospin indices (/3 = ± V. 
Defining 

.TI _ -I '/21 0 I '11 _ -I ' 12 l h2(r,t) I 
'r + - r e hi (r,t) , - - reO ' 

the Dirac equation can be shown finally to reduce to 

_ -I( dg d g )1I2 
azh l = - (1-gg) dz d'Z h2' 

__ I(dg d g )1/2 
az h2 = - (1-gg) dz d'Z hi' 

Defining 

_ (dg )-1I2 _ (d g )-1I2 
hi = - hi' h2 = --= h2' 

dz dz 
and changing variables from (z,z) to (g,g), 

(2.14 ) 

(2.15 ) 

(2.16) 

agh l = -(1-gg)-lh2, agh2= -(1-gg)-lh l· 
(2.17) 

The following general solutions have been obtained 10: 

hi = df + (1- gg)-I(fg -f), 
dg 

- df - -I -
h2= dg+(1-gg) (fg-f), 

(2.18 ) 

wherefisf(g), a holomorphic function andf(g) is the com
plex conjugate. 

The functionf has to be chosen suitably to get regular, 
normalizable solutions of '11. Going back to the variables 
(z,z) , from (2.16) and (2.18), 

hi = - -+ (1-gg) (fg-f)-, (
dg )-1I2{df _ -I _ - dg } 
~ ~ ~ 

h2 = (~!) -1I2{:~ + (1-gg)-I(fg - f) ~:}. 

Define 

G= (1-gg)(l-g)-I(1-g)-1 

= !{(1 +g)(1 _g)-I + (1 +g)(1 _g)-I}, 

the phase 

( 
d 

) 
- 1I2(d -)112 

eiP = (1-g)(l-g)-1 d! d~' 

A. Chakrabarti 

(2.19) 

(2.20) 

(2.21) 
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and set 

fez) = (1 - g(z) )H(z), (2.22) 

whereH(z) remains to be chosen suitably. Then in (2.14), 
using (2.2), (2.19), (2.20), and (2.21), one can show that 

r- Ie; /2h l = ,.fiei/J12(G /r) 1/2 aA(H + H)/G), 
(2.23) 

r-Ie; 12h2 = ,.fie - i/J/2( G /r) 1/2 az( (H + H)/G) . 

How should one choose H(z)? Consider first the well
known case (2.5). Let the roots of 

1 - g = 0, (2.24) 

which are all purely imaginary when nonzero, be z = Zj' 
j = 1,2, ... ,m, m = (n - 1) forevenn,m = nforoddn. Then 
choosing 

H=~ = (const)/(z-Zj) (j= 1,2, ... ,m), (2.25) 

one gets solutions equivalent to the known set of normaliza
ble zero modesl2 for the 't Hooft or lackiw-Nohl-Rebbi 
gauge. [The phase pin (2.21) and (2.23) is the effect of a 
gauge transformation connecting Witten's solution to their 
't Hooft or JNR forms. To go over from Witten's to the 
"string gauge" of (2.1) one needs a further transformation 
by e - ;<pU3

/2 e - ;0<7,/2.] In fact [remembering that in (2.24) 
and (2.25) Zj = - Zj]' 

for even n, 

n 

;::: L A;lz-zjl-2, foroddn, 
j=1 

(2.26) 

(2.27) 

where the A 's are real functions of the b 'So This makes the 
above-mentioned relations evident on comparing with Ref. 
12. 

Let us try to construct periodic spinor solutions for g 
given by (2.3) bearing the following points in mind. 

( 1 ) H must be periodic in t with a period T = 21T' / k like 
the gauge field. 

(2) As r--+O, (H + H) should --+0 at least as rto avoid a 
singularity. 

(3) Asymptotic behavior of Has r--+ 00 should be com
patible with normalizabiIity of \}I. 

There should not, of course, be undesirable properties of 
(H + H)/G elsewhere in the (r,t) half-plane (0..;;t..;;21T'). 
Define 

U = tanhz = tanh 1/2(r + it), 
I -

bj = (1 + aj )( 1 - aj ) - , when bj + bj > 0 if laj I < 1. 
(2.28) 

Then, rejecting a possible overall constant phase [which dis
appears in (2.2)] one has from (2.3) (fork = 1) 

g= UX (bj - U)(bj + U)-I}(1- u)n(1 + U) -n. 

(2.29) 

The equation 1 - g = 0 turns out to have (2n - 1) roots 
(zero or purely imaginary), which we denote by 

U = ic; (i = 1, ... ,2n - 1). (2.30) 
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Then, from (2.20), one can show that 

G = (oonst)( U + U) 

X {I + 2~IIA ~(U - ic; )-z(U + ic; )-z}, (2.31) 

where the A 's are real functions of the b 'So For the simplest 
case, namely 

g=(a+e- 2z )(a+CZ)-1 (O<a=a<1), (2.32) 

G= (U+ U)(1 +b)-I(1 +b/UU) 

[b= (1 +a)(1-a)-I]. (2.33) 

Comparing with (2.25) and (2.26) one sees that the choice, 
in (2.23), 

H j ;::: 1/(U - ic;) (i = 1, ... ,2n - 1) (2.34) 

gives regular normalizable solutions. This gives (2n - 1) so
lutions, while from (2.4) 

ST = 8~2n. 
This is to be compared to (2.5), (2.6), and (2.25), where a 
similar procedure gives (n - 1) solutions for 

S= 8~(n - 1). 

Setting 

H+H= U+ U, (2.35) 

one also gets a good solution. But this is not linearly indepen
dent from the set (2.34) since 

2n-1 

(U+ U) + L A~(H; +H;)=G. (2.36) 
;=1 

So, here we have 

number of zero modes = {action/(8~)} - 1. (2.37) 

This corresponds to the case q = 1 of ( 1.3 ) . 
The task of finding the roots (c;. i = 1,2, ... ,2n - 1) of 

the polynomial in U(i.e., g = 1) has to be tackled separately 
for each case. They all correspond to r = 0, U = i tan ! t 
= ic j • There is no simple general prescription for the general 

case (2.29). Particular values of bj can make the problem 
manageable. For arbitrary n one has a simple case for bj = b 
(j = 1,2, ... ,n), 

(b - U)(b + U)-I(1- U)(1 + U)-I 

= e;(mln)21T (m = O,I, ... ,n - 1), 

the nth root of unity. 

III. A GENERALIZATION: PERIODIC SOLUTIONS 
AS SCALING LIMITS 

(2.38) 

A subclass of 't Hooft instantons can be displayed in 
coordinates which permit a derivation of the periodic solu
tions as simple scaling limits. One can then compare the 
respective spinor solutions in such backgrounds. With this 
aim the formalism is briefly presented. (See Sec. V of Ref. 7 
and my related previous papers cited in Ref. 7.) 

Let 

r + it = tanh !(p + iT), re[O,oo], 
(3.1) 

te[ - 00,00]; pe[O,oo], re[ -1T',1T']. 

Then 
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Set 

ds2 = dt 2 + dr + r(d() 2 + sin2 () dcp 2) 

= (coshp + COS T)-2{dr + dp2 

+ sinh2 p(d() 2 + sin2 () dcp 2)}. 

AT = (ap 1] )u3/2, Ap = - (aT 1] )u3/2, 

Ae = - e7Ju 2/2, Aq:> = sin () e7Jul/2 - cos () U3/2, 

where 

and 

e7J =sinhP(1-gg)-I(dg d g)1I2 
dw dw 

[w = !(p + iT), (J = !(p - iT)], 

(3.2) 

(3.3 ) 

(3.4) 

n (a. + e-a(p + iT») 
g= II ~ a • (laj l<l, 2na>I). (3.5) 

j=1 aj +e (P+1T) 

[Here a cannot be absorbed by a rescaling like k of (2.3), 
keeping (3.4) intact due to the presence in (3.4) of the factor 
sinh p, instead of just p, as compared to r in (2.2). The total 
action will depend on a, whereas ST of (2.4) does not de
pend on k.] Integrating over cp, (), p, and T (TE [0,21T] ) gives 
now the total action over the entire R4 (tE [ - 00, 00 ], 

rE [0,00 ] ). In terms of (r,t) one will be integrating a solution 
nonperiodic in t over R4 • The total action is 

S = 41T dT dp aw a (J - In sm ~ + - e27J i
211" ioo [ . hI] 

o 0 l-gg 2 

(awa(J=a; +a;). (3.6) 

Steps quite analogous to those in the Appendix give 

S = 8~(a·2n - 1) (for 2na> 1). (3.7) 

Comparing with (All) note, apart from the factor a, the 
subtraction 0/1. In the contour integral obtained from (3.6) 
[in a way analogous to the discussion leading to (A6)], 

- ap In sinhp = - cothp- - 1 as p- 00, 

and does not vanish like (a r In r) r_ 00 • Hence the difference. 
Consider now the zero modes of a Dirac spinor in such a 

background. The conformal factor in (3.2) gives a factor 
(coshp + cos T) 3/2 forspinors. Apart from this one can pro
ceed as in Sec. II with a few differences. Replacing the argu
ments r,t by p,T, respectively, and the/actors r in (2.8), 
(2.14), and (2.23) by sinh p, one obtains [in place of 
(2.23) ] 

(sinhp) - l e7J/2hl 

= {iei/3 12G 1/2(sinhp) -1/2 a",(H + H)/G) 

(a", = ap - i aT) (3.8) 

and its complex conjugate for h2• Here H = H(p + ir) and 
so on. In what follows a will be restricted to be an integer. 

Expressing g in terms of (r,t) one obtains, from (3.5), 
for (1/r)G the well-known generating functions of the 't 
Hooft gauge. Taking a simple example (n = 1, a = 2), 
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G= gg =r 1+--+ -----1-- [ 1 2 
(1 - g) (1 - g) r + t 2 b r + (t - 1)2 

(3.10) 

Taking another example, for a = 1, n = 2 in (3.5) and aj 

= aj , bj = (1 + aj ) (1 - aj ) -I the poles of G are at 

r = 0, t = 0, ± (b l + b2 + 2b2b2)/(bl + b2 + 2»). 
(3.11 ) 

For the general case (3.5) leads, consistently with (3.7), to 

number of poles = (a·2n - 1). ( 3.12) 

Hence, choosing H in (3.8) as 

H = Hj = {tanh! (p + ir) - iCj } -I = (r + it _ iCj ) - I, 
(3.13 ) 

where the Cj'S represent the roots of 

1 - g = ° (r = 0, t = cj ), 

one gets the full number of normalizable spinor zero modes 
of Grossman. 12 

Now define 

ap = r', ar = t ' (r' E [ 0, 00 ], t ' E [ - a1T,a1T] ) 
(3.14) 

when 

(Va)Ap =Ar" (Va)AT =At·, 

and let a - 00, when t ' E [ - 00,00 ]. One gets a periodic solu
tion (for At" Ar" Ae,Aq:» of the type studied in Sec. II with 

n (a. +e-(r'+it')) g = II --,J~ __ _ 

j=2 aj+e(r'+it') . 
(3.15 ) 

The total action (3.7) remains invariant under such a rescal
ing and diverges with a. The action over one period ( = 21T) 
is now 

ST = 8~·2n (3.16) 

and corresponds to the scaling limit of (3.7), 

ST = lim (S fa) = lim 8~(2n - Va) = 8~·2n. 
a-oo a-co 

(3.17) 

In terms of V = tanh !(r' + it '), for the limiting case, 

G= (V + V) [1 + 2k~11 "q{( V - ic" )(V + iCk)}-l 

(3.18) 

With now 

Hk = (const)( V - ick)-I, (3.19) 

one gets (2n - 1) spinor zero modes and not 2n. This 
discrepancy corresponds to the fact that the last term ( - 1) 
of (3.7) has disappeared in the limit (3.17) since Va ..... O. 
Thus the relation (1.2) is automatically reproduced in the 
limit. 
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APPENDIX: ACTION OVER ONE PERIOD 

The gauge potentials are [see (2.1)] 

At = (art)u3/2, Ar = - (att)u3/2, 

A9 = - e'uz/2, AII' = sin () e'u2/2 - cos () u 3/2, 

where 

, (1 _)-l(dg d g)1I1 
e=r -gg dzdz ' 

with 

z = !(r + it), z = !(r - it), 

and 
n 

(Al) 

(A2) 

g(z) = IT (aj+e-Zz)(aj+elZ)-1 (lajl<1). (A3) 
}= 1 

Note the absence of a factor e - Zz as compared to Sec. II 
of Ref. 7. See the remarks following (A 11). 

The action over one period T (here T = 211") reduces, 
after angular integrations, to 

r=T=11r roo 
ST = 417 Jt=o dt ),=0 drSd, 

where 

Sd = aZai ( -In[rl( 1 - gg)] + !el;)=azain. 

Consider the domain 0<t<211", E<r<R: 

t= 21T .... 

.. 
t=O 

Here Sd is regular inside, so using Stoke's theorem 

. r11r rR 

417Jo dt JE dr Sd 

rR 1111' 
=417 JE dr[atn]~:~1r-411" 0 dt[arn]~::. 

(A4) 

(AS) 

(A6) 

Here S T is obtained as E ..... 0 and R ..... o(). The first integral 
vanishes due to periodicity. In the second only the first term 
of n contributes in the final limit. 

485 

As r ..... O, gg ..... 1 - 2rlJ + 2rlJ2
, where 

n 

lJ= L {(1+ajeit)-I+(1+aje-it)-I} 
j= 1 

= 2 i 1 + laj Icos (t + lJj ) 

j= 1 1 + laj 12 + 21aj 1 cos (t + lJj ) 

(aj = lajleic\lajl < 1). 
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(A7) 

Hence 

- ar In{r(1 - gg) -I},_O ..... lJ. (A8) 

As r ..... 0() , gg ..... 0 exponentially. 
Hence using (for 0 < a < 1 ) 

1
211' __ ::--d_t __ _ 

o l+a2 +2acost 

=2[ dt =_11"_ 
o l+a2 +2acost l_a2

' 

one obtains 

ST = 8~'2n (T= 211"). (A9) 

For 

_ ITn 
(aj + e-

lkz
) 

g- - _2kz 
j= I aj + fr 

(AW) 

integrating over 

te[O,T= 211"lk], 

one again obtains 

ST = 417(211"lk)2nk = 8~'2n (T= 211"lk). (All) 

We have implicitly modified/of (2.21) of Ref. 7 to 
n 

/= eZz IT (aj + e-lkz)(aj + elkz)-I 
j= 1 

giving (A 10) for g = e - Zz f This makes ST independent of 
k and the correspondence to (4.1) of Ref. 7 even closer. 
Analogous modifications can also be made in choosing the 
/'s in Sees. III-V of Ref. 7. 

and 

In the limit all 

O () -4nkz aj = , g z =e , 

e; = 4nkre- lnkrl(1- e- 4nkr ) = 2nkrlsinh 2nkr. 
(A12) 

Now (AI) corresponds to a rescaled version of the P-S 
monopole. Since Sd is static, for (A12), the t integration in 
(A4) gives a factor T= 211"lk, so that 

ST = 417- Sd = -(2nk) = 8~2n. 211" 100 

8~ 
k r=O k 

(A13) 

Thus (All) is continuous in the limit aj = O. 
Note that Gin (2.32) has the pole structure typical of 

the 't Hooft representation [see (2.26)] in terms of U 
( = tanh Z) and not in terms of z. But it is from the harmon
ic (in four dimensions) 

~<:::r-lG= (2r)-I{(1 +g)(l_g)-l 

+ (1 +g)(l_g)-I} 

<::: U+ ~[l + l'iI..t;{(U+iC;)(V-iC;)}-l], 
z+z i=1 

(A14) 

satisfying 

o ~ = (a: + a; + (2Ir)ar)~ = 0 (AlS) 

(except for lJ-function singularities at poles), that one can 
obtain 13 [after a gauge transformation involving the phase /3 
of (2.22)] the 't Hooft form 
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AI' = (TJt" a" In ~. (A16) 

The extra factor in (A14), 

(U + U)/(z + z) = r- I sinh r(coshz coshz)-I 
(A17) 

is crucial. In calculating the action given by (A5) and (A6), 
in tenns of 

U=u l +iu2, (u1e[O,00], u2e[-00,00]), 

J dt J dr azaz [ - In 1 ~ gg ] 

= J Jdtdrazaz[ln(U; U)_ln ~~g~]. (AI8) 

The second tenn can be written as 

(A19) 

and gives an action [typical of the second factor of (A14)] 

s' = 8r(2n - 1). (A20) 

The first tenn gives 

or 

SIt = 8r rR~oc dJ..!.. __ 1_) 
J,,~o '~r sinh2 r 

S" = 8r[coth r - 1/r]O' = 8r. 

Thus 

S=S' +S" = 8r2n. 

(A2l) 

(A22) 

In Sec. II the (2n - 1) spinor zero modes correspond to the 
poles of G' where 

G=(U+ U)G', 
2n-1 

G' = 1 + L A 7{(U - iC;)(U + ic;)}-I. (A23) 
;=1 
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It has been noted that the choice 

H+H= U+ U, 
which, one might have thought, provides a supplementary 
solution corresponding to the extra factor in G, does not, in 
fact, give a linearly independent new solution [Eq. (2.36)]. 

I have not considered the zeros of dg/dZ, which are 
more complicated. II

,13 The zeros of (1 - g) lead directly to 
't Hooft or JNR representations corresponding to the struc
ture (A23). As r- 00, dg/dz has a zero of infinite order due 
to the factor e - 2nkz. This corresponds to the factor 
In(sinh r/r) giving infinite action over R4 (te[ - 00,00]). 
But we are integrating over a period 21T. Hence the finite 
result. 
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Driven three-state model and its analytic solutions 
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For an atom or molecule in which two transitions are driven by laser beams, a three-state 
model is used. Transitions among the three states are caused only by the oscillating electric 
fields of the laser beams. The amplitudes and detunings of the two laser beams, which are 
various functions of the time, appear in the SchrOdinger equation for the atom or molecule. In 
certain cases, the Schrodinger equation can be solved analytically, to find transition 
probabilities and the probability of no transition. This is done by using Clausen's special 
function, or by assuming that the sum of the two detunings is zero at all times. Conditions for 
complete transfer of the population from the ground state to an excited state are obtained from 
the analytic solutions. 

I. INTRODUCTION 

The excitation of an atom or molecule by multi photon 
processes plays an important part in quantum optics, and 
this suggests study of simple models of an atom driven by 
laser beams. Here, we use a three-state model for an atom or 
molecule in which two transitions are driven by two laser 
beams, possibly derived from the same laser. Calculations 
involving all three states are necessary when the two laser 
beams act simultllIleously, as in the cases we consider. The 
quantum dynamics of this three-state model is more compli
cated than that of the two-state model, 1 partly because the 
detunings of the laser beams driving the two transitions can 
be arbitrary functions of the time. In this paper, a few of the 
many possible cases are treated analytically. 

We treat the oscillating electric fields of the two laser 
beams as classical external fields that appear in the equation 
of motion of the three-state system. Also, we neglect the 
relaxation terms that appear in the Bloch equations2 and 
their generalization to three states. Hence, we can use the 
Schrodinger equation as the equation of motion. The exter
nal oscillating fields, which appear in the time-dependent 
SchrOdinger equation, drive transitions between states la
beled by consecutive integers. We use the electric-dipole ap
proximation, which implies that transitions between states 1 
and 3 cannot be driven. The Hamiltonian for this model is a 
3 X 3 matrix that appears in the Schrodinger equation. This 
Hamiltonian and SchrOdinger equation are simplified by us
ing the rotating-wave approximation and the transformation 
associated with it3; this transformation eliminates all the op
tical-frequency terms. If the amplitudes and detunings of the 
two oscillating fields are independent of time, so is the Ham
iltonian matrix; solution of the Schrodinger equation is 
straightforward in this case. Since optical pulses of short 
duration are often used, and time-dependent detunings 
could be used, this paper treats applied oscillating fields hav
ing time-dependent amplitudes and detunings. The changes 
in the amplitudes and detunings are supposed to be slow 
compared to the optical frequencies; they appear as slow 
changes in the Hamiltonian matrix. Clausen's function4 can 
be used to solve the Schrodinger equation in some time-de-

a) Present address: Department of Physics. Auburn University, Auburn, 
Alabama 36849. 

pendent cases, specified below. On the other hand, two dy
namic symmetries that can be imposed on this three-state 
model were found earlier,s by using alternative sets ofSU (3) 
generators. Use of Gell-Mann's set ofSU(3) generators6 is 
suggested by the assumption of "two-photon resonance," 
meaning that the detunings of the two laser beams add up to 
zero at all times. Our application of Clausen's function to 
this model depends on the weaker assumption that the sum 
of the two detunings is zero at the beginning of the two con
current optical pulses, or at the end. Throughout this paper, 
we assume that the amplitUdes of the two applied oscillating 
fields have a ratio independent of time. This should not be 
difficult to arrange if the two oscillating fields are derived 
from the same laser. It may be convenient to use two oscillat
ing fields of fixed frequency, and to use the Stark or Zeeman 
effect to obtain time-dependent energy levels in the atom or 
molecule, which give time-dependent detunings. It seems 
possible that the calculations presented below can be tested 
by feasible experiments. 

Although the SchrOdinger equation for the three-state 
model can certainly be integrated numerically, analytic solu
tions are much more convenient for some purposes. For ex
ample, we shall set the occupation probabilities of two of the 
three states equal to zero at the initial time and also at the 
final time, and find conditions for complete return of the 
occupation probability to the initial state. Similar calcula
tions will give conditions for complete transfer of the occu
pation probability from the ground state to the highest state. 

We write the Schrodinger equation and describe trans
formations of it in Sec. II, which is a preface to the analytic 
solutions. The cases in which interesting results can be ob
tained from Clausen's function are described in Sec. III. Sec
tion IV treats the case in which the sum of the two detunings 
is always zero. The details of the calculations are given in the 
six Appendices. 

II. SCHRODINGER EQUATION AND ITS 
TRANSFORMATIONS 

In this section, we describe the three-state model of an 
atom or molecule and its simplification by the electric-dipole 
and rotating-wave approximations. The resulting Schr6-
dinger equation is a system of three coupled first-order dif
ferential equations. It can be simplified by the transforma-
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tion of Einwohner, Wong, and Garrison,3 and then reduced 
to single uncoupled differential equations. The uncoupled 
differential equations, which are relegated to Appendices A 
and B, can sometimes be solved by use of known special 
functions. 

Since the oscillating electric fields are treated as classical 
external fields, the three-state atom or molecule is described 
by a wave function with three complex components, each of 
which is the probability amplitude for finding the atom or 
molecule in a specific state. Transitions between these states 
are caused only by the applied oscillating fields, and we ne
glect the effect of the atom or molecule on the applied fields. 
In H, the 3 X 3 Hamiltonian matrix for this model, the diag
onal elements are E 1, E 2, and E 3, the energies of the three 
states. Each off-diagonal element is proportional to an ap
plied oscillating field times the corresponding transition di
pole moment. The 1-3 transition is not driven and cannot be 
driven, because of Laporte's rule. This is to say that matrix 
elements in two comers vanish: 

(1) 

The Schrodinger equation that had been described is greatly 
simplified by the rotating-wave approximation, which is ne-

-!fit 
(- a l + a2 )/3 

-~fi2 

Here ai' a2' and a3 are the probability amplitudes of the three 
states, and their absolute squares are the time-dependent oc
cupation probabilities. Furthermore, fi l and fi2 are the so
called Rabi frequencies; the products offield amplitudes and 
transition dipole moments are !fit and !fi2. The oscillation 
frequency calculated by RabC is equal to fit only if at = fi2 
= O. In general, at> a 2, fit> and fi2 depend on t. 

The signs of at and a 2 depend on a conventionS that 
should be mentioned. We do not assume anything about the 
signs of E t - E2 and E2 - E 3, the energy differences; any 
one of the three states could be the ground state. We assume 
that Wt2 and W23 have the same signs as E t - E2 and E2 - E 3, 

respectively. The measured frequencies are Iwd and Iwd. 
The two detunings are defined as 

at =Et -E2 -Wn 

and 

a2 = E2 - E3 - W23' 

These differences are time dependent, and can change sign. 
The Hamiltonian matrix appearing in (2) has vanishing 

trace, because of a convenient choice in the transformation 
described by Einwohner, Garrison, and Wong.3 They deter
mine only the differences of the coefficients they call r a; an 
arbitrary function of t could be added to every one of them. 
In other words, an arbitrary time-dependent phase transfor
mation could be used. The vanishing trace of H is convenient 
for many calculations. However, in the case of two-photon 
resonance at all times, at + a 2 = 0 always holds, and we 
can arrange to obtain 
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glect of counterrotating terms appearing in nonzero off-di
agonal elements of the Hamiltonian matrix. This is closely 
related to the assumption that each oscillating electric field 
drives only its own transition. The result of these two ap
proximations is that the four nonzero off-diagonal elements 
of H are proportional to exp(iw12t), exp( - iW t2t) , 
exp(iw23t), and exp( - iW23t), where Wn and W23 are the 
frequencies of the applied fields, and t is the time. 

The optical-frequency terms can now be eliminated 
from the Hamiltonian and Schrooinger equation by using 
the time-dependent unitary transformation that is associat
ed with the rotating-wave approximation. This transforma
tion was formulated, for an arbitrary number of states, by 
Einwohner, Wong, and Garrison.3 Since the unitary matrix 
used here is diagonal, the transformation does not affect the 
numbering of our three states, nor (1). The transformation 
is arranged to remove the factors of exp( ± iw 12t) and 
exp ( ± iW23t) from the off-diagonal elements of H. Since the 
transformation is time dependent, it changes the diagonal 
elements of H, replacing the energies E I' E 2, and E3 by linear 
combinations of the detunings a l and a 2, which are more 
relevant to this problem. Assuming that Ii = 1, the transfor
mation puts the Schrooinger equation into the form 

(2) 

(3) 

instead of (2). The zeros at each comer of the Hamiltonian 
matrix are a simple and desirable feature. 

Analytic solutions of (2) or (3) can be found by using 
various special functions. Before writing any of them, it is 
expedient to introduce a new independent variable, called z 
or z ( t). This nondecreasing function of t ranges from 0 to 1 
as t increases from - 00 to + 00. This arbitrary function of t 
is independent of the main calculation, and it allows one 
analytic solution to be applied to a variety of pulse shapes. In 
an early treatment of the two-state problem, using the hyper
bolic-secant pulse shape, Rosen and Zener9 used 

z(t) = HI + tanh ( 1Tt h)], (4) 

where l' is the time constant. Several other examples offunc
tionsz(t) are given in a recent paper lO on the two-state prob
lem. In order to change the independent variable from t to z, 
we put at = 8 1 (z)dz/dt, a 2 = 82 (z)dz/dt, fit = Wt (z)dz/ 
dt, and fi2 = W 2 (z )dz/ dt into (2) and (3). If references to 
infinitely long time intervals are undesirable, we can make 
the amplitUdes of the two optical pulses vanish outside a 
finite time interval, by makingz(t) constant when It I issuffi
ciently large. 

This change of variable transforms the Schrooinger 
equations into 
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and 

- !w. 
(- o. + O2 )13 

- !W2 

which are systems of coupled first-order differential equa
tions. We plan to choose o. (z), 02(Z), W. (z), and W2(Z) so 
that analytic solutions can be written down. 

We should mention the simple case in which 0., O2, w., 
and W2 are constants. Solution of (5) begins with solution of 
a cubic equation, to get the eigenvalues of the Hamiltonian 
matrix, unless eigenValues or eigenvectors can be obtained 
by inspection. In the special case treated by Cook and 
Shore, •• one of the eigenvalues is zero and the other two are 
easily found; this simplifies the remainder of the calculation. 
In the case of two-photon resonance at all times, constant 
values of o. = - O2, w.' and W2 lead to similar simplifica
tions. 

If 01> O2 , w., and W2 depend on z, it seems necessary to 
uncouple the differential equations in order to find and apply 
appropriate special functions. Uncoupled third-order differ
ential equations for a. (z) and a3 (z) can be found from (5); 
this is done in Appendix A. Comparison with the third-order 
differential equation written by Clausen4 is postponed; an
other third-order differential equation could be used. To 
solve (6), we need only solve a second-order differential 
equation. 

This section has described our three-state model for an 
atom or molecule, and the time-dependent Schrodinger 
equation has been written explicitly. Solutions for a. (z), 
a2 (z), and a3 (z) can be obtained by using an appropriate 
special function. Finally, the time-dependent occupation 
probabilities are the absolute squares of a., a2' and a3• 

III. APPLICATION OF CLAUSEN'S FUNCTION 

Analytic solutions of the time-dependent Schrodinger 
equation can be written, by using Clausen's function, in 
some special cases that are described in this section. Further 
specialization gives cases of complete transfer of the occupa
tion probability from one state to another, and of complete 
return of the occupation probability to the initial state. These 
results have been briefly described elsewhere.·2 

We should mention that Clausen4 introduced the series 

a' P' 0' 1+---x 
11 1" €' 

a'(a' + 1) P'(P' + 1) 0'(0' + 1) x 2 + "', (7) 
+ 2! y'(1" + 1) €'(€' + 1) 

which defines a function of x. Also, Clausen gave the third
order differential equation satisfied by this function of x. 
This function is 

F(a' ,{3',o';1",€';X), 
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(5) 

I 
in the semicolon notation that Pochhammer introduced 
much later .• 3 

We have transformed the SchrOdinger equation into the 
form (5), and indicated that a. (z) and a3 (z) satisfy third
order differential equations. Comparison of these differen
tial equations with Clausen's equation is best done indirect
ly, using the mathematics outlined in Appendix B. 

To get from the general model described in Sec. II to 
specific results for certain cases, we impose successive re
strictions on the model. First, we require the differential 
equations for a.(z) and a3 (z) to have only three singular 
points, all of which are regular, because Clausen's equation 
has this property. Second, we require the differential equa
tions for a. (z) and a3 (z) to have solutions expressible in 
terms of Clausen's function. Third, we require that Clau
sen's function can be evaluated in terms of gamma functions 
or simpler functions, at least at the beginning and end of the 
two concurrent optical pulses. Fourth, we may require com
plete transfer of the occupation probability to another state, 
or complete return of the occupation probability to the ini
tial state. 

These requirements lead to calculations given in Appen-
dices A-E. The main points will be described here. 

The four functions of z that appear in (5) are chosen as 

W. (z) = (a./1r)[z(1 - z)] -./2
, 

W2(Z) = (a2/1r)[z(1-z)]-·/2, 

o.(z) =,8./z+y./(l-z), 

02(a) = ,82/Z + Y2/(l - z). 

(8) 

Here, z (t) is the new independent variable introduced in Sec. 
II. The resulting differential equations for a. (z) and a3 (z) 
are given in Appendix A. The only singular points are at 
z = 0 z = 1 and z = 00; each is a regular singular point. 
'.' . I .0 Singular pomts off the real z axIS have been used recent y, 

but the possibility is not pursued in this section. We have 
assumed thatz increases from 0 to 1 as t increases from - 00 

to + 00; (4) is an example. If we use (4), the forms of the 
two optical pulses are given by 

and 

O. = (a.lT)sech(1Tt IT), O2 = (azlT) sech (1Tt IT), 

a. = (1TlT)[P. + Y. - (P. - y.)tanh(1TtlT)], 

a2 = (1TlT) [P2 + Y2 - (P2 - Y2)tanb(1T1 IT)]. 

The six real parameters of this model are 

a., a 2, ,8., P2' Y., Y2' (9) 

The dimensional areas·4 ofthe two optical pulses are 

J: 00 O. (t)dt = a., J: 00 O2 (t)dt = a2• 

The detuning parameters,8. and Pz are proportional to the 
detunings at large negative times, corresponding to the be
ginning of the two concurrent optical pulses. The detuning 
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TABLE I. Conditions for obtaining final occupation probabilities in closed form, using Clausen's series. The parameters (9) of the three-state model appear 
here. If Clausen's series terminates, the integer n, which is defined by (E2), appears. 

Initial 
occupation 
probabilities 

arbitrary 

arbitrary 

1 
o 
o 

Conditions on pulse parameters 

r.+r2=0, n>O 
a~ = 4rn2[ 1 + (fJ. - r.)/(fJ. + fJ2) ] 
O<a. <21m 

Final 
occupation 

probabilities 

results in Table II 

results in Table III 

example in Table IV 

a~ = - 4r(fJ. - r.) [fJ. + fJ2 + n2/(fJ. + fJ2) ] 

o 
1 
o 

r. + r2 = 0, n>O 
(fJ. + r.)(fJ2 - r.bO 
a~ = 4r [fJ ~ + (n + p2] (fJ2 - r. )/(fJ. + fJ2) 
a~ = 4r [fJ ~ + (n + !}2] (fJ. + r. )/(fJ. + fJ2) 

r. + r2 =0, n>O 

examples in Table IV 

example in Table IV o 
o a~ = - 4r(fJ2 + r.) [fJ. + fJ2 + n2/(fJ. + fJ2) ] 

a~ = 4rn2[ 1 + (fJ2 + r.)/(fJ. + fJ2) ] 
0<a2 <21m 

parameters r 1 and r 2 are proportional to the detunings at the 
end of the two pulses. These six parameters satisfy various 
equations that express the conditions we impose on the mod
el. The requirement that solutions of (5) can be written in 
terms of Clausen's function is treated in Appendix B. The 
result is simply 

rl + r2 = 0 (10) 

or 

(11 ) 

We may call these the cases of two-photon resonance at the 
final time and of two-photon resonance at the initial time. 
They are treated in the following two subsections. The solu
tions of (5) are written explicitly in Appendix C, assuming 
that (10) holds. We emphasize that 

(12) 

is not a case in which Clausen's function is applicable. This is 
the previously studied cases of two-photon resonance, and it 
is treated in Sec. IV. 

The requirement that occupation probabilities can final
ly be expressed in simple terms, despite the appearance of 
Clausen's series in all the wave functions, leads to two more 
equations connecting the six parameters of the model. The 
resulting conditions for various cases are listed in Table I. If 
the series (7) terminates, its evaluation is straightforward, 
and the number of terms in the series is approximately the 
same as the integer n that appears in the corresponding for
mulas. If the series (7) does not terminate, it converges 
when Ixl < 1; but numerical summation of the series has not 
been attempted. Evaluation of the infinite series at x = 1 is 
used to obtain the results shown in Tables II and III. In some 
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of our calculations, the infinite series diverges at x = 1; this 
causes no difficulty, because the behavior of Clausen's func
tion in this case is derived in Appendix D. When the infinite 
series converges at x = 1, we need an applicable summation 
formula. Among the known formulas (Appendix D), only 

TABLE II. Transition probabilities. and probabilities of no transition, for 
the first case listed in Table I. We define <Il = U<a~ + a~) 
- !r (fJ ~ + fJ ~ ) ]112; this angle is real or pure imaginary. 

Initial 
occupation 
probabilities 

o 

o 

o 

o 

o 

o 

Final occupation probabilities 

4cosh(1TfJ.)coshB1T(fJ. +fJ2) ]COSh[!1T(fJ. -fJ2)] 
[cosh(1TfJ.) + cos <Il) [cosh(1TfJ.) - cos <Il) 

2 cosh ( 1TfJ. ) cosh 1!1T(fJ. + fJ2) ]COSh[!1T(fJ. - fJ2) ] 
[ cosh ( 1TfJ.) - cos <Il ][ cosh ( 1TfJ2) - cos <Il] 

[ cosh ( 1TfJ.) - cos <Il ][ cosh ( 1TfJ2) + cos <Il] 
2 cosh ( 1TfJ. ) cosh ( 1TfJ2) 

cos24> 
cosh ( 1TfJ. ) cosh ( 1TfJ2) 
[ cosh ( 1TfJ.> + cos 4> ][ cosh ( 1TfJ2) - cos <Il] 

2 cosh ( 1TfJ. ) cosh ( 1TfJ2) 

4 cosh(1TfJ2) cosh 1!1T(fJ. + fJ2) )COSh[!1T(fJ. - fJ2) ] 
[ cosh ( 1TfJ2) + cos <Il ][ cosh ( 1TfJ2) - cos <Il ] 

2 cosh (1TfJ2)cosh 1!1T(fJ. + fJ2) ]cosh[~1T(fJ. - fJ2) ] 
[ cosh ( 1TfJ.) + cos 4> ][ cosh ( 1TfJ2) + cos <Il] 
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TABLE III. Transition probabilities, and probabilities of no transition, for 
the second case listed in Table I. We define t1> = Waf + a~) 
- !r( r, + rl) ] .IZ; this angle is real or pure imaginary. 

Initial 
occupation 
probabilities 

o 

o 

o 

o 

o 

o 

Final occupation probabilities 

4 cosh ( 1T1'.)cosh[!1T(Y. + Yz) ] cosh B1T(Y. - yz)] 

[ cosh ( 1T1'.) - cos t1>][ cosh ( 1T1' z) + cos t1>] 
2 cosh ( 1T1'. ) cosh ( 1T1' z) 

[cosh ( 1T1'.) - cos t1>][ cosh ( 1T1' z) - cos t1>] 

2 cosh(1T1'.)coshB1T(Y. + yz) ]coshB1T(Y. - yz)] 
coszt1> 

cosh ( 1T1'. ) cosh ( 1T1' z) 

[ cosh ( 1T1' z) + cos t1>][ cosh ( 1T1' z) - cos t1> ] 

4 cosh ( 1T1'.)cosh[!1T(Y. + yz) ]coshB1T(Y. - yz)] 

[cosh ( 1T1'.) + cos t1>][cosh(1T1'z) - cos ell] 
2 cosh ( 1T1' I ) cosh ( 1T1' z) 

[cosh( 1T1'1) + cos eII][cosh( 1T1'z) + cos ell] 

those named for Watson lS and Whipplel6 are applicable to 
our calculations; they are used to obtain Tables II and III. 

The requirement of complete transfer of the occupation 
probability to another state, or complete return to the initial 

state, leads to further requirements on the parameters (9), in 
addition to those listed in Table I. It also leads to use of a 
time-reversal transformation. Before we consider complete 
transfer and complete return, the calculations based on ( 10) 
and (11) will be described separately. 

A. Two-photon resonance at the final time 

Here, we assume that ( 10) holds, but not ( 11). The sum 
of the two detunings vanishes at the end of the two optical 
pulses, but not at all times. After substituting (8) into (5), 
we can write solutions in terms of Clausen's function; this is 
done in Appendix C. The connection between (7) and (5) is 
simply 

x=z. (13) 

The natural initial condition is that one of the three 
states is occupied at the beginning of the two optical pulses, 
and the other two are unoccupied. Since Clausen's function 
is equal to unity at x = z = 0, such an initial condition is easy 
to satisfy. There are three such initial conditions, and they 
are satisfied by three independent solutions of (5), given in 
Appendix C. 

The end of the two optical pulses corresponds to 
x = z = 1, and the difficulty of evaluating (7) at x = 1 has 
been mentioned. The final occupation probability of state 2 
is the limit of la212 asx = z ..... l, and this can always be evalu
ated. Under the conditions listed in the first section of Table 
I, the other two final occupation probabilities can be calcu
lated, in the way described in Appendix E. The results are 
given in Table II. 

Evaluating the final occupation probabilities is much 
more straightforward if Clausen's series terminates wherev-

TABLE IV. Transition probabilities, and probabilities of no transition, for the last three cases listed in Table I. The integer n, which appears in Table I, here is 
given specific values. We assume y. + Yz = 0; see Table I for applicable inequalities and for a l and az, the pulse areas. 

491 

Initial 
occupation 
probabilities 

o 

o 

o 

o 

o 

o 

o 

o 

Integer 
n 

o 
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Final occupation probabilities 

4{3 ~(PI +Pz)z+ (3PI +pz - 2y.)z 

(4{3~ + I)(P, +pz)z 

o 
- 4(PI - y.)(2fi. + pz - Y.) 

(4P~ + I)(P. +pz)z 

(pz - Y. )/(PI + pz) 

o 
(PI + Y. )/(PI + pz) 

(pz - Y.) [(P ~ + P(P ~ + 1> + 2fi1(P' -pz) + 2(3P. -PZ)YI + 4r,] 
(P. +Pz)( P ~ + P(P ~ + P 

o 
(P. + Y.) [(P ~ + l) (P ~ + l) - 2fiz(PI - Pz) + 2(PI - 3Pz)Y. + 4r,] 

(PI + Pz)( P r +!> (P ~ + P 

- 4(Pz + y.)(P. + 2fiz + Y.) 
(4{3i + I)(P. +pz)z 

o 
4{3~CP. +Pz)z+ (P. + 3Pz + 2y.)z 

(4{3~ + I)(P. +pz)2 
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-5 
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FIG. 1. Region of the a lOP, plane corresponding to the first section of Table 
Ilies above a lower parabola if y, is positive. If y, is negative, it lies below an 
upper parabola. It is required that Y2 = - YI. For any point in the allowed 
region, a 2 and P2 can easily be calculated. 

er it appears. The conditions for termination depend on 
which of the three initial conditions is used; they are listed in 
the last three sections of Table I. The final occupation proba
bility for state 2 is zero, and the other two final occupation 
probabilities are rational functions of the parametersPI,P2' 
and rl' The simplest examples are listed in Table IV, and the 
results for n = 2 could be worked out. 

Table I emphasizes that we impose three conditions on 
the parameters (9); (10) is the first of the three conditions. 
Hence, if we do not count the integer n as a parameter, each 
section of Table I represents a three-parameter solvable 
model. One might treat ai' PI' and rl as the three indepen
dent parameters, and use Table I to calculate a2' P2' and r2 
from them. It seems worthwhile to describe the inequalities 
restricting these three independent parameters, and to show 
how some of the transition probabilities depend on a I' 

2 

" / 
3 / 
': 

20 . "I . 
\ , , 

·2 

·4 

FIG. 2. Region of the al-fJ1 plane corresponding to the penultimate section 
of Table I lies to the left of a hyperbola that depends on n. However, the line 
PI + YI = 0 (not shown) is excluded from the allowed region. As n in
creases, the hyperbola recedes to infinity. 
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FIG. 3. Probability that the concurrent optical pulses cause transitions 
from state 2 to state 1. We assume PI = 0.988, P2 = 0.835n - 0.582, and 
Y2 = - YI' The values ofa2 and YI are such that all series in thewavefunc
tion terminate. Values of n are used to label the four curves. Each curve ends 
where a 2 = 0, but large values of a I are not shown. 

Figure 1 shows the region of the ai-PI plane corre
sponding to the first section of Table I; the atom or molecule 
is initially in anyone of its three states. Now, suppose that 
the atom or molecule is initially in state 2, and that Clausen's 
series terminates. This corresponds to the penultimate sec
tion of Table I, and the allowed region of the ai-PI plane is 
shown in Fig. 2, for small values of n. The final occupation 
probability of state 1 is shown in Fig. 3. If the atom or mole-
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FIG. 4. Probability that the concurrent optical pulses cause transitions 
from state 1 to state 3. We fix PI andP2,letY2 = - YI' andadjusta2 and YI 
so that all series in the wave function terminate. For curve 1, n = I and 
PI = 0; every nonzero value ofP2 gives the same curve 1. Forcurve2,n = 2, 
PI = 0.625, and P2 = - 1.276 are used. For the remaining three curves, 
n = 3. Dashed curve: PI = 0 and P2 = - 1.276; dotted curve: PI = 1.26 
and P2 = 0; dash-4otted curve: PI = 1.26 and P2 = - 1.276. Each curve 
ends where a2 = o. 
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cule is initially in state 1, then 0 < al < 2117l and PI #rl are 
required for termination of the series; this corresponds to the 
third section of Table I. The final occupation probability of 
state 3 is shown in Fig. 4. Further curves could be obtained 
by using other values of PI and P2' or by using other sections 
of Table I. The second section of Table I corresponds to the 
following topic. 

B. Two-photon resonance at the Initial time 

Here, we assume that ( 11) holds, but not ( 10). The sum 
of the two detunings vanishes at the beginning of the two 
concurrent optical pulses, but not at all times. Solutions of 
(5) can be written in terms of Clausen's function; the con
nection between (5) and (7) is 

x= l-z. (14) 

A time-reversal transformation that connects ( 10) and ( 11 ) 
can be constructed, even though the Hamiltonian used here 
is time dependent. This transformation is specified in Ap
pendix C, and is used to avoid writing the solutions of (5) 
explicitly. 

The initial condition used is that only one of the three 
states is occupied at the beginning of the two optical pulses, 
which corresponds to x = 1. Since the Clausen functions are 
difficult to evaluate atx = 1, in general, we satisfy this initial 
condition only in a special case. The parameters (9) are re
quired to satisfy the conditions listed in the second section of 
Table I, so that the formulas of Watson IS and Whipplel6 can 
be applied. The nine resulting asymptotic forms as x -+ 1 and 
z -+0, which involve numerous gamma functions, are used in 
the following way. 

The three solutions of (5) that we used in the previous 
subsection satisfied simple initial conditions. Using the time
reversal transformation, we find solutions of the present 
problem that simplify at the final time, or as x -+ O. For each 
such solution, two occupation probabilities vanish at the end 
of the two concurrent optical pulses, and the occupation 
probability that approaches unity comes from a probability 
amplitUde that is asymptotic to a known power of x. Using 
the formulas of Watson and Whipple to find the asymptotic 
form of each wave function as x -+ 1, we can find theS matrix. 
Each of the known solutions of (5) gives one column of the 
inverse of the S matrix. From the three independent solu
tions, we obtain a 3 X 3 matrix. After checking that this ma
trix is unitary, we invert it. The resulting S matrix gives the 
transition probabilities, and probabilities of no transition, 
that are shown in Table III. 

The transition probabilities that appear in Table III are 
notably different from those shown in Table II. However, 
the probabilities of no transition are quite similar to those 
shown in Table II; the only difference is exchange of PI' P2 
with rl> r2' We could have anticipated this result; a time
reversal argument connects the probabilities of no transition 
shown in the two tables. The transition probabilities them
selves are not obtainable from any such general argument. 

The calculation leading to Table III is possible because 
the conditions for using the formulas of Watson and Whip
ple are independent of initial conditions and final conditions. 
This independence, which is emphasized in Table I, allows 
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us to find three independent solutions of (5), and to calcu
late the whole S matrix. 

C. Complete transfer and complete return 

Analytic solutions of the SchrOdinger equation are quite 
useful if we seek conditions for complete transfer of the occu
pation probability from the initial state to any desired final 
state, or for complete return to the initial state. In particular, 
in a system with a finite number of states, we can ask for 
complete inversion, which takes the atomic or molecular 
population from the ground state to the highest state. In the 
three-state model we use, the order of the three states on the 
energy scale is arbitrary, and any case of complete transfer 
could be complete inversion. The parameters (9) appear in 
the time-dependent Hamiltonian, and they satisfy certain 
conditions if we demand complete transfer or complete re
turn. These conditions are added to those listed in Table I, 
with the result that our examples of complete transfer and 
complete return have only one adjustable parameter that 
varies continuously. 

Conditions for complete transfer or complete return can 
be obtained, after the initial condition is satisfied, by setting 
two components of the wave function equal to zero at the 
final time, or by setting two of the final occupation probabili
ties equal to zero. Although it seems simpler, in principle, to 
work with the known wave functions, we begin with an in
spection of the final occupation probabilities listed in Tables 
II and III. The simpler and more general way to find the 
cases of complete transfer and complete return will be given 
afterwards. First, we assume that the atom or molecule is 
initially in state 2, and we use Tables II and III. Complete 
transfer to another state is evidently not possible. Complete 
return to state 2 can be obtained only in the simple case of 
vanishing detunings, which is not considered in this paper. 
Thus we now assume that the atom or molecule is initially in 
state 1. The first condition for complete transfer or complete 
returnisPI = Oorrl = 00rr2 = O. We are led to cases with 
resonant driving of one transition at the initial time and two
photon resonance at the final time, or vice versa. Complete 
transfer from state 1 to state 2 is not possible. For complete 
transfer from state 1 to state 3, the second condition is that 
<1>, the angle in Tables II and III, is an odd multiple of 1T. For 
complete return to state 1, <I> must be a positive even multiple 
of 1T; the case of <I> = 0 is exclUded, because we now have 
<I> = 2- 1/2a l • If the atom or molecule is initially in state 3, 
similar simple results are obtained. Notice that <I> is a multi
ple of 1T in all these cases; this implies that Clausen's series 
terminates, wherever it appears in the wave function. Termi
nation of the series implies that the final or initial occupation 
probability for state 2 vanishes, depending on whether (10) 
or (11) holds. Termination also means that we have applied 
Watson's formula to a finite series; this is the case actually 
treated in Watson's brief paper. 15 

We now find more general conditions for complete 
transfer or complete return, by starting with the assumption 
that Clausen's series always terminates. No cases that can be 
obtained from Table I are lost by this assumption, for we 
have just seen that the first two sections of Table I lead to 
terminating series. The conditions for complete return or 
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TABLE V. Conditions for complete return or complete transfer, obtained 
by assuming that (10) holds and Oausen's series terminates. The condi
tions written here are to be added to the inequalities, and formulas for a l 

and a2' that are given in Table I. 

Initial Final 
occupation occupation 
probabilities probabilities Condition for this 

1 1 Fll + n,1 - n,1 - ;(2{31 + /32 - rl); 
0 0 ~ - i/3I,2 - ;(/31 + /32);1) = 0 

0 0 

1 0 Fin, - n, - ;(2{31 + /32 - rl); 
0 0 ! - if31' - i(/31 + /32);1) = 0 
0 1 

0 1 FI - n,n + q + ;(/31 -/32 + rl); 
1 0 ! + i/3I'~ - i/32;1) = 0 
0 0 

0 1 Fin, - n,;(/31 + 2{32 + rl); 
0 0 ! + if32,;(/31 + /32); 1) = 0 
1 0 

complete transfer will be algebraic equations in the param
eters (9), obtained by requiring two components of the wave 
function to vanish at the final time. Furthermore, the time
reversal transformation is more useful in this context than in 
the previous subsection. The initial and final conditions are 
that two components of the wave function vanish at the ini
tial time and that two components, possibly the same two, 
vanish at the final time. Hence time reversal connects a case 
of complete transfer or return with another case of complete 
transfer or return. We shall use time reversal to treat the case 
of two-photon resonance at the initial time, after considering 
the case of two-photon resonance at the final time. 

1. Genersl conditions, when (10) holds 

Here, we find the conditions for complete transfer and 
complete return, assuming that (10) holds, and that Clau
sen's series always terminates. As mentioned above, the final 
occupation probability for state 2 vanishes automatically. 

Hence, the condition for complete transfer or complete re
turn is that one of Clausen's function vanishes at x = 1, 
which corresponds to the final time. Such conditions are 
listed in Table V, for three. cases of complete transfer and one 
case of complete return. The integer n appears, because ter
minating series are used. Since both real and imaginary parts 
of Clausen's function vanish at x = 1, Table V gives two 
conditions additional to those appearing in the appropriate 
section of Table I. 

The simplest examples are obtained by using small inte
gers n. Although n = 0 appears in Tables I and IV, the re
sulting cases of complete transfer are the trivial cases of 
a l = 0 anda2 = O. We reject these cases, to which Table V 
does not apply. Simple conditions for complete transfer from 
state 2 to state 1 are obtained by setting n = 1 in the third 
section of Table V: 

/3J32 = 1, rl = 1( - /31 + 3/32)' r2 = - rl' 
a~ = r( /3~ + *), a~ = 3r( /3~ + V. 

These conditions cannot be obtained from Table II or Table 
III. Simple conditions for complete return to state 1 are ob
tained by setting n = 2 in the first section of Table V: 

/31 = 0, rl = Jj32' r2 = - rl' 
a~ = Sr, a~ = 2r( /3~ + 4). 

The same conditions can be obtained from Table II; this was 
done above, but not so explicitly. This specific example 
shows that there is an overlap between the first and third 
sections of Table I; it occurs because Watson's formula is 
applicable to finite series. By using even integers n in the first 
section of Table V, we should be able to recover the simple 
conditions for complete return that were obtained above 
from Table II. However, the algebra becomes more difficult 
as n increases. 

Other simple examples can be obtained from Table V, 
but the formulas will not be shown explicitly. Simple condi
tions for complete transfer from state 1 to state 3, or vice 
versa, are obtained by setting n = 1 in the appropriate sec
tions of Table V. These conditions agree with those found 
above from Table II. Use of odd integers n should, in princi-

TABLE VI. Examples of complete return and complete transfer, obtained from the conditions shown in Table V. The integer n is specified here, and the time
reversal transformation is used to obtain the last line. 

Initial Final 
occupation occupation 

probabilities probabilities n a l a2 /31 /32 rl r2 

1 1 
0 0 3 17.3401 9.5634 0.2180 2.2455 0.5967 - 0.5967 
0 0 

1 0 
0 0 2 10.6690 6.9826 0.6250 - 1.2760 0.4433 -0.4433 
0 1 

0 1 
1 0 2 6.1206 15.9668 0.9880 1.0880 0.8154 - 0.8154 
0 0 

1 0 
0 0 2 9.8424 7.9085 0.9670 -0.9670 0.5643 - 0.8154 
0 1 
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pIe, give all the cases of complete transfer that were obtained 
from Table II. We emphasize that the conditions obtained 
from Table V are more general than the simple conditions 
obtained from Table II, and that there are several cases in 
which five simple equations connecting the parameters (9) 
can be obtained from Table V. We show some numerical 
examples in Table VI. The parameters used in Figs. 3 and 4 
are such that two of the specific examples in Table VI are the 
points of complete transfer on the n = 2 curves. Numerical 
exploration has been used to arrange that, in Fig. 4, points of 
complete transfer appear on two of the n = 3 curves. 

2. Generlll conditions, when (11) holds 

The conditions for complete transfer or complete re
turn, in the case of two-photon resonance at the initial time, 
are obtained by applying time reversal to the above calcula
tions. Time reversal obviously interchanges the numbers in 
the first two colums of Table V. Equation (8) indicates that 
interchange of /31' /32' with rl' r2 is necessary. No other 
changes are actually needed in Table V. The appropriate 
formulas for a~ and a~, which involve the integer n, must be 
derived from the time-reversal transformation specified in 
Appendix C; they are not available in Table I. A specific 
example of complete transfer appears as the last line in Table 
VI. 

This section has described specific cases in which the 
SchrOdinger equation specified by (5) and (8) is solvable by 
use of (7), Clausen's series. We impose successive condi
tions on the parameters (9), and we finally obtain complete 
transfer or complete return, along with termination of Clau
sen's series. 

IV. TWO·PHOTON RESONANCE AT ALL TIMES 

The three-state model that leads to (2) can motivate a 
study of the algebra of 3 X 3 matrices, and this algebra sim
plifies greatly in two cases found earlier.s The two cases 
could also be derived by looking for simplifications in the 
differential equations derived from (2). If the two detunings 
are always equal and fi l (t) = fi2 (t) always holds, the third
order differential equations can be reduced to second order 
by Appell's transformation17

; this case will not be described 
here. If the two detunings always add up to zero, we have the 
coupled differential equations shown as (3) or (6). We shall 
use the simplifying assumption that fit (t)/fi2 (t) is indepen
dent of t. This leads to "coherent trapping" of atoms in one 
state, which Gray, Whitley, and Stroudl8 demonstrated by 
using a beam of Na atoms. The effect appeared somewhat 
earlier, in the calculations of Arimondo and Orriols. 19 The 
conditions for coherent trapping are satisfied by the model 
used in Sec. III when ( 12) holds, but this limiting case is not 
treated in Sec. III. Analytic solutions of this and some other 
special cases will be given below, after some general proper
ties of (3) and (6) are mentioned. 

A. General properties 

The simplest calculation 18 that shows coherent trapping 
is construction of the constant solution of (3). Since we as
sume 0 1/02 is constant, 
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°1 = 02(0~ + O~ )-1/2, 02 = 0, 

0 3 = - nl(O~ + fi~ )-1/2 
(15) 

is this solution; we have normalized it. This represents a 
quantum state whose occupation probability can neither in
crease nor decrease, so long as we use the assumptions em
phasized above. 

Further transformation of the SchrOdinger equation 
could be used to separate ( 15) from the other two solutions, 
so that one obtains a two-state model. We may indicate the 
form of solutions of (3), without writing such a transforma
tion. If state 1 is occupied initially with unit probability, then 
the probability amplitudes for states 2 and 3 vanish at t = 0, 
the initial time, and 

01 = fiV(O~ + fi~) + [OU(fi~ + O~) V(t), 

02 =g(t), 

and 

TABLE VII. Transition probabilities, and probabilities of no transition, for 
two-photon resonance at all times, with constant functions 
III,(Z) =a" 1112(Z) = a2, andB,(z) =15,. The angle ell is defined by (16). 

Initial 
occupation 
probabilities 

o 

o 

o 

o 

o 

o 

Final occupation probabilities 

~(a~/eII2)(l- cos ell) 

[a~ +a~ +2<S~ + (a: + aD cos eII]/(2e112) 

~(a~/eII2)( 1 - cos ell) 
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a3 = - 010 2/(Of + Oi) + [OI02/(Of + O~) If(t). 

Here,j(t) andg(t) are undetermined functions, which may 
have complex values; they satisfy f(O) = 1 and g(O) = O. 
For complete transfer of the occupation probability from 
state 1 to state 2, there must be some time t such thatf(t) is 
real and positive and negative. Since this is impossible, com
plete transfer from state 1 to state 2 is ruled out. Similarly, 
complete transfer from state 3 to state 2 can be ruled out. 
Similar calculations show that complete transfer from state 2 
to state 1 or state 3 can be ruled out. An explicit considera
tion of the differential equations can be used to rule out com
plete transfer and complete return for a wide class of pulse 
shapes. These calculations are not given here, but Robin
son20 gives some relevant calculations. 

and we obtain a generalization of the Rabi solution. 7 We may 
assume that z(t) increases from 0 to 1 as t increases from 
- 00 to + 00. The two dimensionless pulse areas are 

a 1 = 11(1)1 dz = (1)1' a2 = 11(1)2 dz = (1)2' 

We assume that a 1 and a2 are positive. The solutions of (6) 
are briefly described in Appendix F, and the resulting transi
tion probabilities are listed in Table VII, where the angle 

(16) 

B. Analytic solutions 

appears. Since complete transfer from state I or state 3 to 
state 2 has been ruled out, Table VII shows that a necessary 
condition for complete transfer or complete return is that <I> 
is a multiple of 21T. In fact, complete return to state 2 is 
obtained whenever <I> is a multiple of 21T. For complete re
turn to state 1, <I> and 81 and (<I> + 81 )/2 must all be multi
ples of 21T. For complete transfer from state 1 to state 3, 
a 1 = a2 is necessary, and the other conditions can be derived 
from Table VII. 

Analytic solutions for three special cases are given here. 
We increase the generality of the solutions by using (6) in 
place of (3). The functions (1)1' (1)2' and 81 = - 82, which 
appear in (6), are to be chosen. 

In the simplest case, these three functions are constant, 

We shall also treat two cases in which solutions of (6) 
can be written in terms of hypergeometric functions. We 
assume that 

TABLE VIII. Transition probabilities, and probabilities of no transition, for two-photon resonance at all times, with functions WI (z), W2 (z), and li l (z) given 
by (17). We define eI> = {[ a~ + a~ + .,r(P2 - 'I) ]/8 + H (a~ + a~)2 + 2.,r(a~ + a~ )(P 2 - 'I) + 1T4 (P 2 + '1)2 ] 1/2}1/2 and 
X = sgn(Pr){ - [a~ + a~ + .,r(P2 - 'I) ]/8 + H (ai + ai)2 + 2.,r(a~ + a~ )(P 2 - 'I) + 1T4 (P 2 + '1)2 ] 1/2}1/2. 
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Initial 
occupation 
probabilities 

o 

o 

o 

o 

o 

o 

Final occupation probabilities 

a; 2a~a~ [cos(eI> - !1Tp)sinh(X + !~) - cos(eI> + !1Tp)sinh(X - !~) 1 
(a~ + ai)2 + (a~ + ai )2sinh(~) 

a~ cosh(~)[cos(2e1» + cosh(2X) 1 - 1 - cos(2e1»cosh(2X) 
+ (ai +ai)2 sinh2(~) 

ai [cosh(~) - cos(2e1» ](cosh(~) - cosh(2X) 1 
(ai +ai)sinh2(~) 

aia~ { 2 cos(eI> + !1Tp)sinh(X - !1Tr) - 2 cos(eI> - !1TP) sinh (X + !~) 
--'---:--=-2 1 + . 
(ai +ai) smh(~) 

cosh ( ~)[ cos (2e1» + cosh(2X) 1 - 1 - COS(2e1»COSh(2X)} 
+ sinh2(~) 

ailcosh(~) - cos(2e1» ](cosh(~) - cosh(2X) 1 
(ai +ai)sinh2(~) 

cosh(~) [cos(2e1» + cosh(2X) 1 - 1 - cos(2e1»cosh(2X) 
sinh2(~) 

ai [cosh(~) - cos(2e1» ](cosh(~) - cosh(2X) 1 
(ai +ai)sinh2(~) 

aiai { 2 cos(eI> + !1Tp)sinh(X - !~) - 2 cos(eI> - !1Tp)sinh(X + !~) 
--'---:--=-2 1 + . 
(ai + ai ) Sinh ( ~) 

cosh(~)[cos(2e1» + cosh(2X) 1 - 1 - COS(2e1»COSh(2X)} 
+ sinh2(~) 

ai [cosh(~) - cos(2e1» 1 [cosh(~) - cosh(2X) 1 
(ai + ai ) sinh2 ( ~) 

a~ 2a~a~ [cos(eI> - !1TP)sinh(X + !~) - cos(eI> + !1TP)sinh(X - !~) 1 
(ai + ai)2 + (ai + ai )2sinh(~) 

a~ .::c:::os=h~( ~::...L.!).!..[ c:..:o:.=.s(~2~eI>~)_+:.....:.:co:.=.sh::.('-.::;2X~) o!..l _---=lc..----=-co'-"s..:..( 2::..cel>:..;);..:.c,,-os:..::h..:..( 2X::;;.::..:..) + ---::--''-:--::: 
(ai +a~)2 sinh2(~) 
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WI(Z)/W2(Z) = 0 1 (t)/02(t) 

is constant. Hence, we can divide 

[!!.- - i~1 (z) ]a2 = J.- iW I (z)a l + J.- iw2 (z)a3 
dz 2 2 

by WI (z) or W2(Z), differentiate, and obtain a second-order 
differential equation for a2 (z). We now assume that the sin
gular points of this differential equation areatz = i,z = - i, 
and z = 00, as in recent work on the two-state problem. 10 As 
t increases from - 00 to + 00, z (t) runs along the real axis 
from - 00 to + 00. To obtain hypergeometric functions, 
we assume 

WI (z) = a l i1r(r + I), w2 (z) = a 2i1r(r + I), 

and 

15 1 (z) = (P + yz)/(r + I). (17) 

The dimensionless areas are a I and a2, which are positive. 
Solutions of (6) are written in Appendix F, and the resulting 
transition probabilities are listed in Table VIII. The neces
sary condition for complete transfer or complete return is 
that y = 0, and y = 0 implies that WI (z), w2 (z), and ~I (z) 
are all proportional to (r + 1) -I. By using z' = arctan (z) 

as a new independent variable, we return to the simple case 
treated in the previous paragraph. Hence, for ( 17), the cases 
of complete transfer and complete return have already been 
treated. 

In the earlier applications of the hypergeometric func
tion to the two-state problem,9,21 the arbitrary function that 
we call z(t) is the argument of the hypergeometric function, 
and it increases from 0 to 1 as t increases from - 00 to + 00. 

To obtain the corresponding solution of (6), we derive a 
second-order differential equation in the way indicated 
above, and put the singular points at z = 0, z = 1, and 
Z= 00. Let 

WI (z) = (a l i1r)[z(1 - z)] -112, 

w2 (z) = (a2/1r)[z(1 - z)] -112, 

and 

l5(z) =P/z+y/(l-z). (18) 

Although this is a special case of (8), Clausen's function 
cannot be applied here. Solutions of (6) are written in Ap
pendix F, in terms of hyper geometric functions. To find the 
limits of a l (z) and a3 (z) as Z--+ 1, which corresponds to the 
end of the two optical pulses, we use the Gaussian formula22 

for the sum of the hypergeometric series atz = 1. The result
ing gamma functions do not disappear when we calculate the 
transition probabilities; see Table IX, where the notation 

<I> = ! [ai + ai - r( P - y)2] 1/2 (19) 

is used. 
The special cases in which evaluation of gamma func

tions is not necessary for computation of these transition 
probabilities should be mentioned. One of them is a limiting 
case of the problem treated in Sec. III. Recall that the condi
tions listed in Table I lead to final occupation probabilities 
that are elementary functions ofthe parameters (9). In the 
first section of Table I, YI + Y2 = 0 holds, and we now let 
PI + Pr+O. This limiting process gives two-photon reso
nance at all times. It also gives 
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a l = a2, PI + YI = 0, P2 + Y2 = 0, (20) 

SO that the two amplitude functions, Ol(t) and 02(t), are 
equal. Furthermore, if 0 1 (t) = O2 (t) is an even function, 
4 1(t) = - 4 2 (t) is odd. From the second section of Table I, 
we obtain (20) by a similar limiting process. This examina
tionofTable Ileads us to setal = a 2 andp + Y = Oin Table 
IX, which simplifies the formulas for all nine final occupa
tion probabilities. The same simplified formulas are ob
tained from Tables II and III, by using (20). The angles <1>, 
defined in Tables II and III and in (19), are all the same in 
this limit. We conclude that the nine final occupation proba
bilities for the case (20) are independent of whether this case 
is treated directly or as a limit. However, the calculations in 
Appendices C and E can hardly be made applicable to this 
limiting case. 

There is perhaps another limiting case that we could 
derive from Sec. III. Assuming that Clausen's series always 
terminates, we could seek the limit oftwo-photon resonance 
at all times. We have not done this. 

Finally, we should mention the conditions for complete 
transfer and complete return when (18) is used. For com
plete return of the occupation probability to state 2, the con
ditions are that P = Y and that <I> is a multiple of 17"; see Table 
IX. For complete return to state 1, or complete transfer from 
state 1 to state 3, these two conditions are necessary but not 
sufficient. They make the hypergeometric series terminate, 
so that a table similar to Table V could be constructed. From 
P = y, we find that, if 0 1 (t) and 02(t) are even functions, 

TABLE IX. Transition probabilities, and probabilities of no transition, for 
two-photon resonance at all times, with functions llJ,(z),llJ2 (z), and ,s,(z) 
given by (18). The angle ~,defined by (19), can be real or pure imaginary. 
We define R as the real part of[ a~a~/(a~ + ai )2] r(! - i.8)r(! - ir)/ 

r[! - !i(P + r) + ~/1Tlr[! - !i(P + r) - ~l1rl· 

Initial 
occupation 

probabilities 

o 

o 

o 

o 

o 

o 

Final occupation probabilities 

ai a1 [COsh(1TP + 1TY) + cos(2~) 1 ---::---''--:--::: + + 2R 
(a~ +ai)2 2(a~ +~)2cosh(1TP)cosh(1TY) 

aaCOSh(1TP -1TY) - cos(2~) 1 
2(a~ + aD cosh ( 1TP)cosh( 1TY) 

a~a~ [I + cOSh(1TP + 1TY) + cos(2~) ] _ 2R 

(a~ + a~)2 2 cosh ( 1TP)cosh( 1TY) 

a~ [COSh(1TP -1TY) - cos(2~) 1 
2(a~ + a~ ) cosh ( 1TP) cosh ( 1TY) 

COSh(1TP + 1TY) + cos(2~) 

2 cosh ( 1TP) cosh ( 1TY) 

aaCOSh(1Tp -1TY) - cos(2~) 1 
2(a~ + a~ )COSh(1TP)cosh(1TY) 

a~a~ [I + COSh(1TP + 1TY) + cos(2~) ] _ 2R 
(a~ + a~)2 2 cosh ( 1TP) cosh ( 1TY) 

a~ [COSh(1TP -1TY) - cos(2~) 1 
2(a~ + a~ ) cosh (1TP) cosh (1TY) 

a~ ai[cosh(1TP +1TY) +cos(2~) 1 ---::-,'--:--::: + + 2R (af + aD2 2(a~ + a~ ) 2cosh ( 1T/1) cosh ( 1TY) 
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v. CONCLUSION 

APPENDIX A: THIRD-ORDER DIFFERENTIAL 
EQUATIONS 

The cases of the three-state problem that we have treat
ed here show a variety of atomic or molecular responses to 
two optical pulses that overlap in time. Complete transfer to 
another state, or complete inversion, is obtainable in many 
cases that were not covered in previous calculations. The 
results suggest that experiments with two laser beams can 
explore an interesting area of quantum dynamics that lies 
beyond earlier calculations. 

In order to apply Clausen's function or another special 
function to our three-state model, it is convenient to have 
third-order ordinary differential equations in one dependent 
variable. We can derive such equations from (5). Elimina
tion of a2 (z) and a3(z) gives 

(AI) 

where 61, 62, WI' 412 are functions of z. Elimination of a 1 (z) and a3 (z) is not so straightforward, and is not needed for our 
calculations. Elimination of a1 (z) and a2(z) gives 

[~ + ;(261 + 62 ) ] _1 [~_ ;(61 - 62 ) ] _1 [~_ ;(61 + 262 ) ] a
3 

dz 3 WI dz 3 412 dz 3 

+ ~ [~+ ;(261 + 62 )] (~) a3 + ~ (~) [~- ;(61 + 262 ) ] a3 = O. (A2) 
4 dz 3 WI 4 412 dz 3 

The derivatives of WI and 412 occur in (AI) and (A2). We shall write these equations in terms of 

and their first derivatives with respect to z. We arrange to have L l' L 2, and their derivatives appear in coefficients that stand to 
the left of the three differential operators that appear in square brackets in (AI) and (A2). Next, elimination of these 
differential operators gives 

and 

d
3
a3 d

2
a3 {L L L2 dL2 ;~1 (2L L ;62 L 2L . [d (J;: ~] -- - (L 1 + 2L2 ) ---;::2 + 1 2 + 2 - --+ - 1 + 2) + - ( 1 + 2) -, - "1 + "2) 

dz3 dz- dz 3 3 dz 

+ 6t + 6162 + 6~ + (41 1)2 + (412)2 } da3 + { _ ~ (6
1 
+ 26

2
) (LIL2 + L i _ dL2 ) 

3 4 dz 3 dz 

+ ~ [~(61 + 262)] (L 1 + 2L2 ) + ~ (61 + 262 ) [(61 - 62)L 1 - (61 + 262 )L2 ] - ~ [~_: (~1 + 262 )] 
3 dz 9 3 dz-

+ ~ (6
1 
+ 26

2
) d62 _ -,-' (261 + 62 ) (6 1 _ 62 ) (6 1 + 262 ) _ i6} [(41

1
)2 _ 2(412 )2] 

3 dz 27 12 
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(A4) 

In these equations, the coefficients of d 2at/da2 and d 2a~dr are real when z is real, and do not involve the detunings. This 
simplification is a consequence of the vanishing trace of the Hamiltonian matrix in (2). 

We plan tochoosethefunctions!Sl'!S2,llJ t , andllJ2 so that (A3) and (A4) can be treated analytically. In this paper, we use 
the choice (8), which gives 

d 3al [(3/2) (3/2) ] d 2al { (P~ + PtP2 + Pi )/3 - i(PI + P2)/2 
dr + -z-+-;=-t dr + r 

+ [1 _ a~ + ai _ 2{JIYI + PlY2 + P2YI + 2{J2Y2 + i({J1 + P2 - Yl - Y2) ] 1 
41r 3 2 z(z - l) 

(rl + YlY2 + rl )/3 + i( YI + Y2)/2} da l + ~ {(2{J + P) (-PI + i)/2 - HPI - P2) (PI + 2{J2)/9 
+ (z - 1)2 dz 3 t 2 r 

[
(PI - ;)(2{JI + P2) + PIY2 - P2YI + ;(2{Ji + 2{JtP2 - Pi )Yl + i(P~ - 2{JtP2 - 2{Ji )Y2 

+ 2 3 3 

+ ia~ (P + 2fJ ) _ iai (2{J + P )] 1 + [ (Yt + i) (2Yt + Y2) - (P.Y2 - P2Yt) _ ;P. (2rl + 2Y.Y2 - rl) 
41r I 2 4,r I 2 r(z - 1) 2 3 

ifJ2(ri - 2YtY2 - 2rl) iai iai ] 1 
- 3 - A -2 (Y. + 2Y2) + A -2 (2y. + Y2) 1 2 

'+71 '¥IT z(z - ) 

+ (2 + ) - (Y. + i)/2 + iCYI - y2Hy. + 2Y2)/9} a = 0 
Yt Y2 (z _ 1)3 I (AS) 

and 

d 3a3 [(312) (3/2)]d 2a3 {(P~+PtP2+Pi)/3+i(PI+P2)/2 
dr + -z-+-;=-t dr + r 

+ [1 _ a~ + ai _ 2{J.y. + PIY2 + P2Y. + 2{J2Y2 _ i(PI + P2 - Yt - Y2) ] 1 
41r 3 2 z(z - 1) 

(rl + Y.Y2 + rl )/3 - iCY. + Y2)/2 }da3 + ~ {(P + 2/3 ) - (P2 + ;)/2 - ;(PI - P2) (2{JI + P2)/9 
+ (z - 1)2 dz 3 I 2 r 

[
(P2 + i)(PI + 2{J2) - (P.Y2 -{32YI) + ;(2{Ji + 2{JtP2 -Pi)YI + i(P1- 2{JtP2 - 2{Ji>Y2 

+ 2 3 3 

+ ia~ ({3 +2fJ) _ iai (2{J +P)] 1 + [(Y2- iHYl +2Y2) +{3.Y2-{32Yl 
41r. 2 4,r I 2 r(z-l) 2 

i{31(2ri + 2YIY2 - rl) iP2(ri - 2YIY2 - 2rl) ia~ iai ] 1 
- - -- (Y. +2Y2) +- (2Yl +Y2) 

3 3 41r 41r z(z - 1)2 

+ (Y + 2y) (- Y2 + i)/2 + i(2Yl + Y2) (Yt - Y2)/9 } a = O. (A6) 
1 2 (z _ 1)3 3 

These two differential equations belong to the class discussed in the following Appendix. 

APPENDIX B: THREE REGULAR SINGULAR POINTS 
Here, we consider homogeneous linear differential equations with only three singular points, all of which are regular. We 

emphasize third-order differential equations. Examples are (AS) and (A6) and 

d 3F [(3 +a' +{3' +!S')x - (1 + r' + E')] d 2F --+ '="":"'---'--""';"":'--'---"":"---'---'--!--'-';"':" 
dx3 x(x-l) dx2 

[(1 + a ' + P' +!S' + a'p' + a'!S' + {3'!S')x - y'E'] dF a'p'!S' + -+ F=O, 
x2(x - 1) dx x2(x - 1) 

(Bl) 

which is the differential equation satisfied by (7). The mathematical theory will tell us when solutions of (AS) and (A6) can 
be written in terms of Clausen's function, and will remove the need for laborious transformation of (AS) and (A6) into the 
form (Bt), or vice versa. 

We may mention the second-order differential equation with three singular points, all regular. Its general form is 
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d 2y + ( 1 - a - a' + 1 - /3 - /3' + 1 - r - r') dy 
~ z-a z-b z-c ~ 

+ 1 [aa'(a - b)(a - c) + /3/3'(b - c)(b - a) + rr'(c - a)(c - b)] y = o. (B2) 
(z - a)(z - b)(z - c) z - a z - b z - c 

This is called the Riemann-Papperitz equation, because Riemann discussed it,23 and Papperitz later wrote it explicitly.24 In 
(B2), the three singular points are a, b, and c. The six exponents are a, a', /3, /3 " r, and r'. These nine complex parameters are 
arbitrary except for the relation 

a + a' + /3 + /3' + r + r' = 1 , 

and the requirement that a, b, and c are distinct points. The exponents a', /3', and r' should not be confused with the 
parameters in (7). Furthermore, a, b, and c need not all be finite, and it is often convenient to use the limit of (B2) as c .... 00 • 

We emphasize two simple features of (B2): The coefficients of y and dy/ dz are completely determined by the locations of the 
singular points and the exponents at each singular point. Also, solutions of (B2) can always be written in terms of hypergeo
metric functions. Properties corresponding to these two features are absent in the case of third-order equations, to which we 
now turn. 

The third-order equation with only three singular points, all of which are regular, has the form 

d 3y (3-a-a'-a" 3-/3-/3'-/3" 3- r -r'-r") d
2
y ( )dY ( ) -+ + + -+ .. , -+ '" y=O, 

dz3 z-a z-b z-c dr dz 

where the singular points are a, b, and c; the coefficients of y and dy/ dz are rational functions that we need not find, because we 
shall consider only the case in which c is infinite. A change of the variable called z has the same effect as letting c ..... 00 • In the 
early work of Fuchs25 and other treatments26 of the theory of differential equations in which all singular points are regular, one 
singular point is put at infinity. Fuchs25 found the sum of all the exponents, among other results. In our case, 

a + a' + a" + /3 + /3' + /3" + r + r' + r" = 3 . (B3) 

In this paper, the singular points are at 0, 1, and 00. Hence the general form of the differential equation is 

d 3y ( 3 - a - a' - a" 3 - /3 - /3' - /3") d 2y 
dz3+ z + z-1 dr 

[
MI M2 + M3 ] dy + [NI + N2 + N3 + N4 ] - 0 + 7+ z(z-l) (z_I)2 dz 7 z2(z-l) z(z-I)2 (Z-1)3 y- . 

(B4) 

Equations (AS) and (A6) have this form, and we could 
write (Bl) in this form. Given any differential equation of 
the form (B4), (B3) can be used to find r + r' + r" easily. 
Further calculation gives a, a', and a" in terms of MI and 
N I , and gives /3, /3', /3", and so forth. We could calculate 
the nine exponents, and then find M I, M2, M3, Nt> N2 + N3, 
and N4 in terms of the nine exponents. We emphasize that 
the exponents do not determine N2 nor N3 separately. The 
exponents do not fully describe the form of the differential 
equation, and they cannot fully determine any solution. We 
shall use the exponents and other information to decide 
when solutions of (B4) can be written in terms of Clausen's 
function. We shall need the exponents of (AS), (A6), and 
(B1); they are listed in Table X. 

Clausen's differential equation, written as (Bl), has a 
peCUliarity that appears in Table X: Two of the exponents at 
x = 1 differ by unity. This difference cannot be changed by 
any simple transformation of dependent or independent 
variables, and it distinguishes one of the singular points of 
(B 1) from the other two. We do not have the full symmetry 
under interchange of singular points that appeared in (B2), 
and this leads to fewer useful formulas for Clausen's function 
than for the hypergeometric function. In order to apply 
Clausen's function to (AS) and (A6), we must have a differ
ence of unity between two exponents atz = 0 or atz = 1 or at 
z = 00. The third alternative leads to complications men
tioned at the end of this Appendix. The first two alternatives 
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lead to (14) and (13) as possible relations between x and z. 
Then, Table X gives (11) and (10), which are necessary 
conditions for use of Clausen's function. We still have to 
show that either condition is sufficient, or that it allows us to 
write solutions of (AS) and (A6) in terms of Clausen's func
tion. 

TABLE X. Exponents of (AS), (A6), and (Bl), the third-order differen
tial equations for o. (z), 03 (z), and Clausen's function. The definition of PI' 
P2, and P3 is given by (Cl) and (C2). 

Singular point Three exponents at the singular point 

Equation (AS): 
z = 0 - i(2/3. + P2)/3,! + i(PI - P2)/3,1 + i(P. + 2/32)/3 

z = 1 i(2y. + Y2)/3,! - i(y. - Y2)/3,1 - i(y. + 2Y2)/3 

Equation (A6): 
z = 0 i(P. + 2/32)/3,! + i(P. - P2)/3,1 - i(2/3. + P2)/3 

z = 1 - i(y. + 2Y2)/3,! - i(y. - Y2)/3,1 + i(2y. + Y2)/3 

Equation (Bl): 
x = 0 0,1 - y',l - €' 

x=l O,I,y'+E'-a'-p'-{j' 

x = 00 a',fJ',{j' 
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In usingTableXtoderive (10) and (11), we have tacit
ly assumed that a' + {3' + B' - r' - E' is not an integer. If 
all the differences of exponents at x = 1 of (B 1 ) are integers, 
we have irrelevant complications. A similar assumption ap
plies to the exponents at x = 0: We assume that there are no 
integers among r', E', and r' - E'. 

The logarithm of x-I could appear, in principle, when 
we seek solutions of (Bl). We can abbreviate our calcula
tions by considering whether the logarithm does appear, al
though the long account given by Forsyth26 indicates that 
the question is sometimes complicated. Since 
a' + {3' + B' - r' - E' is not an integer, squares and higher 
powers of In(x - 1) cannot appear. Clausen's equation, 
(B1), has a solution ofthe form 

F=Ao+A1(x-l) +BI(x-1)In(x-l) 

+A2(x-l)2+B2(x-l)21n(x-l) + .... 
(BS) 

Substitution into (Bl) gives linear equations to determine 
Ao, A}O B I , and so forth. A simple calculation gives 

BI =0. (B6) 

Since the difference of exponents at x = 1 is unity rather 
than a larger integer, we obtain 

B2 = 0 , B3 = 0 , ... , 

without further calculations.26 Since a' + {3' + B' - r' - E' 

is not an integer, the solution of (Bl) that has the form 

(x - IV'+E'-a'-P'-.5'[Co + CI(x-1) 

+ C2 (x - 1)2 + ... ] 
is also free oflogarithms. Hence, the logarithm of x-I does 
not appear in solutions of (B 1 ). This disappearance of the 
logarithm is the feature that distinguishes Clausen's differ
ential equation from other differential equations with the 
same singular points and the same exponents. 

We now ask whether logarithms appear in any solution 
of (B4), assuming that the difference of two exponents is 
unity. The exponents do not determine N2 and N3 separately, 
but a requirement that the logarithms disappear will deter
mine N2 and N 3, and allow solutions to be written in terms of 
Clausen's function. To state the plan for solving (B4) pre
cisely, we must specify which singular point gives exponents 
that differ by unity. Suppose that two of the exponents of 
(B4) at z = 1 differ by unity, and that In(z - 1) does not 
appear when we find solutions of (B4) in ascending powers 
ofz - 1. Then, (B4) has a solution of the form 

zA(z-l)I'F(a',{3',B';r',E';z). (B1) 

Similar calculations can start with another singular point. 
Suppose that two of the exponents of (B4) at z = 0 differ by 
unity, and that In z does not appear when we find solutions of 
(B4) in ascending powers of z. Then, (B4) has a solution of 
the form 

zl'(z - l) AF(a', {3 ',B';r',E'; 1 - z) . (B8) 

Three independent solutions in terms of Clausen's func
tion can be obtained if the conditions given above are satis
fied. We assume, in the example leading to (B1), that one of 
the differences of exponents at z = 1 is unity, and that no 

501 J. Math. Phys., Vol. 29, No.2, February 1988 

differences of exponents at z = 0 are integers. Hence, it is 
possible to find three solutions in ascending powers of z. 
Each has the form (B7), where A is one of the exponents at 
z = O. Since there are three different exponents at z = 0, we 
obtain three independent solutions of the form (B1). Fur
thermore, the other parameters in (B7) can be obtained 
from the exponents of (B4). Since multiplication by z!- shifts 
the three exponents at z = 0, the three exponents of (B4) at 
z = 0 must be A, A + 1 - r', and A + 1 - E'. This deter
mines r' and E'. Since multiplication by (z - 1) I' shifts the 
exponents at z = 1, two of the exponents of (B4) at z = 1 are 
J.L and J.L + 1; the third exponent is J.L + r' 
+ E' - a' - {3' - B'. Finally, the exponents of (B4) at 

z = 00 are a' - A - J.L, {3' - A - J.L, and B' - A - J.L. In this 
way, we determine each parameter in (B7), and also 
r' + E' - a' - {3' - B'; the redundant condition is consis
tent because of (B3 ) . 

In this scheme for finding solutions in terms of Clau
sen's function, after deciding whether they exist, the search 
for terms in In (x - 1) is an essential step. This search will be 
simplified before we compute the solutions of (AS) and 
(A6). We consider the possible solutions of (B4), assuming 
that J.L and J.L + 1 are two of the exponents at x = 1. The third 
exponent differs from J.L by a number that is not an integer. 
Hence, one of the solutions has the form 

(x - 1) I'[Ao +AI(x - 1) + BI(x - 1)ln(x - 1) + ... ] , 
(B9) 

which is the generalization of (BS). We have to decide 
whether (B6) holds. The general condition for having all 
solutions free oflogarithms was given by Frobenius.27 How
ever, we can use the simple method of Forsyth,26 which is 
suggested by one of Cayley's papers.28 Instead of using (B9), 
we substitute 

(x-l)I'[Ao+AI(x-l) +A2(x-l)2+ ... ] 

into (B4). This gives homogeneous linear equations to de
termine Ao, A I' A2, and so forth. Suppose that the first two 
equations have the form 

o . Ao = 0 (BlOa) 

and 

(BlOb) 

so that Ao and A 1 are not determined. Since J.L + 2,J.L + 3, 
J.L + 4, ... are not among the exponents, A2, A 3, A4, ... are de
termined in terms of Ao and A l' which are two arbitrary 
constants. In this way, we obtain two independent solutions 
of (B4), in ascending powers of x-I. Both are free of log a
rithms, and the third solution is also free oflogarithms. This 
implies that there are solutions of the form (B1) or (B8). 
We should emphasize that, if the equations for Ao and A I do 
not have the form (BlO), further calculation26 is needed to 
determine whether logarithms appear or this simple method 
fails. However, we can apply this simple method to (AS) 
and (A6). We have required two exponents to differ by uni
ty, and have found that this leads to (10) or (11). We write 
tentative solutions in ascending powers of z - 1 or z, and 
require (B 10) to hold. Since (B lOa) is merely a check on the 
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calculation of the exponents, the condition for use of Clau
sen's function is (BlOb). This condition is satisfied automat
ically when (10) or (11) holds. However, this condition is 
not satisfied automatically if z = 00 corresponds to x = I, 
the singular point where two exponents differ by unity. This 
difficult case is not considered further. 

This Appendix has explained the conditions under 
which solutions of a third-order differential equation can be 
written in terms of Clausen's function. Assuming that there 
are three singular points and that they are regular, we have 
nine exponents, eight of which can vary independently. 
Since only seven parameters appear in (B7) and (B8), the 
appearance of one condition on the exponents seems natural. 
We have emphasized that the exponents do not determine 
the form of the equation, and that disappearance of the loga
rithm is a condition for use of Clausen's function. The meth
od of writing three independent solutions, when these two 
conditions are satisfied, has been given. Solutions of (A5) 
and (A6) are written in the following Appendix. 

APPENDIX C: SOLUTIONS IN TERMS OF CLAUSEN'S 
FUNCTION 

We can now proceed to construct solutions of (5), using 
the choice (8). The differential equations for a I (z) and 
a3 (z) are (A5) and (A6), which can be solved without 
lengthy calculations by using the mathematical theory given 
in Appendix B. After finding general solutions for a I (z) and 
a3 (z), differentiation formulas are used to find a2(z), the 
other component. If the arbitrary constants in the general 
solutions of (A5) and (A6) are adjusted to correspond, 
these two calculations of a2 (z) will agree, and we shall have 
the general solution of (5), which is essentially the Schro
dinger equation. However, we shall avoid very long formulas 
by writing three independent solutions of (5); a linear com
bination of them can be written out, if desired. 

Our first step is to find the nine exponents of (A5) and 
(A6), which are not shown quite explicitly in Table X. For 
either differential equation, the three exponents atz = 00 are 
the three roots of 

~3 + [ (/31 - rl)2 + (/31 - rl) ~/32 - r2) + (/32 - r2)2 _ at~a~] ~ 

+ J.. { [2(/31 - rl) + (/32 - r2)][ (/31 - rl) - (/32 - r2)][ (/31 - rl) + 2(/12 - r2)] 

3 9 

a2 a2 
} - ~ [(/31 - rl) + 2(/32 - r2)] + 4~ [2(/11 - rl) + (/12 - r2)] = O. (Cl) 

The sum of the three roots is zero, because we have chosen to have vanishing trace of the Hamiltonian matrix in (2). If the 
three roots are not all pure imaginary, then one of them is pure imaginary and the real parts of the other two add up to zero. 
This suggests that we write the three roots of (C I) as 

ipl' ip2' ip3' 
Then, 

PI +P2 +P3 = O. 

(C2) 

(C3) 

Either the numbersPI,P2,P3 are all real or two of them are complex conjugates. This determination ofpl,P2' andp3 makes Ta
ble X more explicit. 

Two differentiation formulas for Clausen's function will be used here. A simple calculation shows that 

(a'/1'{)'fr'E') F (a' + 1,{3' + 1,15' + 1;r' + I,E' + 1;X) 

is the derivative of (7). We shall also need 

(x ! + r' - 1) F (a',{3 ',I5';r',E';X) = (r' - 1) F (a',{3 ',I5';r' - I,E';x). 

This formula is given by Rainville,29 along with a similar formula obtained by interchange of r' and E'. 

Solutions of the SchrOdinger equation can now be written explicitly, using (13) to connect (7) with (5), (A5) and (A6). 
We have derived (10) from (13), and have mentioned that (BI0) is satisfied automatically. We could use (10) to rewrite 
(Cl) in a shorter form. The exponents at x = z = 1 give J.t = ir 1/3 and 

a' + /3' + 15' - r' - E' = ir 1 - !. (C4 ) 

The solutions of (5) follow. 
Suppose that la I (z) 1--+ 1 as z --+ 0 + , and that the initial occupation probabilities of states 2 and 3 vanish. This initial 

condition and (5) are satisfied by 

and 

502 

a l = z- ;(211, +P,)/3(1 - Z);y,/3F(i(PI + 0"1),i(P2 + 0"1),i(P3 + O"I);! - i/1I' - i(/11 + /12);Z), 

a
2 

= 21r(PI + 0"1)(P2 + 0"1)(P3 + 0"1) Zl/2 - ;(211, + P,)/3 (1 _ z) 112 + ;y,/3 

a l (/31 + !i)(/31 + /32) 

xF(1 + i(PI + 0"1),1 + i(P2 + 0"1),1 + i(P3 + O"I);~ - i/1I,1 - i(/11 + /12);Z), 
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° = -a2(PI+0'1)(P2+0'I)(P3+0'I) ZI-i(2,8,+P,)/3(1_Z)ly,/3 

3 a l ({:JI + ~i)({:JI + {:J2)({:JI + (:J2 + i) 
xF(l + i(P1 + 0'1),1 + i(P2 + 0'1),1 + i(P3 + O'I);~ - i{:Jt>2 - i({:JI + (:J2);Z), 

where 

0'1 = ( - 2{31 - (:J2 + YI )/3 (C5) 

is found by calculating r' and E' and then using (C3) and (C4), or by using the three exponents at z = 00. 

Suppose that the occupation probabilities of states 1 and 3 vanish at the initial time, and 102(z) 1-+ 1 and z-+O + . This 
initial condition and (5) are satisfied by 

°1 = [a lhr(2{31 - i) ]Z1l2 + i(P, -P2)/3( 1 - Z)iy,/3FH + i(PI + 0'2)'~ + i(P2 + 0'2)'! + i(P3 + 0'2);~ - i{:J2'~ + i{:JI;Z), 

02 = zI(P, -P2)/3(1 - z) 1/2+ iy,/3F(! + i(PI + 0'2)'! + i(P2 + 0'2)'~ + i(P3 + 0'2);~ + i{:JI'! - i{:J2;Z), 

and 

03 = [ - a 2/1r(2{32 + i)]~ + HP, -P,)/3( 1 - Z)iy,/3F(~ + i(PI + 0'2)'! + i(P2 + 0'2)'! + i(P3 +'0'2);~ + i{:JI'~ - i{:J2;Z), 

where 0'2 = ({:JI - (:J2 + YI)/3. 
Suppose the occupation probabilities of states 1 and 2 vanish at the initial time, and 103 (z) 1-+ 1. This initial condition and 

( 5) are satisfied by 

°
1 
= al (PI + .0'3)(P2 + 0'3) (P3 + 0'3). Zl + HP, + 2,8,)/3(1 _ z) iy, /3F (1 + i(PI + 0'3)' 

a 2({:J2 - ~l)({:JI +{:J2)({:J1 +(:J2 -z) 

1 + i(P2 + 0'3),1 + i(P3 + 0'3);~ + i{:J2,2 + i({:JI + (:J2);Z), 

O
2 
= 21T'(PI + 0'3) (P2 + 0'3) (P3 + 0'3) Zll2 + i(P, + 2,82)/3 ( 1 _ z) 112 + ;y, /3F(1 + i(PI + 0'3)' 

a 2 ({:J2 - !i) ({:J I + (:J2) 

1 + i(P2 + 0'3),1 + i(P3 + 0'3);~ + i{:J2,1 + i({:JI + (:J2);Z), 

and 
03 = zI(P, + 2,8,)/3(1 - Z);y,/3 F(i(PI + 0'3),i(P2 + 0'3),i(P3 + 0'3);! + i{:J2,i({:JI + (:J2);Z), 

where 0'3 = ({:JI + 2{32 + YI)/3. 
These three independent solutions were obtained by us

ing (C4) and other results to construct 01(Z) and 03(Z), 
before finding 02(Z). In each formula for 02(Z), Clausen's 
five parameters satisfy 

a' +{:J' + 8' - r' - E' = iYI +!. (C6) 

Thus, the real part of a' + (:J' + 8' - r' - E' is ±!; it is en
tirely independent of the parameters of the model, and of the 
initial conditions. 

We should also treat the case of two-photon resonance 
at the initial time, in which (11) and (14) hold. The expo
nents atz = 0 givep = - i{:JI/3, and (BlO) is satisfied auto
matically. We can use (11) to write (C 1) in a shorter form. 
Time reversal can be used to simplify the remaining calcula
tions. The usual connection between time reversal and the 
SchrOdinger equation leads us to write down the complex 
conjugates of the above three solutions and interchange z 
and 1 - z. Since the Hamiltonian is time dependent, we must 
also interchange {:JI' (:J2 and YJ> Y2' These operations leave 
(8), (Cl), (C2), and (C3) unchanged, but (11) is now used 
instead of (10). This time-reversal transformation has 
the effect of replacing 0'1' 0'2' and 0'3 by 
0'1 = ( - {:JI + 2YI + Y2)/3, O'i = - ({:JI + rl - Y2)/3, 
and 0'3 = - ({:JI + YI + 2Y2)/3. 

For the cases of two-photon resonance at the initial time 
and two-photon resonance at the final time, we now have 
three independent solutions of the SchrOdinger equation. A 
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minor difficulty with these solutions is that we have to solve 
( C 1) to obtain the roots (C2). The main difficulty is finding 
the behavior of Clausen's function near x = 1, and it is con
sidered in the following Appendix. 

APPENDIX D: SUMMATION OF CLAUSEN'S SERIES 

We now seek the sum of Clausen's series, (7), assuming 
that x is equal to unity or nearly equal to unity. The series 
may terminate, but finite series are not considered in this 
Appendix. For infinite series, the first question is that of 
convergence at x = 1. A test given by Weierstrass30 gives the 
result we need: If the real part of a' + (:J' + 8' - r' - E' is 
positive, then (7) diverges at x = 1; ifthe real part is nega
tive, then (7) converges at x = 1. We need not consider the 
difficult case in which the real part is zero, but a recent pa
perl i treats the case of a' + {:J' + 8' - Y' - E' = O. 

In the present application, the value of 
a' + (:J' + 8' - r' - E' is given by (C4) or (C6), which lead 
to convergence and divergence at x = 1. We shall deal with 
both cases. 

1. Asymptotic form when series diverges 

Suppose that the real part of a' + {:J' + 8' - r' - E' is 
positive, so that (7) diverges when x = 1. However, (7) con
verges when 1 - x is small and positive, and 
F (a',fJ',8';y,E';X) is asymptotic to 
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r(y')r(E')r(a' +P' + 8' - y' - E') 

r(a')r(p')r(8') 
X(1-x)'Y'+E'-a'-P'-S'. (D1) 

This result can be used to find the limit of 102 (z) 12; formulas 
are given in Appendix C. To prove it, we write 

F(a',/3' ,8';y' ,E';X) 

r(y')r(E') 

r(a')r(p')r(8') 

co r(a' + n)r(p' + n)r(8' + n) xn 
X n~o r(y' + n)r(E' + n) n! . 

Assuming that x and 1 - x are positive, we write the coeffi
cient ofr(r')r(E')/r(a')r(p')r(8') as 

f rea' + P' + 8' - y' - E' + n) xn 
n=O n! 

+ f [r(a' + n)r(p' + n)r(8' + n) 
n=O r(y'+n)r(E'+n) 

] 
xn 

- r(a' + P' + 8' - r' - E' + n) -. 
n! 

Here, the first series is proportional to the binomial series. 

The second series converges at x = 1, or is negligible for our 
purpose. To prove this last assertion, we use Stirling's for
mula to show that the nth terms in the first and second series 
are asymptotic to 

n(a'+P'+S'-1"-E' -ox" 

and 

(constant) n(a' +P' +S' -1"-E' -2)Xn, 

respectively. Finally, we sum the binomial series and obtain 
(Dl). 

2. Sum of series at x= 1 

Finding the sum of Clausen's series at x = 1, when it 
converges, is an old mathematical problem,32 and we do not 
expect to find any general formula. Four summation formu
las for special cases should be mentioned. Saalchiitz33 gives a 
simple formula for F (a' ,/3 ',8'; y' ;E'; 1) that is valid if the se
ries terminates and a' + P' + 8' - y' - E' = - 1. Clearly, 
we cannot use his formula. Dixon34 evaluated 

F(a',/3',8';1 +a' -P',1 +a' -8';1), 

assuming that the series converges. The sum is 

r(1 +ia')r(1 +!a'-P'-8')r(1 +a'-p')r(1 +a'-8') 
r(1 +!a'-p')r(1 +!a' -8')ro +a')r(1 +a' -P' -8') 

This series can appear in Appendix C only if ( 12) holds, which would give vanishing denominators. If ( 12) holds, see Sec. IV; 
we do not use Dixon's formula. 

The formula 

F(a',/3',8';!(1 + a' +P'),28';I) = r(prq +8')ruo +a' +P') ]rU(1-a' -P') +8'] 
r(! + !a')r(! + yJ')rq - ia' + 8')r(! - yJ' + 8') , 

which is named for Watson, IS is valid if the series converges. The proof was given by Whipple, 16 who also showed that 

F (a',l _ a',8';y', 1 + 28' _ ';1) = 2
1

-
U

'1Tr(y')r( 1 + 28' - y') 
r r(!a' + !y')r(! - !a' + !y')rq + 8' - iy' + !a')r(1 + 8' -!y' - !a') , 

holds whenever the series converges. The first two sections of Table I list cases in which the formulas of Watson and Whipple 
can be used together, to simplify the results in Appendix C; details are given in Appendix E. We should mention that Watson's 
formula or Whipple's formula can sometimes be applied when Clausen's series terminates. This leads to some overlap of 
different sections of Table I; a specific example is given in Sec. III C. 

APPENDIX E: CALCULATION OF FINAL OCCUPATION 
PROBABILITIES 

After writing solutions of the Schrodinger equation in 
terms of Clausen's function, we seek cases in which the final 
occupation probabilities can be written in terms of elemen
tary functions. This leads to various sets of three equations to 
determine the six parameters (9) in terms of three ofthem. 
The restrictions on the parameters (9) are listed in Table I, 
and the resulting final occupation probabilities are given in 
Tables II, III, and IV. This Appendix sketches the calcula
tions that lead from Appendix C to these tables. 

In the case of two-photon resonance at the final time, 
(10) holds, and three independent solutions of the 
SchrOdinger equation are written explicitly in Appendix C. 
The final occupation probability for state 2 can always be 
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found, by using (D 1 ). The final occupation probabilities for 
states 1 and 3 can be calculated from the formulas of Watson 
and Whipple, provided that 

2(PI-P2+rl)/3=P3' rl/3 +P3= (Pl-P2)/6. 

These two equations are valid for any initial condition, and 
they give 

rl = - !(PI - pz), P3 = (PI - P2)/3. (E1) 

As one of the roots is now prescribed, solution of (C 1) is 
simple. We find thatpl andpz are - (PI - pz)/6 ± i4.>I1T, 
where 4.> is the angle defined in Table II; (Cl) also gives 
a~ - a~ = 2r (P i - Pi). These calculations give the first 
section of Table I. To derive the results listed in Table II, we 
consider the three initial conditions separately. 

If state 1 is initially occupied, and the initial occupation 
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probabilities of states 2 and 3 are zero, we use the first solu
tion written explicitly in Appendix C. Using (E 1 ), we find 

(0'1 + PI)(O'I + P2)(0'1 + P3) = - af (PI + P2)/(211') 2, 

where 0'1 is given by (C5). This result simplifies the explicit 
solution. Using (Ol) and Watson's formula, we find the 
asymptotic form of this explicit solution, which is listed in 
Table XI. Taking absolute squares gives the results listed in 
Table II. 

If state 2 is initially occupied, and the initial occupation 
probabilities of state I and 3 are zero, we use the second 
solution given explicitly in Appendix C. Using (Ol) and 
Whipple's formula, we find the results listed in Table XI. 

If state 3 is initially occupied, we derive 

(0'3 + PI)(0'3 + P2)(0'3 + P3) = a~ (PI + P2)/(211')2 

from (EI), and use this result to simplify the explicit solu
tion. Using (0 I) and Watson's formula, we find the results 
listed in Table XI. 

We should also describe the simple cases in which Clau
sen's series terminates wherever it appears in the wave func
tion. We assume two-photon resonance at the final time, so 
that the solutions written explicitly in Appendix C can be 
used. Table I emphasizes that the three initial conditions 
give different formulas for af and a~; they are derived in the 
following way. 

If state I is initially occupied, the conditions for termi
nating series in Appendix Care 

PI = - 0'1 + in, P2 = - 0'1 - in, P3 = 20'1' (E2a) 

Here, n is any integer. Since (Cl) and the explicit solution 
are unaffected by interchange of PI and PZ' we may assume 
n>O. If n = 0, (Cl) gives af (PI + P2) = O. Since the cases 

of al = 0 and PI + P2 = 0 do not belong here, we assume 
n > O. Then, (Cl) gives 

n[(af +a~)/(211')2+ (PI +P2)(PI-YI) _n2] 

- i[ af (PI + P2)/(211')2 + 3n20'd = O. 

The real and imaginary parts of this result give formulas 
listed in Table I. Two of the parameters in (7) are now inte
gers, and two such series appear in Table V. Setting n = I 
gives the simple example appearing in Table IV. 

If state 2 is initially occupied, the conditions for termi
nating series in Appendix Care 

PI = - 0'2 + i(n + p, P2 = - 0'2 - i(n + !), P3 = 20'2' 
(E2b) 

where n is any integer. SincePI andp2 could be interchanged, 
we assume n>O. From (Cl), we find 

(n + p [(af + a~ )/(211')2 - P/32 

+ (PI -P2)YI - (n + !)2] 

- i[ (afP2 - a~PI)/(211')2 

+ P/32YI + 30'2(n + !)2] = 0, 

which gives two of the formulas listed in Table I. Two of the 
parameters in (7) are now integers, and one such series ap
pears in Table V. Setting n = 0 and I gives the two examples 
appearing in Table IV. 

If state 3 is initially occupied, the conditions for termi
nating series in Appendix C are 

PI = - 0'3 + in, P2 = - 0'3 - in, P3 = 20'3' (E2c) 

We may assume that n is a positive integer, and use (C I) to 
find 

TABLE XI. Asymptotic fonns of wave functions asz .... l, from below. The wave functions for the case of two-photon resonance at the final time are given 
explicitly in Appendix C, and the simplifying assumptions used here are listed in the first section of Table I. The angle «I> is defined in Table II. 
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Initial 
occupation 

probabilities 

o 

o 

o 

o 

o 

o 

Asymptotic fonn of wave function 

°1
- r(! - !i/31 + CI>/21T)r(! - !iPI - CI>/21T)r(! - !i/32 + Cl>121T)r(! - !iP2 - CI>/21T) 

2 -i(P, +tI,)ialrq - i/31)rq + iYI)r[! - !i(PI + Pz) I (1 - z) -liy,/3 

°z- 2~/2r(1 - i/31 + «I>!1T)r(1 - i/31 - «I>/1T) 

° _ _ alazr(! - i/31)rq - iYI)ru - !i(PI + P2) I (I - Z)iy ,/3 
3 8~/2r( I - WI + «I>/21T)r( 1- !i/31 - CI>/21T)r( f - !i/32 + «I>/21T)r( I - !iP2 - CI>/21T) 

22iY'ialr(! + iPI)r(! - i/31)(1 _Z)iy,/3 
Q�-------------~--~~~~~~~---~~~~-----~~-

2r( 1+ !i/31 + CI>/21T)r( 1+ !i/31 - «I>/21T)r(! - !i/3z + «I>/21T)r(! - !iP2 - CI>/21T) 

Q2- rq + i/31)r(! + i/32)rq + iYI) (1 _ z) -liy,/3 
r(! + CI>/1T)rq - «I>/1T)r(! - iYI) 

Q 22/Y'ia2rq + i/31)r(! - iP2 ) (I - Z)iy
,/3 

3- 2r(! + !iPI + CI>/21T)r(! + !i/31 - «I>121T)r(1 - !i/32 + «I>/21T)r(1 - !i/32 - CI>/21T) 

Q _ _ ala2rq + i/32)r(! - iYI)ru + !i(PI + P2 ) I (I - Z)iy,/3 

I 8~/2r( I + WI + «I>/21T)r( 1+ !i/31 - CI>/21T)r( 1+ !i/32 + CI>/21T)r( 1 + !i/32 - CI>/21T) 

2i(P, +tI,)ia1r(! + iP2)r(! + iYI)ru + !i(PI + P2)]( 1 - z) -2iy,/l 
°2- 2~l2r(1 + i/32 + CI>/1T)r(1 + i/32 - CI>/1T) 

°3-
_ ____ ~~1T~1-/2~r~q~+~i/3~·~2)~r~q~-~~~I~)r~[~!~+~!~i~~I+~P2~)~I~(1--~z)~iy-,/3~--~~ 
r(! + !i/31 + «I>/21T)r(! + !i/31 - CI>/21T)r(! + !i/32 + CI>/21T)r(! + !i/32 - CI>/21T) 
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n [(at + ai )/(217')2 + (PI + /32)(/32 + rl) - n2] 

+ i[ ai (/31 + /32)/(217')2 - 3n2u3] = O. 

The real and imaginary parts give two formulas listed in 
Table I, and the simplest example is shown in Table IV. 

Finally, we shall describe the case of two-photon reso
nance at the initial time, without writing solutions of (5) 
explicitly. We assume that ( 11 ) holds. We obtain three inde
pendent solutions of (5) in the way indicated at the end of 
Appendix C. Each component of the wave function contains 
Clausen's series, and the cases of terminating series are men
tioned in Sec. III C. Here, we assume that the series do not 
terminate, and look for the behavior ofthe general solution 
of ( 5) as z -+ 0 and as z -+ 1. We easily find the behavior of the 
general solution at early times, or as z -+ 0: 

ol-A lz-iH,l3, 02_A~iH,/3, 03-A~-iH./3. 

Here, A I' A2, and A3 are three constants that can be calculat
ed, in principle. At late times, or as z -+ 1, we have 

ol-B
I 
(1 - Z)i(2y. + y,)/3, 

oz-Bz(1 - z) - i(y. - y,)/\ 

03-B3(1 - z) -i{y, + 2y,)/3. 

Here, B I , Bz, and B3 are three constants appearing in the 
general solution of (5); indeed, they are the coefficients of 
the three independent solutions mentioned above. To findA 2 
in terms of B I , B2, andB3, we use (Dt). To find Al andA3, 

we apply the formulas of Watson and Whipple. This is possi
ble only if 

P3 + 2(rl - r2 + /31)/3 = 0, P3 + (rl - r2)/6 = /31/3. 

These two conditions give 

/31 = - !(rl r2)' P3 = - (rl - r2)/3. 

Then, (Cl) gives a7 - ai = 2r (rl rl) and the values 
of PI andpz, which are (rl - rz)/6 ± i4:>/1T. Here, 4:> is the 
angle defined in Table III. We can now letz-+O in the three 
independent solutions of (5). The formulas of Watson and 
Whipple are used to find 

A = 1T1I2rq + i/31)rq + irl)r[! +, i(rl + r2)] B 
I r(! +! irl + 4:>/21T)r(! +! irl - 4:>/21T)r(! +! ir2 + 4:>/21T)r(! +! irz - 4:>/217') I 

2i(Y'-Y')ia lrq - irl)r(! + irz) B 

2r(1 -! irl + 4:>/21T)r(1 -! irl - 4:>/21T)r(! +! ir2 + 4:>/21T)r(! +! ir2 - 4:>/217') z 

a 1a2r(! + i/31)r(! ir2)r[! -! i(rl + r2) 1 B 

8rr( 1 - !irl + 4:>/21T)r( 1 -! irl - 4:>/21T)r( 1 -! ir2 + 4:>/21T)r( 1 -! irz _ 4:>/217') 3 

and 

A2 = _ 2i(y, +r2}ia1rq - ifJt)r(, + irl)ru +, i(rl + r2)] B + rq - i/3l)rq - irt)rq + ir2) B 
2r12r(l + irl + 4:>/1T)r(l + irl - 4:>/17') I r(! + i/3I)r(! + 4:>/1T)r(! _ 4:>/17') 2 

_ 2- i(Y.+Y2}ia2r(' - i/31)rq - irz)r[, -! i(rl + r2) J B 
2r12r( 1 - irz + 4:>/1T)r( 1 - ir2 - 4:>/17') 3 

and 

A = _ a la2r (! + i/3l)rq + irl)rn +, i(rl + r2)] B 
3 8rr(l + ! irl + 4:>/21T)ro +! irl - 4:>/21T)r(l +! ir2 + 4:>/21T)r(1 + ! ir2 _ 4:>/217') I 

2i(y. - Y')ia2rq - irl)r(, + ir2) B 

2r(! - ! irl + 4:>/21T)r(! -! irl - 4:>/21T)r(l + ! ir2 + 4:>/21T)r(1 + ! ir2 - 4:>/217') 2 

+ 1TI/2rq + i/3l)rq - ir2)r[, -, i(rl + r2)] B . 
rq -! irl + 4:>/21T)r(! -! irl - 4:>/21T)r(! -! ir2 + 4:>121T)r(! -! ir2 - 4:>/217') 3 

We can verify that theA vector is a unitary matrix times the B vector. Since the matrix is unitary, matrix inversion is easy, and 
it leads to Table III. 

APPENDIX F: CALCULATIONS FOR TWO·PHOTON 
RESONANCE 

The assumptions of two-photon resonance at all times 
and of constant ratio of the two Rabi frequencies simplify 
both the SchrOdinger equation for the three-state problem 
and its solutions. This Appendix indicates how we construct 
analytic solutions of (6), which is equivalent to the Schro
dinger equation. We can find the behavior of the wave func
tions at the end of the two concurrent optical pulses, and use 
this behavior to obtain Tables VII-IX. This behavior also 
allows us to find easily the conditions for complete transfer 
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or complete return, which can be difficult to derive from the 
three tables. 

In the simplest case, we assume that llJ l (z), llJ2(Z), and 
8 1 (z) are constant functions, and use (15) and (16) in writ
ing solutions of (6). We also use the functions exp(!i81z) 
X sin (!4:>z) and expqi8Iz)[cos(!4:>z) ± (;81/4:» 
X sin (!4:>z) ], where the ambiguous sign depends on the ini
tial conditions used. These calculations lead to Table VII. 

To apply the hypergeometric function, we derive a sec
ond-order differential equation, as indicated in Sec. IV B, 
and require it to have the form of (B2), the Riemann-Pap-
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peritz equation. We let c - 00 • We now put the other singular 
points at ± i, by using (17). Calculation of the parameters 
a, a', {:J, {:J', r, r' of Riemann and Papperitz leads to two 
square roots of complex quantities; let 

tions of the Riemann-Papperitz equation can be written in 
terms of hypergeometric functions of 

(z - i)/(z + i) 
r = H (ai + ai )11f2 + ({:J + ir)2] 112, 

s = H (ai + a~ )/1f2 + ({:J - ir)2r12
• 

Clearly, 1T(r + s) = ~ is real and 1T(r - s) = iX is imagi
nary; the real quantities ~ and X appear in Table VIII. Solu-

and complex powers of this ratio. To prevent ambiguity or 
discontinuous solutions, we specify that the logarithm of this 
ratio increases from 0 to 21Ti as t and z increase from - 00 to 
+ 00. To abbreviate the formulas foro 1(z) and03(z), we let 

I 

(
z + 'ji1'[ (iY iy z - i) !( ±r,z) = -.- ±2rF --±r+s,--±r-s;±2r;--. 

2z 2 2 z+z 

- ({:J : ir ± r)F ( - i; ± r + s, - i; ± r - s; I ± 2r;; ~ D]. 
Despite the first factor, this function!( ± r,z) approaches a definite limit asz- ± 00; the limit is 

ro ± 2r)r( - iy) 
r( -!ir±r+s)r( -!ir±r-s) 

Ifstate 1 is initially occupied, then 02(Z) and 03(Z) must vanish asz- - 00; we use (15) to write 

and 

o = ai _air(1+ir)(~-iyfJ+;1')/4[ r(2r)!(-r,z)[(z-i)/(z+i)]-r 

1 ai +a~ ai +ai \;;+1) r(1 +!ir+r+s)ro +~ir+r-s) 

+ r( - ~r)!(r,z)[ (z i)/~z + i) J' ], 
r( 1 + !zy - r + s)r( I + ~IY - r - s) 

o = _ a 1r(1 +ir)(z+i)ir(~-i)(fJ+i1')/4 
2 41T 2i \;;+i 

X [r( - 2r) [(z - i)/(z + i) YF{ - !ir + r + s, - !ir + r - s;1 + 2r;(z - i)1(z + i») 
r(1 + ~ir- r +s)r(1 + !ir - r-s) 

r(2r) [(z i)/(z + 0] -'F( - !iy- r+s, - !iy- r-s;I - 2r;(z i)/(z + i»)] 
+ , 

r(1 + !ir + r +s)ro + !ir + r -s) 

03= a 1a2 {_1_r(1+ir/~-i)(fJ+i1')/4[ r(2r)!(-r,z)[(z-i)/(z+i)]-r ] 
ai +ai \;;+i r(1+~ir+r+s)r(1+!ir+r-s) 

r( - 2r)!(r,z) [(z - i)/(z + i) l' ]}. 
+ r(l + !iy- r+s)r(l + ~ir- r -s) 

To show that (6) is satisfied, we use 

(~+ C-l)F(O,b;C;X) =~F(o,b;c-l;x) 
dx x x 

and 

(~ + 0 + b - c )F(a,b;C;X) = (c o)(c - b) F(a,b;c + 1;X), 
dx x-I c(1-x) 

which are derived from two of the differentiation formulas35 for F( o,b;c;x). As z - - 00, a 1 (z) - 1. As z -+ + 00, 

01 - 2 a~ 2 + 2 ai 2 e~p(!i1TP> [exp(1TY)cOS(21Tr) - exp( - 1TY)COS(21TS)] 
a l + a 2 a l + a 2 smh(1TY) 2 2 

and 

0 3 - a 1a 2 
{- 1 + e~pW1TP> [exp(1TY)coS(21Tr) _ exp( _ 1TY)COS(21TS)]}, 

ai + a~ smh( 1TY) 2 2 

but 02(Z) does not approach a limit, unless y = O. We find that 

o _(.=:..);1' WadexpW1T{:J)[r(l + ir) ]2 
2 2 r(1 +!ir+r+s)r(l +!iy+r-s)r(1 +!ir-r+s)r(1 +!ir-r-s) 
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as z ...... + 00. Complete return to the initial state, or complete transfer from state 1 to state 3, requires that a2 (z) ...... 0 as 
z ...... + 00. This is possible only if y = 0, because the gamma function has poles only on the real axis. 

If we use (17) and a different set of initial conditions, the solution of (6) is 

41Ta (1TY) . [r( - 2r) [(z - i)/(z + i)]' + (/3+ ir)/'1(r,z) a l = 1 exp - r( -IY) -"-----..:.....:..."-----"----'--:.........:-=----""-'-~ 
ai+a~ 2 r(-!iy-r+s)r(-!iy-r-s) 

r(2r)[(z-i)/(z+i)] -,+«(3+ir)/'1( -r,z)] 

+ r( - !iy + r + s)r( - !iy + r - s) , 

(
1TY) . (Z+i)ira- i)«(3+ir)/4 a2 =exp - r( -IY) -- --
2 2i +i 

[ 
r( - 2r) [(z - i)/(z + i) ]'F( - iy/2 + r + s, - iy/2 + r - s;l + 2r;(z - i)/(z + i») 

X r(-!iy-r+s)r(-!iy-r-s) 

r(2r) [(z - i)/(z + i)] - 'F( - iy12 - r + s, - iy/2 - r - s;1 - 2r;(z - i)/(z + i»)] 
+ r(-!iy+r+s)r(-!iy+r-s) , 

and 

41Ta2 (1TY) . [r( -2r)[(z-i)/(z+i)]'+«(3+ir)/'1(r,z)] a3 = exp - r( -IY) -"-----..:.....:..."-----:.........:'--:.........:-=----.::....:.~ 
ai +a~ 2 r( -!iy-r+s)r( -!iy-r-s) 

r(2r)[(z - i)/(z + i)] -,+ «(3+ir)/'1( - r,z)] 

+ r(-!iy+r+s)r(-!iy+r-s) . 

As z ...... - 00, a 1 (z) ...... 0, la2 (z) I ...... 1, and a3 (z) ...... O. Hence, the three-state system is in state 2 at the initial time. As z ...... + 00, 

- 8rial exp(!i1T/3) [r( - iy) ]2 
a ...... ---~ 

1 ai + a~ r( - !iy + r + s)r( - !iy + r - s)r( - !iy - r + s)r( - !iy - r - s) , 

a2_(-=-)ire~p(!i1T/3) [exp(1TY)cOS(21TS) - exp( - 1TY)cOS(21Tr)], 
2 smh(1TY) 2 2 

and 

Complete return of the occupation probability to state 2 at the final time occurs if the limits of a l and a3 are zero. The gamma 
functions that appear here show that this is possible only if y = 0 or r - s = ± !iy; we reject the trivial possibility that 
a 1 = a2 = O. Further calculations shows that r - s = ± !iy implies a 1 = a 2 = O. Hence, y = 0 is the necessary condition for 
complete transfer or complete return, as we asserted in Sec. IV B. Another solution of (6), such that a 1 (z) ...... 0, a2 (z) ...... 0, and 
a3 (z) ...... 1 as z ...... - 00, is needed; it will not be written out. The final occupation probabilities are given in Table VIII. 

Finally, we put the singular points of the Riemann-Papperitz equation at 0, 1, and 00, by using (18). Calculation of the 
parameters a, a' ,/3, /3', y, and y' of Riemann and Papperitz involves solution of a quadratic equation; the resulting square root 
appears in (19). Suppose the three-state system is in state 1 at the initial time. We demand that a l (z) ...... 1, a2(z) ..... 0, and 
a3 (z) ..... 0 as z ..... O. The solution is 

a
l 

= a~ + ai F( _ i(/3 - y) + <I> , _ i(/3 - y) _ <I>;~ _ i/3;z), 
ai + a~ ai + a~ 2 17' 2 17' 2 

and 

To verify that (6) is satisfied, we use 

(!!... + c - 1 + a + b - c )F(a,b;c;z) = c - 1 F(a _ 1,b _ l;c - 1;z), 
dz z z - 1 z(1 - z) 

(Fl) 

and the simple differentiation formula given by Gauss.36 Equation (Fl) is derived from the last of the differentiation formulas 
given by Oberhettinger.35 The limits as z ..... 1 and t ..... + 00 can be found from the Gaussian summation formula22 for the 
hypergeometric series: 

508 J. Math. Phys., Vol. 29, No.2, February 1988 C. E. Carroll and F. T. Hioe 508 



                                                                                                                                    

and 

03- a 1a2 {- 1 + r(! - it'1)r(! - iy) }. 
ai + a~ rn - !i(,8 + y) + <I>/11']r[! - !i(,8 + y) - <1>111'] 

The gamma functions go away if we assume,8 + y = 0, and this case is considered in Sec. IV B. The asymptotic form of 02 (z) 

asz-l and t- + cYJ is 

ia l rq - i,8)rq + iy) (1 - z) - iy 

°2--21T r[ 1 - !i(,8 - y) + <I>/1T] r[ 1 - !i(,8 - y) - <I>/1T] 
The gamma functions disappear when we calculate the final occupation probability, or the limit of 10212. This limit is given in 
Table IX. 

If the three-state system is in state 2 at the initial time and (18) is used, we assert that 

°1 = [a l /1T(2,8 - i) ]Z1l2 + iPP(! + !i(,8 + y) + <I>/1T,! + !i(,8 + y) - <I>/1T;~ + i,8;z), 

02 = ziP( 1 - z) 1/2p(! + !i(,8 + y) + <I>/1T,! + !i(,8 + y) - <I>/11';! + i,8;z), 

03 = [a2/1T(2,8 - i) ]Zll2+ iPP(! + !i(,8 + y) + <I>/1T,! + !i(,8 + y) - <I>/1T;~ + i,8;Z) 

is the appropriate solution of (6). As z--O and t- - cYJ, °1 (z) __ 0, 102(z) 1-1, and 03(Z) -0. Asz-l and t-- + cYJ, 

ia l rq + i,8)rq - iy) °1 ..... - , 
21T r[ 1 + !i(,8 - y) + <I>/1T]r[ 1 + !i(,8 - y) - <I>/1T] 

rq + i,8)r(! + iy)(1 -z) -iy 

and 

ia2 rq + i,8)r(! - iy) °3--21T r[ 1 + !i(,8 - y) + <I>/1T]r[ 1 + !i(,8 - y) - <I>/1T] 
The resulting final occupation probabilities are given in Table IX. 

Finally, we perform similar calculations, using ( 18), for a three-state system that is in state 3 at the initial time. 
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The correlated states of an assembly of N multilevel atoms interacting with resonant radiation 
fields are determined. On the basis of the duality between the permutation group and the linear 
group, one can construct the internal states for an assembly of N atoms, with n levels each. The 
possible states are determined by various allowed Young diagrams, corresponding to various 
representations of the permutation group S N' The collective transition operators are obtained 
as the generators ofthe group SU(n). 

I. INTRODUCTION 

In this paper we define the correlated states of an assem
bly of N multilevel atoms interacting with common radi
ation fields. It was first pointed out by Dickel that all the 
atoms are interacting with common radiation fields and 
hence cannot be treated as independent. In the usual treat
ment of spontaneous radiation by a gas, the radiation process 
is calculated as though separate atoms radiate independently 
of each other. To justify this assumption it might be argued 
that, as a result of the large distance between atoms and 
subsequent weak interactions, the probability of a given 
atom emitting a photon should be independent of the states 
of other atoms. This model is wrong in principle and many of 
the results obtained from it are incorrect. 

A simple example will be used to illustrate the inade
quacy of this description. Assume that a spino! particle is 
placed in a uniform magnetic field in the higher energy of the 
two spin states (i.e., antiparallel to the magnetic field). In 
due course the spino! particle will spontaneously radiate a 
photon via a magnetic dipole transition and flip to the lower 
energy state. The probability of finding the spin in its upper 
energy state falls exponentially to zero?·3 If, now, a spin-~ in 
its ground state (parallel to the magnetic field) is placed 
near the first antiparallel spin at a distance small compared 
with a radiation wavelength but large compared with a parti
cle wavelength, the radiation process would be unaffected if 
the spins were treated independently. Actually the radiation 
process would be strongly affected. The initial transition 
probability would be the same as before but the probability 
of finding an excited spino! would fall exponentially to ~ rath
er than to zero. Thus the presence of the unexcited spin dou
bles the radiation rate. Thus emission for an atomic system is 
a cooperative process involving in a collective mode all the 
atoms ofthe system. In this collective mode, an "order" ap
pears in the system which can be defined by the buildup of 
correlations between the dipoles belonging to different 
atoms. This correlation can be used to define the states of the 
atomic system and has a connection with the permutational 

symmetry of the particles because the radiation coupling is 
symmetrical with respect to exchange of any two atoms in 
the system. This important hypothesis naturally follows 
from the fact that the atoms are supposed to be confined in a 
volume small compared to A: the emission or absorption of a 
photon of wavelength A cannot-according to Heisenberg 
uncertainty-be assigned to a specific atom. We shall call 
these collective modes of the atomic system "correlated 
states." These correlated states can be classified on the basis 
of permutational symmetry as the radiation coupling has 
this property. 

With the advent oflasers in recent years, it has become 
possible to achieve the excitation of correlated states4 of 
atomic radiating systems with the subsequent emission of 
spontaneous radiation. S In this work we generalize these 
considerations to a multilevel system of radiators where 
magnetic or electric dipole transitions can take place among 
the levels. In this treatment the atomic system as a whole will 
be considered as a single quantum mechanical system. The 
problem will be one of finding those energy states that repre
sent the correlated motions in the system. The spontaneous 
emission of radiation takes place by transitions from such 
states. The collective transition operator will describe the 
transitions among such levels. The correlated states for the 
two-level atomic system are angular momentum states. 1 The 
collective transition operators for this system are the angular 
momentum operators. Our main purpose in this paper is to 
describe the correlated states for multilevel atoms. We shall 
obtain the correlated states as the basis states of the irreduci
ble representation of the group SU(n), for the n-Ievel sys
tem. [The group6 SU (n) is defined as the group of all n X n 
unitary matrices with determinant = 1.] The collective 
transition operators are obtained as the generators of this 
group. This is a generalization of the two-level problem 
where the angular momentum group was SU(2). The two
level problem was indirectly formulated by Dickel using the 
spinor representation ofSU(2), and by taking direct prod
ucts of this representation, the correlated states were ob
tained. 
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II. ATOMIC SYSTEM AND STATES 

The interaction system (radiating gas) consists of N 
identical atoms. Each atom has n-nondegenerate states 
among which transitions can take place. In our later calcula
tion we shall also assume that the walls of the container are 
transparent to the radiation field. We also assume that the 
collisions do not affect the internal state of the atoms. The 
transitions under question take place only between nonde
generate states. We shall restrict our study to the electric 
dipole transition through the electromagnetic field. The res
onant dipole transitions play the important role provided 
that PA :» 1, where p is the number density of atoms and the 
Ai'S are the wavelengths of the transitions. 

The wave function for the atomic system may be written 
conveniently in a representation diagonal in the center of 
mass coordinates and the internal coordinates. That is, the 
total Hamiltonian consists of two parts, 

H=Ho+H;. (1) 

where Ho contains translational and rotational energies 
while Hi contains the internal energy related to the state of 
excitation of the molecules. We also assume that Ho and Hi 
commute, as translation and rotational motion do not affect 
the internal excitation state of the molecules. The eigenfunc
tion for the above Hamiltonian may be written as 

(2) 

Here U ~N) is the part of the wave function describing the 
center of mass coordinates r 1,r2, ... ,rN and satisfies 

H. U(N) = E U(N) (3) o g g g , 

where Eg is the energy due to motion. The part 

X(N) = XU1,i2, ... ,iN ) (4) 

is the internal energy wave function or what we shall call the 
"spin state" of the system. The jth particle is in the i) th state 
(l<i)<n, l-Q<N). We are mainly interested in the X part of 
the wave function", as Ug does not change during the inter
action of radiation with system. There are some constraints 
imposed by the symmetry properties of the overall wave 
function. The total wave function for indistinguishable par
ticles must be either symmetric (for Bose molecules) or anti
symmetric (for Fermi molecules). The restrictions imposed 
by such symmetry are discussed in detail in a later paper. 

The total nuniber of possible states of the type X is nN
• 

But this classification is not very useful as transitions occur
ring in the whole assembly may connect a state ofthe above 
type with many other states. Moreover these states have no 
definite symmetry in the exchange of two particles. We are 
interested in obtaining states that will have the following 
properties. 

( 1) Transitions in the atomic system connect one state 
with the minimum number of other states. 

(2) States have definite permutational symmetry. 
The main aim of this paper is the group theoretical clas

sification of states. Basically we have to reduce a space of nN 

dimensions. For this it is necessary to consider in detail the 
representationsofthesymmetricgroupSNofalIN!permuta
tions of N symbols. This problem in the abstract sense has 
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been solved by Weyl. 7 We shall use these results for our clas
sification of correlated states. 

The single n-Ievel atom states span the vector space V. 
Therefore the total space spanned by N-atoms assembly is 
V" N. The structure of V .. N as S N X GL ( V) module is given 
by8 

V .. N ~ II S-t®ITV, (5) 
SNXGL(V) -tl-N 

whereA is a partition of N treated as a nonincreasing ordered 
K -tuple of positive integers with sum N. Also 

ITV = 0, if number of parts of A> n. (6) 

In Eq. (5) ~ denotes isomorphism, S -t is a representation of 
S N, and IT is a representation ofGL( V). Equation (5) is the 
main equation of this paper. Hence it is possible to choose a 
basis of V .. N whose elements transform simultaneously as 
would a basis for an irreducible representation of GL( V) 
and a basis for an irreducible representation of SN' 

Therefore the correlated states of the assembly are taken 
to be the basis states of the various irreducible representa
tions occurring in the direct product space V" N. We denote 
these states by 

",(N) 
'I'{ }, (7) 

and they are obtained as linear combinations of the earlier 
states XU1,i2, ... ,iN ) as illustrated in the examples below. The 
transition from these states to others in the scheme are de
scribed with the help of the collective transition operators 
described in the next section of this paper. We shall also give 
a scheme for generating t/J's from the X's in a later paper with 
the help of permutation operators. 

It is interesting to note that the frequency of S -t V is 
equal to the dimensionality of O-t V and the frequency of 
O-tV is equal to the dimensionality of S-tV (Schur's 
theorem9

). A simple formula 10 for obtaining the dimension
ality of O-t V is given here. Take the corresponding Young's 
diagram for this representation: 

o-tV= (8) 

Now start filling this diagram from the first comer (left top) 
with number n and increase by one as you go right and de
crease by one as you go down. Filling all the squares in this 
way one then obtains the following diagram: 

n n+l n+2 
n-l n n+l 
n-2 n-l n 

(9) 

Then the dimensionality of IT V is given by the product of all 
the factors in the above diagram (say 17') multiplied by 
deg X(-t) and divided by N!, i.e., 

dimITV= (deg~/N!)X17'. (10) 

We illustrate this procedure in the following examples. 
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These examples also show the correlated states in these 
cases. 

Example A: (Two particles, N = 2). The general equa
tion (5) becomes 

V® V~sym2 VEBA2V 

~ [(triv) ®sym2 V] EB [(sgn) ®A2V], (11) 
S,xGL(V) 

where the two representations of S2 are denoted by (triv) 
and (sgn). The trivial representation maps the two elements 
to + 1 and is of dimension 1. The (sgn) representation maps 
permutation e to + 1 and (12) to - 1 and is also of dimen
sion 1. Sym2 V is the representation by symmetric functions 
and is of dimension n (n + 1) 12. Here Vis the representation 
by antisymmetric functions and is of dimension n (n - 1) 12. 
To start with we had n2 states of the type 

X(ij); 1 <,ij<n. (12) 

There are n (n + 1) 12 possible symmetric functions of the 
type [X(ij) + XU,i)] and n(n - 1)/2 of the type 
LyU,j) - XU,i)]. The correlated states therefore are 

(12
) = (lIv'2){X(i,j) + XU,i)}, 

¢~2) = (lIv'2){XU,j) - XU,i)}. 
(13 ) 

Example B: (Three particles, N = 3). the structure of 
V ,,3 as S3XOL( V) module is given by 

V"3 ~ [triv®sym3 V] EB [p®SJV] EB [sgn®A3 V]. 
S,XGL(V) 

(14) 

The three irreducible representations of S3 are shown in 
Table I. In all there are n3 functions which break up into 
n(n + l)(n + 2)/6 symmetric, n(n2 

- 1)/3 of the typeEP, 
and n (n - 1) (n - 2) 16 antisymmetric functions. As before 
these functions define the correlated states of a three-particle 
system. 

Having achieved the representations of OL( V) in the 
tensor breakup of V "N we are able to give the molecular 
states of definite symmetry. One more trick due to Weyl 
called the "unitarian trick" completes the classification. A 
representation is irreducible with respect to OL( V) if and 
only if it is irreducible with respect to SU(n). The proof 
follows rather easily from the fact that over complex 
numbers C all operators are linear combinations of Hermi
tian operators. Therefore we classify atomic states to be the 
basis functions of the irreducible representation of the uni
tary group SU(n). Now we illustrate the two- and three
level cases here. 

Example C: (Two-level case.) The internal energy co
ordinates take two values denoted by + (upper state) and 

(for lower state). The spin states are 

X(N) = 1 + - - + "'). (15) 

The correlated states for two-particle systems are 

¢g) = 1 + +), 
¢\~) = (1Iv'2){1 + -) + 1- + )}, (16) 

¢\2~ I = 1 - -); 
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TABLE I. Character table for S3 in example B. 

and 

e 

+1 
+1 
+1 

(12),(23),(13) 

+1 
-1 

o 

¢~) = (1/v'2) {I + -) -1- + )}. 

(123),(132) 

+1 
+1 
-2 

(Three-level case, N = 3.) The three atom states are 

¢j;~ 3/2 = 1 + + +), 
¢j;L12 = (1N3){1 + + -) 

+1+ - +)+1- + +)}, 
¢j;~ -112 = (1IV3){1 - - +) 

(17) 

+1- + -)+1+ - -)}, 

¢m -3/2 + 1- - -), 
and twofold degenerate states are (corresponding to BJ ) 

and 

¢\;L 112 = (11~){21 - + + ) 
- I + + -) - I + - +)}, 

(18) 
¢\;L 112 = (1/~){1 - + -) 

+ I - - +) - 21 + - -)}, 

¢\;L12 = (1/v'2) {I + + -) -I + - + )}, 
(19) 

¢\;~_112=(1Iv1){1- + -)-1- - +)}. 

III. n-LEVEL ATOMIC TRANSITION OPERATORS 

In the previous section we have defined the collective 
states of the atomic system as the basis states of the irreduci
ble representation of the group SU(n). Now we shall de
scribe the operators which cause transitions among these 

A 

states. The action of an operator R ~~ can be described as 

:Ii ~~¢f:'} = 8~j¢f':,~ ... ,aj_ ,'p, ... ,aN} - (lin )8p¢f~~al''''}' (20) 

wherej = 1,2" .. ,N and a,/3 = 1,2, ... ,n. It is clear that :Ii ~~ 
satisfy the traceless condition, 

n A 

L R~!l =0. (21) 
a=1 

In analogy with the Dicke operators of a two-level system we 
may also define the collective transition operators for the 
total system as 

A N A 

R a{3 = L R~. (22) 
j=1 

The operators :Ii obey the commutation relations, 
A A A A 

[Ra{3,R"y] = 8{3"Ray - 8ayRI-'t3. (23) 

These commutation relations6 are identical to those satisfied 
A 

by the generators of the group SU(n). Therefore the R's 
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generatethegroupSU(n). OutofallRij (i = 1,2, ... ,n), there 
are n - 1 linearly independent diagonal generators because 
of the tracelessness condition given in Eq. (21). We can de
fine the n - 1 diagonal generators as 

A A A 

HI = RlI - R 22, 
A A A A 

H2 = RlI + R22 - 2R33, (24) 

This completes our classification for the states and the tran
sition operators. We now give some more examples to illus
trate the concept of transition operators. 

A. Two-level case 

The individual transition operators are Pauli spin matri
ces. In our notation 

A A 

R lP = q~, R H) = qi.!.? , 
and collective two-level operators are 

A A. A. A 

RI2 =J+, R2I =J_, 

with the diagonal generators 

and 

A A 

U
AU) - l(R (j) R (j» 
3-211- 22 

J3 = !(R lI - R22 ). 

(25) 

(26) 

The angular momentum eigenstates are the correlated states 
of the two-level atom. They can also be taken as the simulta-

A AA AA A A 

neous eigenstates ofJ 2 = ! (J +J _ + J _J +) + J i and J3 de-
noted by (W:') which obey 

J2t/J~~) = r(r+ 1)t/J~), 
and 

J ",(N) = m",(N) (27) 
3'f'rm 'Prm • 

The states t/J~~) are exactly the states defined in our earlier 
Example C of two-level states. Now let us see the action of 
transition operators on these states. We have from elemen
tary angular momentum theory 

J +t/J~) = {j(j + 1) - m(m + l)P/2t/J~~ + I' 

J_t/J~~) = {j(j + 1) - m(m - l)P/2t/J~~_I' 
(28) 

From simple quantum mechanics the transition probabili
ties are given byl 

I =Io(j + m)(j - m + 1). 

B. Three-level case 

The spin states are of the form (3N in number) 

X(N) = X(iI,i2,i3 ). 

(29) 

The correlated states as usual are the linear combination of 
the above spin states. The individual transition operators are 
related to the Gell-Mann matrices I I defined as 
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~), 

~). 
l)' 

~ ~). 
o -2 

It is easy to verify that the analog ofEq. (23) is 

[1jJ1j] =2ij;jk1k' 1 <JJ,k<;.8, 

(30) 

(31) 

where/ijk is fully antisymmetric, so that it changes sign when 
any two of its indices are interchanged. The only nonvanish
ing value of/;jk are permutations of the following: 

/123 = 1, /147 =/165 =iz46 =iz57 =/345 =iJ76 =!, 

/458 =h78 = yj/2. (32) 

We further define 

Fj =1;12, [Fj,~]=ij;jkFk' (33) 

The transition operators R are obtained as the linear combi
nations of the F's. A suitable choice is 

A A A 

T ± =FI ±iF2, 

u± =F6 ±iF7, (34) 
A A A 

V ± =F4 +iF5• 

IV. ATOMIC STATE LABELING 

Thus we have proved that the correlated states of the n
level atomic system are the basis of the irreducible represen
tations of the group SU (n ). We would like to label each state 
belonging to a definite representation of the group SU (n). 
Now we shall solve this problem with the help of the transi
tion operators, i.e., the generators of the group, according to 
the scheme proposed by Baird and Biedenharn. 12,13 

The number of diagonal generators of the group (also 
called the rank) is equal to (n - I). Also there exist (n - I) 
operators called Casimir invariants which commute with the 
generators of this group. The eigenvalUes of these invariants 
could be used to label a particular representation. The ques
tion arises, how many labels are needed to specify state vec
tors within the irreducible representation? Since the object is 
to specify the representation matrices, it is clear that we shall 
need as many "labels" as there are parameters, i.e., one needs 
as many operators on the group as there are parameters. For 
SU(n) the problem is to label uniquely the (n2 

- 1) param
eters. We have (n - 1) invariant operators which lead to 
(n - 1) labels. Of the remaining n 2 

- 1 - (n - 1) 
= n (n - 1) labels, we knOw. that diagonal operators furnish 
2(n - 1) labels, the factor 2 entering since the (ij)th matrix 

A 

element has H j labels for both the ith state and the jth state 
A 

(or since Hi are not invariant operators every matrix ele-
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A 

ment (m'l·· ·Im) carries two elements for eachH;). Hence 
we still need ~n(n - 1) - 2(n - 1) = ~(n - 1)(n - 2) in
dependent operators commuting with each other and with 
all the diagonal generators in order to label the states unique
ly. (The factor ~ occurs for the same reason that each H; 
defines two labels.) 

For example, SU(2) has three generators 

(~ ~), (~ -i) (1 
0' 0 (35) 

and 

Ii2
) = 3(~ ~), (36) 

A A 

where [i2
) is the Casimir operator and HI = a n is the 

diagonal operator. No further labeling operators are re
quired since !(n - l)(n - 2) = 0 for n = 2. This is the fa
miliar angular momentum example, which is uniquely la 

......... A A A A 

beled by J2 = [i2) and HI (J2 and Jz) as is well known. 
Consider now the group SU (3) which has eigh,!. genera

tors. In the notation of Gell-Mann, these are the F;'s with 
A 

i = 1,2, ... ,8. In Okubo's notation l4 these are the A{'s 
A. 

(i,j = 1,2,3) with the condition A : = O. The two Casimir 
invariants have been shown by de SwartlS to be 

1(2) - ~ £2 _ ..!..AjA; 
3 - i~1 ; - 2 i j' 

and 

If) = !(A{A;A ~ +A{A ~A f), 
where 

(A ~)/LV = 8/LK8iV - (lin )8/LvO';k. (37) 

If ¢(p,q) is an eigenstate of an irreducible representation 
(IR)D(p,q) ofSU(3) then it has been shown by de SwartlS 

that 

I~2)¢(p,q) = [~(p2 + pq + q2) + P + q]¢(P,q), 

I~3)¢(p,q) (38) 

= U(P - q) (2p + q + 3) (p + 2q + 3) ]¢(p,q). 

It is now clear that the eigenstate of If) is the same for 
D(p,q) and D(q,p) which are inequivalent contragradient 
representations whenp#q. So we need the invariant opera-

A 

tor [~3), which has the property 

I~3)¢(p,q) = - [~3)¢(p,q), (39) 

and thereby distinguishes between D(p,q) and its conjugate 
D(q,p). SU(3) has two diagonal "magnetic" operators 
which in Gell-Mann notation are HI and H 2 , and 

o 
-1 

o 

o 
1 

o 
~ ), 
-2 

(40) 

since n = 3. In this case (n - l)(n - 2)/2 = 1, which 
means that we need one more operator (in addition to 
I~2), I~3), HI' andH2 ) which commutes with the other four 
operators to complete the labeling. The Casimir invariant for 
SU (2) is a suitable operator to complete the designation of 
the states in SU(3). (See Table II.) 
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TABLE II. State labeling operators. 

Casimir invariants 
Group to specify an IR 

Diagonal operators to 
specify uniquely a state 

within an IR 

SU(2) I~2) 
SU(3) I~2),I~') 

SU(5) 

HI 
H I ,H2' n2 ) 

H I ,H2,H, 
n 2 ),If),n2 ) 

H"H2,HSI4 ; 

I!2),I~3)tll4); 
I ~2) .I~3) 

If) 

The general result for the SU(n) labeling problem is 
quite immediate. For the SU(n) case, the labeling problem 
involved by the canonical factorization is 

SU(n)::JU(1) ®SU(n -1). (41) 

Here U ( 1) is the one-parameter Abelian subgroup genera
ted by a linear combination of the (n - 1) operators; 
SU (n - 1) is a subgroup of SU (n). Each of the generators 
of the SU (n - 1) subgroup must commute with the gener
ator of U ( 1) in order to define the direct product. 

In other words, every state within an IR of SU (n) is 
characterized by all quantum numbers necessary to charac
terize a state of SU (n - 1) plus a quantum number due to a 
linear operator. The "state labeling problem" is equivalent 
to the problem of finding the complete set of "commuting 
operators" for the group. 

In effect this labeling scheme assigns to every state vec
tor of representation of SU (n) the labeling 

1
[ (2),1(3) ,1(n). [(2) ,1(n-l). [(2). H) 
nil"·' n , 11 - 1 ,... n - 1 ,... 2, 2, (42) 

where by [~/) we mean the first power Casimir invariant of 
the group SU (k) and the H are the diagonal operators of 
SU(n). The eigenvalues of all these operators have to be 
specified to characterize a state vector of an IR of SU (n). 
Biedenharn has proved that the chain decomposition of 
SU (n) into SU (1 ) X SU (n - 1) establishes a series oflabels 
exactly sufficient to label every state of all IR uniquely. This 
completes the classification of states and operators for the 
multilevel system. In a later paper we discuss the symmetry 
properties of these states and calculate the matrix elements 
for transitions among these states. 
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The hypercubic lattice Y is considered in Euclidean space E6. Embedding ofthe icosahedral 
group A (5) determines a well-known noncrystallographic action of A (5) on an irreducible 
subspace E3. From boundaries of Yand its metrical dual Y·, new convex polytopes, called 
Klotze, are constructed in E6. The Klotze tile E6 periodically, but not face-to-face, and provide 
a new fundamental domain under the hypercubic translation group. All boundaries of a Klotz 
are parallel or perpendicular to the subspace E3. The intersection of the lattice Ywith E3 
determines a nonperiodic, face-to-face rhombohedral tiling ofE3. A quasicrystal model is 
introduced in E6 and E3. The model has stable density supported on the rhombohedral tiles. Its 
Fourier transform yields sharp diffraction maxima and reduces to integrals in E3 over the 
representative tiles and their boundaries. 

\ 

I. INTRODUCTION 

From the beginning, point and space groups have 
played an important part in the theory of nonperiodic order 
in condensed matter physics. The paradigm of the Penrose! 
pattern in the plane El is linked to fivefold rotations, and the 
icosahedral quasilattices in E3 (Refs. 2-7) are related to the 
icosahedral group A (5). 

Space groups provide3 a connection between a periodic 
lattice Y with space group P, translation group T, and point 
group G in En , and a projection of Y to a subspace Em , m < n: 
If a subgroup H < G has an irreducible subspace Em of En 
where it acts noncrystallographically, there can be no trans
lation vector from T in Em, and a projection of Y to Em 
provides a nonperiodic object. For given H with a noncrys
tallographic action on Em, the sequence H < G < P can often 
be obtained by induction.7 Suppose that the noncrystallogra
phic representation contains a one-dimensional representa
tion of a subgroup L <H. Then the representation of H in
duced from this representation of L has the form of a 
permutation matrix with signs and allows for an embedding 
ofHinto the hyperoctahedral group O(n), where n = IH II 
IL I· Since O(n) is the point group of the hypercubic space 
group (T,O (n) ), one obtains the sequence 

L<H<O(n)«T,O(n)). (1) 

The Penrose case is obtained by the choice H = C( 5) 
with the noncrystallographic action generated from a five
fold rotation in the plane. Induction from L = I, the trivial 
subgroup, gives the sequence I <C(5) <0(5) «T,0(5)). 
The icosahedral quasiIattice of E3 with H = A (5) and the 
noncrystallographic representation [31 ~ ],7 the point sym
metry group of the icosahedron, is induced from the dihedral 
subgroup D ( 5 ) and gives the sequence D ( 5) < A ( 5 ) 
< 0 (6) < (T,O (6)). Other icosahedral quasilattices result 
from the subgroups D( 3) and D( 2). 

In spite of this framework from space groups, funda
mental questions with respect to the theory of quasilattices 
are still open: How is the atomic density supported on the 
quasilattices, what is the role played by the tiles in this re
spect, and how can a Fourier transform with sharp diffrac
tion maxima be derived from this atomic density? 

A new approach to these questions, based on the space 
group action in En , is developed in Refs. 8 and 9. It employs 
the following three notions. 

(i)A metrical dual Y· to the lattice Yis constructed. 
(ii)New pOlytopes in En called KlOtze are constructed 

from boundaries of Yand Y·. A representative set of Klotze 
provides a new fundamental domain for the translation 
group acting on En . Their boundaries are arranged perpen
dicular or parallel to the subspace Em . The intersection of 
Em with the periodic tiling of En by the Klotze yields a non
periodic tiling of Em. 

(iii)On the representative set of Klotze, the density may 
be restricted so that it is independent of the coordinates per
pendicular to Em . On the intersection with Em, the density 
then becomes stable on the tiles. This restricted model is 
called the quasicrystal model. The Fourier transform of the 
density on the intersection is reduced to integrals over the 
representative tiles. 

In the present paper this new approach is implemented 
for the hypercubic lattice Y in E6 and its projection to the 
subspace E3 invariant under the representation [31 2+ ] of 
A(5). 

II. THE HYPERCUBIC LATTICE IN E8 

In this section we fix the notation for the hypercubic 
lattice Yin E6. Let b!, ... ,b6 denote an orthonormal basis and 
introduce the hypercubic translation group 

T= {bib = it! nib;. njeZ}. (2) 

Definition 2.1: The point group of the hypercubic lattice 
is the hyperoctahedral group 0 (6). Its elements g are deter
mined by six numbers Ei = ± 1 and by a permutation 
rES(6). The defining representation is 

g ..... Dij (g) = E/Ji.r(j)' i,j = 1, ... ,6. (3) 

Now choose the hypercube h ( 6) as the unit cell and consider 
its boundaries of dimension p = 0, ... ,5 which we call p-boun
daries (compare Ref. 5). 

Definition 2.2: The hypercubic lattice Yin E6 has the 
first unit cell 
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h(6) = {yly = ~ .± A;b;} 
2 1=1 

(4) 

and p-boundaries determined by elements g of n (6), 

1 6 } + - L E,(j) b,(j) , 
2 j=p+ 1 

(5) 

where all parameters A range as - 1 <A < 1. 
The description of the boundaries by elements from 

n ( 6) is convenient as a shorthand notation. We shall later 
restrict the point group to the icosahedral group A (5). Then 
the boundaries should in principle be described by use of 
elements from the space group (T, A (5»), but we shall keep 
the notation of Definition 2.2 for simplicity. If the first unit 
cell is translated to all lattice positions in lE6

, we obtain a 
geometric object characterized by boundaries of dimensions 
p = 0, ... ,6. This object will be referred to as the lattice Y. 

The translation group T acts on lE6 and yields a decom
position into orbits. The first unit cell is, with appropriate 
restrictions at the boundaries, a transversal or fundamental 
domain FD for the action of the translation group T. There 
are other possible choices of the fundamental domain, and in 
Sec. V a new fundamental domain will be constructed. 

The point group n (6) has the icosahedral group A (5) 
as a subgroup (compare Refs. 3-5). The subgroup embed
ding can be interpreted by inducing a six-dimensional repre
sentation of A (5) from the nontrivial one-dimensional rep
resentation of the dihedral subgroup D(5) (compare Ref. 
7). The embedding of A (5) is specified in Table I. In what 
follows we shall use the space group (T, A (5») whose ele
ments are the products of hyper cubic translations with point 
group elements from A (5). The induced representation sub
duces the two three-dimensional irreducible representations 
[312+ ] and [312_ ] of A (5). The reducing matrix is given in 

! ~LE I. Elements of the hyperoctahedraJ group n (6). The permutation r 
IS glven as the map from the top to the bottom line, the sign E = ± I is 
marked by a number without or with a bar on top. The elements gm are of 
order m and belong to A (S ). The elements g; and gi generate D( 3 ), g5 and 
gi generate D( 5), gi and gi generate D( 2). Elements g3 and g; are related 
by g; = gs-lg~S' The elements la' 1/3' and Iy do not belong toA(S) but are 
used in the description of boundaries. The element w maps the vectors used 
in Ref. 5 into the vectors used here. 

g5 = I! 
2 4 5 6 

~I 4 5 6 3 

g3= I~ 2 3 5 6 ;1 g; = I! 
3 6 4 5 

~I 3 6 4 6 5 2 

, II 3 6 4 5 
!I 

" II 
3 6 4 5 

~I g2 = )' 6 3 4 2 g2 = 4 6 3 5 

la = I! 
2 3 4 5 

~I 1/3 = I~ 2 3 4 5 :1 3 4 5 5 6 2 3 

Iy = I! 
2 3 4 5 

~I W= I~ 2 3 4 5 
~I 4 5 6 2 4 5 6 3 

16 = I! 
2 3 4 5 :1 5 2 4 3 

517 J. Math. Phys., Vol. 29, No.2, February 1988 

Table II and is taken from Ref. 6. The two representations 
determine two subspaces of E6 which will be denoted as E~ 
and E~. The projections of the basis b; to these subspaces are 
given by the top and by the bottom part of the columns of this 
matrix. 

III. THE METRICAL DUAL Y" OF THE LATTICE Y 

In this section we construct a geometrical object dual to 
Y in a topological and in a metrical sense. 

Definition 3.1: Given a p-boundary h(P;g) of the first 
unit cell according to Definition 2.1, define its dual by 

h * (6 - p;g) = {Y Iy = 21 . ± A,(j) E'(j) b,(j) 
}=p+1 

1 6 } + -2 . L E,(j) b,(j) , 
}=p+1 

for p = 0, ... ,5 and h *(0) = O. 

(6) 

Note that dual pairs of boundaries have the same center. 
Now we give the following definition. 

Definition 3.2: The dual Y * to Y is the geometric object 
in lE6 obtained by application of all translations from T to the 
dual boundaries for p = 0, ... ,6 given in Definition 3.1. 

As observed in Ref. 9, dual boundaries have comple
mentary dimension, and the relation of Yand Y * resembles 
the relations of dual Euclidean cell complexes in the sense of 
algebraic topology. 10 Moreover, dual boundaries referred to 
their common center are spanned by orthogonal sets ofvec
tors and hence are dual in a metrical sense. Clearly in the 
present case the dual Y * taken by itself is a hypercubic lattice 
as Y with a shifted origin. 

IV. KLOTZE IN lE' 

In this section we introduce the notion of Klotze in the 
hypercubic lattice Y of lE6 and study their properties. The 
Euclidean space E6 will be decomposed into the orthogonal 
subspaces of dimension 3 which carry the irreducible repre
sentations [312+ ] and [312_ ], respectively, of the icosahe
dral group A (5). Denote these two subspaces by the sub
scripts 1, 2 so that 

(7) 

TABLE II. The matrix representation of A (5) of dimension 6 in E6 is re-
duced into the ir:educib~e repr~tations 1312+ 1 and 1312_ I, respective-
Iy, by the m~tnx m. wl~h entnes c = cos a, $ = sin a, tan 2a =~. The 
columns of thIS matnx glve the components of the six basis vectors of the 
hypercubic lattice. The projections of these vectors to the irreducible sub-
spaces E: and ~, respectively, are the first and the last three entries of these 
columns. The vectors are labeled by their column number. 

0 c $ 0 C -$ 

$ 0 c -$ 0 c 
0 

m=v ~ 
c $ c -$ 0 
0 0 -$ C -$ -c 
C 0 -$ -c 0 -$ 

-$ C 0 -$ -c 0 
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The corresponding projections of vectors will be denoted by 
the same sUbscripts 1,2, 

(8) 

For vectors with a sUbscript index, the projection will be 
indicated by the second subscript. 

Definition 4.1: Given a pair of dual three-boundaries 
h(3;g) and h *(3;g) according to Definition 3.1, define the 
Klotz kI(3 + 3;g) as the six-dimensional polytope, 

kl(3 + 3;g) = {xIx = XI + X2, xlEh 1'(3;g), X2Eh2 (3;g)} 
(9) 

or in explicit form 

1 6 1 6 

X ="2 j~4 (E,U) b,U) ) +"2 j~4 (A'(j) E'(j) b,U) ) I 

1 3 
+ - L (A,O) E'(i) bTU) h. - 1 <;Ak <; 1. (10) 

2 ;=1 

A Klotz is completely determined by the projections h l' (3;g) 
and h2 (3;g); we call these projections the one- and two-chart 
of the Klotz. Any Klotz is a bounded and convex polytope in 
E3. Two different Klotze overlap if and only if they have 
common points both in their one- and two-charts, respec
tively. 

The boundaries of a Klotz are determined by the extre
mal values of a subset of its parameters A. In particular we 
need the following proposition. 

Proposition 4.2: A five-boundary of a Klotz kl(3 + 3;g) 
is determined by the values A. k = ± 1 of a single parameter 
A. A Klotz is bounded by 12 five-boundaries. 

The five-boundaries have a simple description in terms 
of their charts: If k = r( 4 ), r( 5), r( 6), the one-chart is a 
rhombus face and the two-chart a rhombohedron, and vice 
versa for k = r(1), r(2), r(3). In E6

, the five-boundaries 
appear as bounded parts of hyperplanes. 

by 
Definition 4.3: The two representative Klotze are given 

kla = kI(3 + 3;c l la ): 

y = !( - b4 - bs + b2 ) 

+ !(-A4b4 -Asbs +A.2b2 )j 

+ !(A}bl +A3b3 + A6b6) 2' 

kIp = kl(3 + 3;CJlp): 

y = !(bl + b3 + b6 ) 

+ !(A1bl +A3b3 + A.6b6 ) I 

+ !( - A.4b4 - A.sbs + A2b2h, 

(11) 

wherec l = eand la' lp are elements of!l(6) given in Table I. 
In the one-chart the projections are a thin and a thick 

rhombohedron, respectively. We shall use the indices a and 
P to denote these two Klotze and their projections. 

In Ref. 5 the boundaries of the first unit cell of the hyper
cubic lattice were classified with respect to their point and 
space group symmetry. The notations are related in Table I. 
For three-boundaries it was shown in Ref. 5 that the space 
group generates at the centers dihedral point groups D ( 3 ) . 
For the three-boundaries h(3;cl ia ) and h *(3;c l lp) appear-
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TABLE III. The generators of the coset A(5)ID(3) have the form 
cj = (gs)" (gi)'. withp =j - 1. V= o forj = 1, .... 5 andp =j - 6, V= 1 
for j = 6, ... ,10. Their expressions as elements of n (6) are given in the nota
tion of Table 1. 

1

1 3 6 4 '5 
C1 = I 3 6 4 '5 

I
I 3 6 4 '5 

C2 = I 2 3 5 6 

II 3 6 4 '5 
C3 = 1 4 2 6 3 

1

1 3 6 4 5 
c. = I '5 4 3 2 

3 6 4 :5 
6 :5 2 4 

~I C6 = I~ 

!I C7 = I! 
~I Cg = I~ 

~I C9 = I~ 

~I CIO = I~ 

3 6 
6 3 

3 6 
3 2 
3 6 
2 4 

3 6 
4 '5 
3 6 
'5 6 

4 '5 
~I 1 5 

4 '5 
~I 1 6 

4 '5 
~I I 3 

4 '5 
~I I 2 

4 '5 
~I I 4 

ing in Definition 4.3, these groups are generated by the space 
group elements 

Da (3): (O,gj ),( - b4 - bs + b2,gz), 

Dp (3): (O,g; ),(bl + b3 + b6,gi). 
(12) 

These dihedral groups transform both the three-boundaries 
and their duals into themselves. From this property one 
finds the following proposition. 

Proposition 4.4: The two representative Klotze given in 
Definition 4.3 are transformed irito themselves by the two 
dihedral groups D a (3) and D p (3), respectively. 

Since the dihedral groups are subgroups of the space 
group, we must require that points carried into one another 
inside of the Klotz be equivalent. Let D(3) <A(5) be the 
dihedral group at the origin and consider the coset A ( 5 ) I 
D(3). 

Definition 4.5: The representative set of 20 Klofze is giv
en by 

k1(3+ 3;c;/a), kI(3+ 3;c;'p), i=I, ... ,IO. (13) 

where the group elements C; generate the cosetA(5)ID(3). 
(See Table IlL) 

Note that in Definition 4.5 we employ the dihedral 
group D( 3 ) that refers to the origin. The set will be shown in 
Sec. V to form a fundamental domain for the translation 
group. We shall need several properties of this set. 

Proposition 4.6: Any pair of Klotze from the representa
tive set has an intersection of dimension less than 6. 

Proof: We use the charts for the Klotze. From the con
struction one finds 

dim«(kl(3 + 3;g»)n(kl(3 + 3;g'»)) 

= dim«(h T(3;g»)n(h T(3;g'») 

+ dim«(h2 (3;g»)n(h2 (3;g'»). (14) 

Therefore it suffices to show that at least in one of the two 
charts the dimension of the intersection is less than 3. The 
positions of the projected boundaries h2 (3;g) are given in 
Ref. 5. The projected boundaries h T(3;g) are spanned by 
triples of vectors from the origin. In detail one finds 
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i=fj: 

dim(h t(3;c;lp) nh t(3;cip »)<2, 

dim(h2(3;c;la) nh2(3;cia »)< 1, 

dim(h2(3;c;la) nh2(3;cj lp») = 0, 

dim(h t(3;c;la )nh t(3;c;lp») = 3, 

dim(h2(3;c;la) nh2(3;c;lp») = o. 

(15) 

Now it is of interest to consider the volumes of the Klotze. 
Proposition 4. 7: The Klotze of the representative set have 

the volume 

i = 1, ... ,10: 

vol(Id(3 + 3;c;la» = ~(1 - 2(P - 38 2
), 

vol(Id(3 + 3;c;lp») = ~(1 + 28 3 
- 38 2

), 

8 = ..}1/5, (16) 

and the total volume of the representative set is 

vo{gJ (Id(3 + 3;c;la»)U(kl(3 + 3;C;lp»)) = 1. (17) 

Proof: The volume of a Klotz is the product of the vol
umes of its projections. The projections are pairs of thin or 
thick rhombohedra with volume 

(18) 

respectively. The total volume of the representative set is 
then 

(19) 

Tum now in detail to the five-boundaries of the Klotze. 
It will be shown that each one is covered by parts of precisely 
three five-boundaries from neighboring Klotze. Consider the 
first representative Klotz Id(3 + 3;cJ/a) and its five-bound
ary described by A4 = 1. There are four possible positions of 
rhombohedra which cover h t (3;c J/a ) from the outside with 
this face as the intersection. The covering rhombohedra can 
all be written as translated copies from projections of the 
representative set. Construct the center positions of these 
rhombohedra and the projections of their duals. Now we 
claim the following proposition. 

Proposition 4.8: The translated duals to the covering 
rhombohedra intersect at most in two-boundaries in E~. 
Three of them dissect the dual h2(3;cJ/a completely into 
three convex parts. Similar results hold for h2 (3;c J/p ). 

Proof: The translated covering rhombohedra are given 
in Table IV for selected faces of the rhombohedra in E~ and 
E~. (See also Table V.) The three covering rhombohedra 
intersect pairwise in three two-boundaries. These two-boun
daries in tum dissect the rhombohedron which forms the 
dual to the covered one. There are essentially two types of 
dissections corresponding to the two rhombohedra a, /3. 
They are shown in Figs. 1 and 2. Once these results have been 
obtained for representative faces, they can be generalized to 
all faces by use of the dihedral group D ( 3) acting on the 
covered rhombohedron and on its covering. 0 

TABLE IV. Covering of five-boundaries for representative Klotze by three five-boundaries from other Klotze translated by the vector b. 

Covered five-boundary Covering five-boundary Dissected Dissecting charts 
one-chart two-chart one-chart two-chart Vectorb chart 2 3 

Id(3 + 3;c,/a) 

h T(3;c,/a ) h2(3;c,/a ) h T(3;c6Ia) h2(3;C6Ia) b2 - b4 - bs h2(3;c,/a) h2(3;c6Ia) h2(3;c6Ia) 
A4 = 1 A,= -1 A6= 1 A3= 1 

hT(3;c,JII ) h2(3;c IJ II ) b2 -b4 h2(3;c IJ II ) h2(3;c IJII) 
A6= -1 A3= -1 AI = 1 
h T(3;C7/11) h2(3;c7/11 ) -b4 -bs h2(3;cill ) h2(3;C7/11 ) 
A3= -1 A6= -1 AI = 1 

h T(3;c ,la ) h2(3;c lla ) h T(3;c6Ia) h2(3;C6Ia) b2 -bs h T(3;c ,la ) h T(3;c6Ia) hT(c6Ia ) 

AI = 1 A4= 1 A2 = 1 As= 1 
h T(3;cill ) h2(3;cill ) -b4 h T(3;cill ) h T(3;c4111 ) 

A2= 1 As= -1 A4 = 1 
h T(3;c3/11 ) h2(3;c3/11 ) -b4 h T(3;cill ) h T(3;c3/11 ) 

As = 1 A2= -1 A4 = I 

Id(3 + 3;cI11l) 

h T(3;cllll ) h2 (3;cI 11I ) h T(3;C6111) h2(3;c6111 ) b, +b4 h2(3;c llll ) h2(3;c6111 ) h2(3;c6111 ) 
AI = 1 A4= 1 As= -1 A2= -1 

h T(3;c3/a) h2(3;cia) b, +b6 h2(3;cia) h2(3;cia) 
As= -1 A2 = 1 A4 = 1 
h T(3;c4Ia) h2(3;cia) b, +b3 h2(3;cia) h2(3;c4Ia) 
A2= -1 As = 1 A4= 1 

h T(3;cllll ) h2 (3;cllll ) h T(3;c611l ) h2(3;c6111 ) bl h T(3;cllll) h T(3;c6ill ) h T(3;c6111 ) 
A4= 1 A,= -1 A6= -1 A3= -1 

hT(3;c,Ja) h2(3;CIJa) b3 hT(3;c,Ja) h T(3;CI01a) 
A6= 1 A3= 1 AI = 1 

h T(3;c7/a) h2(3;C7/a) b6 h T(3;C7/a) h T(3;c7/a) 
A3= 1 A6= 1 AI = 1 
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TABLE V. Matrix representations of dimension 3, denoted by D: and D ~, 
of the generators and some elements of A (5) in the irreducible subspaces E: 
and E ~, respectively. 

Generatorg D1Cg) DiCg) 

14> '/2 4>/2 
-! 1 1-4>/2 -4> /2 

-! 1 g, -4>/2 ! 4>-'/2 4>-!'/2 ! -4>/2 
! 4>-'/2 4>/2 -4>/2 - 4>-'/2 

1 

0 0 

~I 1 

0 0 

~I g, 0 \ 0 

0 \ 0 \ 

1 

0 -~I 1 

0 -~I g; 0 -\ 0 -\ 

0 0 0 0 

I-~ 
0 -~I I-~ 

0 -~I g, \ 

0 0 

Now we apply these results to the five-boundaries of 
Klotze. 

Proposition 4.9: Any five-boundary of a Klotz is covered 
by parts of precisely three five-boundaries from three other 
translated Klotze. The covering Klotze intersect with the first 
Klotz and with one another at most in five-boundaries. 

Proof' Assume that the chart for the five-boundary of 
the first Klotz is a rhombus face in E~ and a rhombohedron in 
Ei. The three covering Klotze as given in Table IV are sepa
rated from the first Klotz by the hyperplane which extends 
the rhombus face into E6. Their two-charts according to Ta
ble IV are separated by three rhombus faces and dissect the 
two-chart of the first five-boundary completely. This means 
that they exhaust all points in the charts of this five-bound
ary. The result is extended from the representative cases 
treated in Table IV to all five-boundaries. 

v. A NEW FUNDAMENTAL DOMAIN FOR THE 
HYPERCUBIC LATTICE 

In this section we proceed from local to global proper
ties of the Klotze in E3. We start with the following proposi
tion. 

FIG. 1. Dissection of the thin rhombohedron. For a fixed face, there are two 
thick and one thin rhombohedron which share the face and intersect with 
the given rhombohedron. These three rhombohedra intersect with one an
other in three faces, and these three faces dissect the given rhombohedron 
into three convex parts shown in the figure. This dissection implies for the 
Klotze in E6 the covering of a five-dimensional boundary by parts of three 
five-boundaries from other Klotze. 
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FIG. 2. Dissection of the thick 
rhombohedron. For a fixed face, 
there are two thin and one thick 
rhombohedron which share the face 
and intersect with the given rhombo-
hedron. Shown is the dissection into 
three convex parts, with similar im-
plications as given for Fig. 1. 

Proposition 5.1: Suppose that E6 is covered with the 
bounded union of a finite set of convex polytopes of total 
volume V> 0 obtained by translation of the set to all points 
of the hypercubic lattice Y. If V = 1 and if the translated 
polytopes have intersections of dimension 6, then there is an 
uncovered part in the unit hypercube. 

Proof: Letlo denote the uncovered part of the unit hy
percube and/; its part which has an i-fold intersection with 
translated polytopes. Since the set of polytopes is bounded, 
there is a maximal number i = m. Then 

m 

l=fo+I/;· (20) 
;=1 

Since there is one set of translated polytopes of volume V per 
lattice point, we must have 

(21) 

and so we get 
m 

10= 1- V+ I (i-1)/;. (22) 
;=1 

For V = 1 this yields 
m 

fo = I (i - 1)/;, (23) 
;=1 

which implies 10 > 0 if there are parts of dimension 6 of the 
hypercube with i-fold intersections, i> 1. 0 

Proposition 5.2: The union of the representative set of 20 
Klotze given in Definition 4.5 forms a new fundamental do
main on E6 under the action of the translation group T. 

Proof' The representative set is bounded and has total 
volume V = 1. The covering of E6 by its translated copies 
fulfills the assumptions made in Proposition 5.1, if it is as
sumed that the covering has intersections of dimension 6. 
According to this proposition there must be uncovered parts 
in the first unit hypercube. Since the Klotze which form the 
set are bounded by hyperplanes, the uncovered parts must be 
bounded in part by five-boundaries from Klotze. Then there 
must be outer points close to these five-boundaries which do 
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not belong to other Klotze. But in Proposition 4.9 it was 
shown that any five-boundary of a Klotz is completely cov
ered by parts of five-boundaries from three other Klotze. So 
one arrives at a contradiction with the result that there can 
be no uncovered parts and no intersections of dimension 6. 
The remaining intersections between Klotze of dimension 
less than 6 can be removed by appropriate prescriptions at 
the boundaries. 0 

We remark here that the space filling ofE6 by Klotze is 
not face-to-face since three neighboring Klotze are required 
to cover a five-boundary. This feature appears already for 
Klotze in spaces of lower dimension.8,9 

Tum now to the action of the space group (T, A (5) ). By 
use of point transformations from the coset A (5)/D(3), the 
20 representative Klotze can be related to the two representa
tives of Definition 4.3. These representatives must have 
D(3) point symmetry. 

Proposition 5.3: The two representative Klotze 
kl(3 + 3;c1Ia ) and kl(3 + 3;c1Ip) form a new fundamental 
domain with respect to the space group (T, A ( 5 ») acting on 
E6. 

VI. THE TWO-CELL QUASICRYSTAL MODEL IN E3 

In this section we study the intersection of the subspace 
Ei with the lattice Y. We take advantage of the new funda
mental domain derived in Sec. V. 

Proposition 6.1: The intersection of the subspace Ei with 
the lattice Y described by translated Klotze is an infinite 
space filling pattern formed from two rhombohedra each in 
ten different orientations. This pattern is non periodic as no 
translation vector is in the subspace. 

Consider now a periodic functionf on Yand its value on 
the intersection. This function can be specified on the two 
representative Klotze. The values of the periodic function on 
the rhombohedral intersections are dependent on the point 
X2 which characterizes the intersection and so the values of 
the function f are not stable on the rhombohedra. Now we 
restrict the values of the periodic function. 

Definition 6.2: Let a periodic function f be defined on 
the Klotze. Restrict f by the requirement that, within any 
Klotz, 

f(x /) =f(x) if x' - x = x2. (24) 

This requirement ensures that the value off be stable on the 
rhombohedral intersections of the Klotze with Ei. The rhom
bohedral tiling of Ei with this stable function is called the 
two-cell quasicrystal model. 

Note that the rhombohedral tiling in Ei is face-to-face, 
in contrast to the Klotz tiling of E6. 

VII. THE FOURIER TRANSFORM FOR THE 
QUASICRYSTAL MODEL 

In this section we express the Fourier transform of the 
density f for the two-cell quasicrystal model through the val
ues supported on the representative Klolze. We follow the 
reasoning presented in Ref. 9. First we describe the intersec
tion of a general periodic function with the help of the cut 
function 

V(Y1'Y2) = £53(Y2 - c2), (25) 

and get, by use of the convolution theorem, the following 
proposition. 

Proposition 7.1: Let the Fourier transform for the func
tionf(Y1'c2) be defined by 

i(k1 ) = (21T)-3 r d 3Y1 f(Y1,c2)exp(-ik1'Y1)' (26) JEJ 

This Fourier transform is given by 

i(k1 ) = (21T)3F(fv)(k 1,0) 

~ £53(k1 - kf)exp(ikf'c2)a(kf,kf), (27) 
k~R 

where kR is a vector from the reciprocal lattice J>R , F stands 
for the Fourier transform in E6

, and the symbol a denotes the 
coefficients ofthe Fourier series off in E6 given by 

a(kf,kf) 

= fFD d 3x1 d
3x2f(x1,x2)exp( - i(kf'x1 + kf'X2»)' 

(28) 

Now we restrict the functionf to the two-cell quasicrys
tal model of Definition 6.2. This can be done by giving two 
functionsfa andfp on the two representative Klotze which 
depend only on x1. We shall introduce the parameters A as 
integration variables and define 

fa (Xl) = la (A r(4) .Ar(s) ,A.r(6) ), 

fp (X1) =lp (.,t r(l),A.r(2),A.r(3»' 
(29) 

The symmetry group D( 3) of the Klotze requires that these 
functions obey, for 5 = a,fJ, 

Is (A, A ',A. ") = Is (A I, A " A) = Is ( - A, - A ", - A '). 
(30) 

Definition 7.2: For 5 = a,fJ define auxiliary functions 

X f_+11 f_+11 f_+1
1 

dAr(4) dAres) dAr(6) Is (A r(4)A r(5)A r(6) ) 

X exp( - i! k l ' (A r(4) Er(4) b r (4)l + Ar(S) Er(s) br(S)1 + A r(6) Er(6) b r (6)1 »). (31) 

The coefficients Va ,vp are the volumes of the two rhombohe
dra given after Proposition 4.7. The letter .!f denotes the 
function Z-l sin z. The product of the three functions .!f is 
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I 
the Fourier transform of a rhombohedron in E~. 

Proposition 7.3: The Fourier transform for the two-cell 
icosahedral quasicrystal model is given by the expression 7.1 
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with the coefficients of the Fourier series given by 
\0 to 

a(kf,kf) = L da (kf,kf,c/la) + L dp (kf,kf,cJ.8)· 
;=1 1=1 

(32) 

The sum runs over the generators of the coset A ( S ) / D ( 3 ) 
given in Table III. 

Proof Since the function/is independent ofx2, the inte
gration over this variable can be performed to yield the fac
tors given in terms of the function .!t'. The sum extends over 
the full set of 20 representative Klotze; it is equivalent to an 
integration over the full new fundamental domain. 0 

VIII. KLOTZ BOUNDARIES AND THEIR FOURIER 
TRANSFORM 

The results given in Sec. VII for the Fourier transform 
in the quasicrystal model apply to a density / supported by 
interior points ofthe Klotze. As in periodic crystallography 
in general, the boundaries of cells require a special analysis in 
view of their different stability group and orbit structure. In 
addition, the quasicrystal model should be extended to these 
boundaries. We shall restrict attention to a first class of 
boundaries of dimension 3, 4, and S in E6 with the property 
that their one-chart is a vertex, an edge, or a face of the 
metrical dual Y * projected to Ei of the form h T (0) , 
h T(1;g), or h T(2;g). As shown in Ref. S, the stability 
groups of these p-boundaries of y* are A(S), D(S), and 
D(2) forp = 0,1,2, respectively. From the point of view of 
the Klotze k1(3 + 3;g), these boundaries occur in the one
charts h T(3;g) as vertices, edges, or faces while their two
charts are full rhombohedra h2(3;g). The union 0/ these 
boundaries admits a description in terms of new Klotz poly
topes in E6. With this property, the Klotz boundaries of the 
first class admit an extension of the quasicrystal model. 

Proposition 8.1: The first class of boundaries for the 
Klotze kl(3 + 3;g) has representatives in the form of Klotz 
polytopes of dimension p + 3 in E6 given by 

kl(p + 3;g) 

= {yly = YI + Y2' yleh T(p;g), Y2eh2(6 - p;g)}. 
(33) 

For p = 0,1,2 and g = e,ly,l/} (compare Table VI), these 
Klotz polytopes have the stability groups A (S), D(S), and 
D(2) referred to their centers. The full set of boundaries in 
E6 is obtained by first acting with the coset generators 
c;eA (S)/D(S) or c;'eA(S)/D(2) for p = 1,2, then acting 
with all translations beT on the representatives. 

Proof Start from the set of representative Klotze of Def
inition 4.S and first consider their one-chart. Choose a fixed 
boundary of dimension p = 0, 1, 2 which is the projection of 
a p-boundary h * (p;g) of Y *. Then determine a set of Klotze 
which, upon translation with a vector beT, have the follow
ing properties: (a) the set shares the boundaries h * (p;g) and 
h *(0) of Y*; and (b) the set shares a set of interior points 
depending on a parameter E> 0 which in the limit E -+ 0, de
termines in the one-chart a general point on the chosen 
boundary. Property (a) implies in the dual Y * the following 
property, compare Ref. S: Since the set of three-boundaries 
from Y * share the p-boundary h * (p;g), the corresponding 
set of dual three-boundaries is contained in the dual bound
ary h (6 - p;g) of Y. It follows that the two-charts of the set 
must also be contained in the projection h2 (6 - p;g). The 
Klotze are part of a fundamental domain, and therefore 
property (b) enforces their two-charts to have no intersec
tion of dimension 3. It is then easy to show that these two
charts fill up completely the projection h2 (6 - p;g). In the 
limit E-+O one obtains for the collection of boundary points 
the one-chart h T(p;g) and the two-chart h2 (6 - p;g). Now 

TABLE VI. Krotze kl(3 + 3;g) shifted by translation vectors b(g) with boundaries of dimension p + 3, p = 0,1,2, which contribute to the new Klotz 
polytopes kl(O + 3), kl( 1+ 3;ly), and kl(2 + 3;16)' The latter polytopes determine representatives of the Klotz boundaries and have the stability groups 
A(5), D(5), and D(2), respectively. 

clla 
C2/ a 

C3/a 

cia 
C51a 

C61a 

cia 
cs/a 

C91a 

c"ja 

Clip 

c2/p 
c3/p 
c.kp 
c51p 
c6 1p 
C7/P 

cslp 
c91p 
clOlp 

522 

p=O 
b 

o 
o 
o 
o 
o 
o 
o 
b3 - b5 

b2 +b6 

b3 

o 
-b2 

-b. 
- b. + b5 

b5 

b. 
- b5 

b6 

b3 

b2 

A. = A5 = A2 = - I 
A5 = A6 = A. = - I 
A6 = A3 = A5 = - I 
A3 = A2 = A6 = - I 
A2 = A. = A3 = - 1 
Al = A5 = A2 = - I 
Al =A6=A.= -1 
- A I = A3 = A5 = 1 
-AI =A2=A6= 1 

Al = A. = - A3 = - I 

A I = A3 = A6 = - 1 
A I = A2 = A3 = - I 
AI=A.=A2= -1 
- Al = A5 = A. = 1 
AI=A6=-A5=-1 
- A. = A6 = A3 = - 1 
- As = A3 = A2 = - 1 
- A6 = A2 = A. = - 1 
- A3 = A. = A5 = - I 
- A2 = A5 = A6 = - 1 

J. Math. Phys., Vol. 29, No.2, February 1988 

p=1 
b 

0 
0 
b3 -bs 
b2 +b6 
b3 

0 
-b2 
-b. 
- b. + bs 

bs 

A5 =A2 = -1 
A6=A.= -1 
A3 =A5 = 1 
A2 =A6= 1 
A.= -A3= -1 

A3 =A6= -1 
A2 =A3 = 1 
-A.=A2= -1 

As =A. = 1 
A6= -A5 = -1 

p=2 
b 

b6 
b3 

0 

b. 

A5= -1 
A2= -1 

AI= -I 

A.= 1 
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we construct the sets with the properties (a), (b). Forp = 0, 
1,2, we choose (compare Table VI), 

p = 0: h *(0) independent of g, 

X(E) = E(Jllb l + Jl3b3 + Jl6b6) , 

1 > JlI > Jl3 > Jl6 > 0, 1 > E > 0; 

p=l:g=ly, 

X(E) = Jllb l + E(Jl3b3 + Jl6b6) , 

1 >JlI >Jl3 >Jl6 > 0, 1> E> 0; 

P = 2: g= 10 , 

X(E) = EJllbl + Jl3b3 + Jl6b6' 

1 >Jl3 >Jl6 >JlI > 0, 1> E> 0. 

(34) 

In Table VI we give the Klotze, the translation vectors b, and 
the parameters A for the boundaries. In the limit E-+O, the 
two-charts of the set fill up the projections h2 (6 - p;g). 0 

Now we extend the quasicrystal model described in Def
inition 6.2 to the Klotz boundaries of the first class: We re
quire that the density I on the boundaries be independent 01 
X2. For the Fourier transform this means that the integration 
with respect to X2 can be performed and yields a factor which 
is the Fourier transform of the two-chart h2 (6 - p;g) for 
p = 0, 1, 2. We proceed as in Sec. VII and use the representa
tives and the coset generators. 

Definition 8.2: For the Klotz polytopes kl{p + 3;g) and 
for a density I introduce the following auxiliary functions: 

p=O, 

h T(O) = {xlixi = O}, 

h2 (6) = {x2IX2=..!.. ± Ai b'"2}' 
2 i=1 

l(x l ) = q8(xt), 

d(kl,k2) = q f d 3x2 exp( - ik2·x2); 
Jh,(6) 

p= 1, 

h T(1;g') = {xlixi =!(1 + Ar(6) >Er(6) br«(i) I }, 

, { 1 5 
h2 (5;g) = x21x2 = -2 .2: Ar(i) Er(i) br(i)2 

.=1 

+ ~ E r(6) br (6)2 } , 

l(x l ) = }(Ar(6) ) =)( - Ar(6) ), 

d(kl,k2,g') = ( d3X2 exp( - ik2·x2) 
Jh,(l;g') 

1 fl A X - dA r(6J(A r (6) ) 
2 -I 

p=2, 

(35) 

h T(2;g") = {XlIXI =!.± (1 + Ar(j) ) Er(j) br(j)l} , 
J=5 
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+ 21 .± Er(j) br (j)2} , 
J=5 

l(x l ) = }(Ar(S) .Ar(6) ) 

=)( - Ar(s)' - Ar(6) ) 

= }(Ar(6) .Ar(S) ), 

d(kl,k2,g") = ( d3X2 exp( - ik2.x2) (.!.)2 
Jh,(4;g') 2 

X exp( - i.!. k l • ± (1 + Ar(j) ) 
2 j=S 

X Er(j) br(j) I ) . 

The functions J are introduced to incorporate the required 
symmetry of the boundaries under D( 5) and D( 2), respec
tively. 

Proposition 8.1: The Fourier transform of the quasicrys
tal model for a density I on a klotz boundary as described in 
Proposition 8.1 is the same sum over reciprocal lattice points 
as given in Proposition 7.1 but with the Fourier coefficients 
replaced by 

p=O, 

a(kf,kf) = d(kf,kf); 

p= 1, 
6 (36) 

a(kf,kf) = 2: d(kf,kf,c;ly); 
i=1 

p=2, 
IS 

a(kf,kf) = 2: d(kf,kf,c;'lo)· 
i=1 

The point group elements c; and cr are the generators of the 
cosetsA(5)ID(5) given in Table VII andA(5)ID(2) given 
in Table VIII. The tables are arranged so that the set of 
numbers r(1 ), ... ,r(6) and the signs Er(lp ••• ,Er(6) appear in 
the bottom row of the group elements c; ,cr. 

The integration over X2 in these expressions yields the 
characteristic function of the polytopes h2 (p;g). These poly
topes are well-known zonohedra with pep - 1) rhombus 
faces which were related to the present quasilattice in Ref. 4. 

IX. CONCLUSION 

The quasicrystal model proposed here is characterized 
by an interplay between nonperiodic tiling, diffraction prop-

TABLE VII. The generators of the coset A (5) / D( 5). 

, 1
3 6 4 5 2 

!I ' 1
3 6 4 5 2 

!I c, = 3 6 4 5 2 C4 = 2 I 3 5 6 

, 1
3 6 4 5 2 

~I ' 1
3 6 4 5 2 

~I c2 = 6 I 5 2 4 c, = 4 I 2 6 3 

, 1
3 6 4 5 2 

~I ' 1
3 6 4 5 2 

!I c3 = 3 I 6 4 5 C6 = 5 I 4 3 2: 
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TABLE VIII. The generators of the coset A (5) / D( 2). 

" 11 
5 2 4 3 

:1 I! 
5 2 4 

c"-
C I = 1 5 2 4 3 

6- 2 4 5 

ci = I: 5 2 4 3 ~I I~ 
5 2 4 

c"-
6 4 5 2 

7 - 4 5 6 

cj = I! 5 2 4 3 ~I I! 
5 2 4 

c"-
3 5 6 4 

8 - 5 6 3 

c; = I: 5 2 4 3 :1 I~ 
5 2 4 

e" -
2 6 3 5 9 - 6 3 2 

c; = I: 5 2 4 3 ;1 " 11 
5 2 4 

4 3 2 6 c lO = 6 3 2 4 

erties, and atomic positions. These concepts have an inde
pendent history. 

As for the tiles, Kepler in 1611 (Ref. 11) introduced the 
triacontahedron bounded by 30 rhombus faces and dis
cussed it in relation to the morphology of crystals. Kowa
lewski in 1938 (Ref. 12) derived this polytope as the projec
tion of the hypercube from E6 and decomposed it into ten 
thin and ten thick rhombohedra. The other members of this 
familyofzonohedra with I(p) = pep - 1 ),p = 3, ... ,6 rhom
bus faces were found by Fedorov in 1885 and Bilinski in 1961 
(compare Coxeter13 ). Mackayl4,15 proposed these two 
rhombohedra as tiles for a nonperiodic pattern in E3, and 
Kramer and NerP constructed the nonperiodic infinite til
ing. Dubost et al. 16 in 1986 have prepared large quasicrystals 
with the morphology of Kepler's triacontahedron. 

The class off unctions with a Fourier transform support
ed on a discrete set of points was shown by Bohr17 to be 
almost periodic. Functions of this type can be obtained by 
restricting periodic functions in En to an intersection with 
Em, m < n. This property has been used by Janner and Jans
sen 18,19 to describe incommensurate structures. If a general 
density on Yin E6 is subject to the symmetry of the space 
group (T,A(5»), it will be almost repeated on E3 whenever 
the intersection between Y and E3 is almost repeated. The 
Fourier transform in the subspace will then depend on a full 
six-dimensional density and cannot be stable on tiles. For an 
illuminating discussion of these points we refer to Bak. 20 To 
understand the physics of quasicrystals, it becomes essential 
to distinguish different models and to test their implications 
on the atomic level. 

The particular diffraction properties of the icosahedral 
quasilattice obtained from E6 were studied by Gahler and 
Rhyner,21 Levine and Steinhardt,22 Elser,23 Kramer,24 Du
neau and Katz,25,26 and others. As a result, the diffraction 
pattern is determined by the characteristic function of the 
hypercube projected to Ei. In the present model this corre
sponds to the boundary with the one-chart h r (0) and the 
two-chart h2 (6) of Proposition 8.3. To the authors knowl
edge, closed expressions for all other atomic positions dis
cussed here have not appeared in the literature. 
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3 
6 

3 

3 

3 

2 

3 

4 

3 

5 

~I " 11 
5 2 4 3 

~I Cll = 6 2 5 3 

~I " 11 
5 2 4 3 

~I Cl2 = 3 4 6 2 

~I " 11 
5 2 4 3 

~I C l 3 = 2 5 3 4 

~I " 11 
5 2 4 3 

;1 c l • = 4 6 1 2 5 

~I " 11 
5 2 4 3 

~I CIS = 5 3 4 6 

The present quasicrystal model implies a nonperiodic 
tiling of E3 which is almost repeated along with the almost 
repetition of intersections between Yand E3. The atomic 
density is exactly repeated on the two tiles. This model 
comes closest to periodic order but requires more than a 
single cell. In the simpler version of dimension 3 and 2, the 
model9 has been shown to reduce to periodic order for com
mensurate intersections. 

ACKNOWLEDGMENT 

This work was supported by DFG. 

IR. Penrose, Bull. Inst. Math. Appl. 10,266 (1974). 
2p. Kramer, Acta Crystallogr. A 38, 257 (1982). 
3p. Kramer and R. Neri, Acta Crystallogr. A 40,580 (1984). 
'P. Kramer, Z. Naturforsch. 4Oa, 775 (1985). 
sp. Kramer, Z. Naturforsch. 41a, 897 (1986). 
·P. Kramer, Acta Crystallogr. A 43, 486 (1987). 
7R. W. Haase, L. Kramer, P. Kramer and H. Lalvani, Acta Crystallogr. A 
43,574 (1987). 

8p. Kramer, Mod. Phys. Lett. B 1, 7 (1987). 
9p. Kramer, Int. J. Mod. Phys. B 1,145 (1987). 
lOW. A. Efremowitsch, "Grundbegriffe der Topologie," in Enzycl. d. Ele

mentarmathematik (Deutscher Verlag d. Wissenschaften, Berlin, 1971); 
Encyc/. Dict. of Math., Transl., 244, 820, edited by N. Sugakkai (MIT 
Press, Cambridge, 1977). 

II J. Kepler, "Strena seu de nive sexangula," in Gesammelte Werke Bd. IV, 
edited by M. Caspar and F. Hammer (C. H. Beck, Miinchen, 1941). 

12G. Kowalewski, Der Keplersche Korper und andere Bauspiele (Koehlers 
Antiquarium, Leipzig, 1938). 

13H. S. M. Coxeter, Regular Polytopes (Macmillan, New York, 1963). 
14A. L. Mackay, Sov. Phys. Crystallogr. 26, 517 (1981). 
15A. L. Mackay, Physica A 114, 609 (1982). 
16B. Dubost, J.-M. Lang, M. Tanaka, P. Sainfort, and M. Audier, Nature 

324,48 (1986). 
17H. Bohr, Fastperiodische Funktionen (Springer, Berlin, 1932). 
18A. Janner and T. Janssen, Physica A 99, 47 (1979). 
I"T. Janssen and A. Janner, Physica A 126,163 (1984). 
20p. Bak, "Icosahedral incommensurate crystals," in Scaling Phenomena in 

Disordered Systems, edited by R. Pynn and A. Skjeltorp (Plenum, New 
York,1985). 

2lF. Gahler and J. Rhyner, J. Phys. Gen. 19, 267 (1986). 
22D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984). 
23V. Elser, Acta Crystallogr. A 42,36 (1986). 
24p. Kramer, Phys. Lett. AliI, 133 (1985). 
25M. Duneau and A. Katz, Phys. Rev. Lett. 54, 2688 (1985). 
26A. Katz and M. Duneau, J. Phys. 47, 181 (1986). 

Peter Kramer 524 



                                                                                                                                    

ERRATUM 

Erratum: Symmetries of static, spherically symmetric space-times 
[J. Math. Phys. 28, 1019 (1987)] 

Ashfaque H. Bokhari and Asghar Qadir 
Department of Physics, University of Texas, Austin, Texas 78712 

(Received 27 October 1987; accepted for publication 28 October 1987) 

pendent Killing vectors (see Ref. 1). Professor H. Stephani (J ena) has pointed out a counter
example to the theorem given in the above-mentioned paper, 
namely the static Einstein universe, which has seven inde-

ID. Kramer, H. Stephani, M. A. H. McCallum, and E. Herlt, Exact Solu
tions of Einstein:SO Field Equations (Cambridge U. P., Cambridge, 1980). 
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